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Preface for Instructors and Other
Teachers

1 About This Book

Discrete Mathematics with Ducks is intended for a sophomore-level audience (in-
cluding some first-year students) to support a gentle course so that students who
find mathematics and proofs and abstraction challenging can still succeed. How-
ever, | am mindful that classes including weaker students almost always contain
stronger students as well, and so I include more challenging problems with every
topic and activity. Additionally, I am mindful that different institutions and dif-
ferent faculty members at those institutions have different ideas about what pace
and amount of material is appropriate for a lower-level class. For this reason, I
have included Bonus sections for those instructors who wish to have faster pacing.
The Bonus sections can be used as fodder for take-home exams or projects as well
as for students who just want to know more about a topic outside of class. The
material in the text is not new; my contributions are a curation of curriculum, a
tone of text, and a philosophy of pedagogy.

The guiding pedagogical principle behind the organization of Discrete Math-
ematics with Ducks is that students can discover many ideas, concepts, theorems,
and proofs for themselves with a bit of guidance. Where I see an engaging way
for them to do this, I have written Try This! sections that are sets of problems
that allow students to construct fundamental parts of the material. However, I also
believe that students are likely to miss a detail here or there in their work and,
more importantly, that as beginning mathematicians they need reinforcement for
their newfound learning. For this reason, I follow sets of discovery problems with
sections that explain the relevant material and give both examples and details. 1
outline some ways instructors might capitalize on this organization of the material
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in Section 2; instructors who want to gain experience in discovery-based teaching
will particularly want to read Section 2.2.

The guiding pedagogical principle behind the style and tone of this text is pretty
silly. I mean that literally: I believe that students are more likely to absorb math-
ematics that is presented in a goofy way. Bizarre situations help students separate
the abstraction of underlying mathematics from the presentation of a problem and
thus give students practice in recognizing the mathematical essence of problems
they find in other contexts. Students who are enjoying the weirdness of problem
presentations are also focusing on the mathematics. It’s easier to remember a zany
concept setup than to recall a straightforward statement. And there’s no reason to
be serious when there’s an opportunity to have fun!

There is also a hidden agenda in my structuring of this material. (I guess it
won’t be hidden anymore after you read this paragraph.) I think it is hard to learn
mathematical techniques without a surrounding context. Attempting to do so is
sort of like opening a toolbox and simply holding up each tool, describing its func-
tion, and then passing the tools around the audience. Without a carpentry project,
it is difficult to build a reliable mental library of situations in which each tool is
useful. So, in this text [ use discrete mathematics as the context via which proofis
introduced. Similarly, tools such as set theory, logic, and functions are compan-
ions to the basic combinatorics and graph theory that are introduced at the start of
the text.

Discrete mathematics is a growing area of mathematics that is used throughout
industry, so I think a discrete mathematics text should function as an introduction
to and survey of the field and its myriad possibilities. Faculty who specialize in dis-
crete mathematics are housed in mathematics, applied mathematics, or computer
science (depending on the institution, and they may show up in multiple depart-
ments as well). They do combinatorics, graph theory, geometry, and optimization.
In this text, I have attempted to balance combinatorics and graph theory topics that
lead naturally to use in computer science with those that lead naturally to mathe-
matics investigations. This is so that students will have a taste of the many flavors
discrete mathematics has and thus of the paths discrete mathematics can take. As
part of this flavor tasting, I have tried to introduce optimization topics where pos-
sible. Hopefully, this diverse introduction to the field will excite students into
desiring further study of discrete mathematics.

The ACM (Association for Computing Machinery) Special Interest Group on
Computer Science Education (SIGCSE) guidelines suggest curricula for computer-
science-focused and mathematics-focused discrete mathematics courses. Discrete
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Mathematics with Ducks gives overviews of the topics and techniques listed by
SIGCSE and then reinforces them throughout the course by applying them to dis-
crete mathematics topics and problems. The content and approach of the text com-
ply with the SIGCSE guidelines in this way.

I made some decisions about the inclusion and exclusion of content and ter-
minology that are potentially controversial and so should be disclosed (or at least
mentioned) here. There are certain terms (including predicate and combinations)
that I avoided using because they only arise in mathematical subspecialties or
teaching contexts and are not used throughout mathematics or even mathemat-
ics courses. I deliberately separated the treatment of recursion from the treatment
of induction so that students would have time to internalize the idea of induction
before linking it to recurrences. It’s easy for beginning students to get bogged
down in the study of formal logic, so I minimized its treatment here. Finally, in
this second edition I have chosen to use gender-neutral pronouns, with ze as the
third-person singular, 4ir as the corresponding possessive, and Mx. as an honorific;
I avoid the singular “they” as it is often confusing (and thus imprecise!) in writing.
(Historical figures and personal acquaintances of the author are referred to by their
publicly disclosed genders.)

The chapters on probability, cardinality, and number theory are included be-
cause many instructors want or need to teach that material as part of a discrete
mathematics course (and because they are beautiful mathematics), but they are not
central to discrete mathematics as a subfield and so I have placed them outside of
the themes around which the book is organized. Similarly, an introduction to com-
putational complexity has been included by popular demand for big-O notation.
For probability, I chose to emphasize expected value and downplay the techniques
of counting/proportions because, on one hand, expected value is central to discrete
probability and, on another hand, students have already learned and used counting
techniques elsewhere in the book. Cardinality is treated via a play, to avoid the
potential dryness of a formal treatment. For number theory, I selected a sampler
that would show different flavors of number theory—and hopefully whet students’
appetites, as | think every mathematics student should study number theory for an
entire semester. Still, the chapter includes almost enough background to justify the
workings of the RSA algorithm (only one bit of it is black-boxed). Computational
complexity is introduced via a sequence of abstractions from measuring algorith-
mic efficiency and performance, so that big-O (and ® and ) notation arises as
formal ways of describing algorithm complexity estimates.
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2 How to Use This Book

First things first: please don’t interpret anything written in this section as prescrip-
tive. I’m not attempting to tell you how to use the book (despite the title of this
section), but instead, inviting you to think about what will work best for you and
offering suggestions that you may take seriously or toss aside at your whim. Dif-
ferent classroom techniques are effective for different instructors, and in this you
must find your own way.

Second things second: each chapter is designed to take one week of class time
and contains a mixture of discovery activities, expository text, in-class exercises,
and homework problems. At the end of each expository section, there are elemen-
tary exercises labeled as Check Yourself problems and signaled by the marginal
pencil-toting duck shown here (as are all sections of problems students should at-
tempt); these are placed at the ends of sections rather than inside the section to
prompt students to review soon after reading a section. Additionally, almost every
chapter contains bonus material for enrichment or fast-paced classes, and all chap-
ters contain guides to further study. The chapters are organized into three themes
(background, combinatorics, and graph theory), with four additional chapters (on
probability, cardinality, number theory, and computational complexity). The first
chapter introduces both combinatorics and proof, and the third chapter introduces
graph theory, so there is thematic foreshadowing within the first theme. All chap-
ters after the first five assume knowledge of the first five chapters. (A detailed
disclosure of dependencies appears in Section 3.)

My advice for how to deal with the ebb and flow of course pacing is to strictly
adhere to a one-chapter-per-week schedule (choose topics for your syllabus ac-
cordingly!), and in this way achieve breadth rather than depth in student acqui-
sition of the material. It may be tempting (especially for the first few chapters!)
to have students work through the entirety of the activities in a chapter and to re-
view the reading and... but in this way, one can get dragged down into belaboring
material. Instead, leave some material for student study. In fact, while there are
three classes’ worth of material presented in each chapter, they are underpinned
by only two substantial classes’ worth of activities. Students’ pacing will not be
uniform; if your class gets behind your intended schedule, no harm will be done if
you skimp on some chapters by reducing the work to two days.

On the topic of course mechanics, I assign daily readings (specified in each
chapter’s Instructor Notes section) and elementary practice problems (under the
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Check Yourself label). I also assign homework each week, taken from the Prob-
lems section of the previous week’s material. The purpose of this timing is to allow
concepts some time to sink in and to prompt students to review. For a course of
this level, I give both in-class and take-home exams. In-class exams are composed
mostly of computational or simple problems (like Check Yourself exercises), but
with a few end-of-chapter-level problems thrown in as well. My take-home exams
often involve end-of-chapter-level problems and sets of problems from Bonus sec-
tions. I have included a selection of additional problems at the end of each of the
central themes from which you may draw exam and review problems.

Discrete Mathematics with Ducks is written to be ideal for instructors who
like active learning. If you have no experience with active learning techniques
but would like to try some, then read on, for I’ll give a short introduction below.
However, if you don’t give a flying figwhistle for that frippery-frappery, this book
can work for you too. There are lots and lots of problems for a lecturer to use as
examples (particularly in the Try This! sections) and homework assignments. All
instructors should be aware that many sections throughout the text begin with Hey!
You! warnings (indicated by the marginal stop-sign-holding duck shown here) that
caution students not to read portions of the text before working on the relevant
in-class activities. Make sure to tell your students whether or not to honor the
don’t-read-ahead edicts.

At the end of each chapter, I have included a section entitled Instructor Notes.
This gives a breakdown of how I would (and how you might) conduct two to three
classes on the chapter material. If you have other ideas on how to use the chapter,
try them! And if they work well, please do share them with me. For those who like
to partition course material among groups of students who present topics, the Try
This! sections can function as projects. If you prefer that individual students make
presentations, then you may wish to steer weaker students away from material in
chapters where Try This! sections come before informational sections.

All links mentioned in the text, as well as GeoGebra files mentioned in the text,
are available electronically at http://www.toroidalsnark.net/dmwdlinksfiles.htmL.

2.1 A Start on Discovery-Based Learning

My personal implementation of discovery-based learning in the classroom rests on
having students collaborate in small groups to do mathematics. In order to have
enough class time for group work, I require that students attempt to read relevant
material in advance. For this book, I have taken special care to make the reading as
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elementary as possible so that students are able to read it and learn from it. (Let’s
hope I have succeeded in this endeavor.)

I am regularly asked how I get students to read a textbook. The pat answer is
that I assign students to read the book, and expect students to read the book, and
then they do so. However, others tell me that they also assign and expect reading
but that students do not do it. Observers of my classes tell me that the difference is
that I truly hold students responsible for reading the book. I do not repeat material
in class that they could have learned by reading. At most, I give a review or an
interactive example or exercise at the start of class. I recommend that if you lecture
over book material, do so briefly. How much time is spent on lecture-like activities
depends on you; I spend less than 15 minutes per class on lecture-like activities.

When instructors step away from lecturing and turn over some control of the
class to students, they often feel as though they are not covering as much material as
they would be covering if they lectured. Coverage is mainly an illusion whether or
not we lecture; however we structure our classes, and whatever material we believe
we transmit to students, we have no actual control over what material enters or is
synthesized within students’ minds. The main shift is in our perspective.

Most of the Try This! sets of in-class exercises will likely take longer than a
single class period to complete. This is intentional; my expectation is that the stu-
dents will not collectively finish all of the problems. I have tried to include enough
problems, and some difficult problems, so that strong/advanced/speedy students
will have things to think about while other students soldier on. Additionally, hav-
ing more problems means that students have some choice in what they work on.
For the most part, Try This! problems do not need to be done sequentially.

It takes a while to gauge in advance how long it will take your students to work
a problem. With many subjects and texts, an instructor will allocate additional
class time to incomplete in-class activities, or will lecture on remaining problems.
For this text, I recommend a different approach. If it takes your students an hour
to do three problems, then I advise you to accept that the students will only expe-
rience discovery for those three problems. Just continue with the course; after a
class period’s worth of experimentation, students can read about the material in the
reinforcing sections. (Everything important is contained in the reading.) Because
this is a survey course, it is more important that students gain exposure to a variety
of concepts than that they fully master many of them.

Finally, nowadays many students have experience with collaborative learning
from high school. In-class group work may seem less foreign to them than it does
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to you. Here are some practical tips on how to conduct group work. As with all
advice I give, use that which works for you and discard that which rings false.

2.2 Details of Conducting Group Work

Begin by breaking students into groups. I suggest having three to five students
per group. There are many ways to allocate students to groups; one is to count
the students off by [number of students/number of students per group|. Clump-
ing students by first letter of first name, or first letter of last name, or month of
birthday will work as well. Have students move so that all group members can see
each others’ faces and share papers and books. For the first few instances of group
work, ask students to start by introducing themselves to each other.

Try to achieve a different partition in each class meeting for the first few weeks
so that students get to know each other and experience a variety of each others’
learning styles, strengths, and weaknesses. After the first couple of class meetings,
you will be able to simply give a command (“Get into groups!” or “Clump up!”)
and the students will automatically rearrange themselves physically in preparation
for the activity.

Once students have been partitioned, have them turn to the appropriate page
of the text and tell them to work on the problems together. Walk slowly through
the classroom, circulating among the groups. For the first few minutes, just listen.
If they are collectively silent for more than two minutes—time this or count it out,
because it feels like a long time to the instructor, and it sometimes takes students a
while to digest the problem statements—then remind the class that they should be
talking to each other. The sound level in the classroom usually rises quite quickly
after such a reminder.

For the bulk of the collaborative learning time, move from group to group.
When visiting a group, listen to see what they are saying to each other; look to see
what they are writing down. If they are making errors, step in to gently correct
them. (If this is your first experience doing group work, you may find that the
students understand far less than they seemed to when you lectured. The difference
is, I suspect, not in the students’ level of understanding, but in your awareness
of the students’ level of understanding. There is little chance when lecturing to
interrogate the students’ understanding, but a great chance to do so when involved
in group work; now is your opportunity to directly intervene in your students’
learning process.) If one student seems separated from the rest of the group, remind
the rest of the group to include that student. (How you do this will depend on your
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personality. I often make melodramatic statements like “Poor X! Ze is all alone
in the wilderness over here....”) If students seem to be working independently,
encourage them to collaborate by trying to get a conversation going. For me, it
works well to squat, so I’m physically on their level, and ask what they’re thinking
about. If the students seem to be stuck, ask them to tell you where they’re stuck
and what’s getting in their way. Then give a small hint and promise you’ll be back
with more if that doesn’t unstick them quickly. Then, move on to the next group.

At some point in this process, students or groups will start raising their hands
to ask you questions. It’s a good idea to outline a circuit of the class in your mind
so that you can systematically visit every group in turn. Going to see a group who
have raised hands can throw this off, so make sure to do something like reversing
direction or returning to your previous place in the circuit. Otherwise, you may
discover that you have lost track of the progress of a group or two.

Another dynamic you may encounter is that some students will be social in-
stead of academic (do discourage this, unless they’re taking a one-minute break
from otherwise hard work), and some students may work on other material (for
your class or for other classes) during this time. Everyone has a different philos-
ophy on how to deal with this. Personally, I am not offended if students work on
other material; they have busy lives. If a student is doing well in class, I allow
hir to work on whatever ze wants to, as long as ze is not distracting hir group or
slowing them down.

Some students are sharper than others, and with discrete mathematics in par-
ticular, there can be groups where some students struggle while others quietly do
twice the number of problems one expects. [ allow this as long as the stronger
students give hints to the weaker students, and I try to make sure the stronger stu-
dents don’t run out of problems to do. I have readied the text for this eventuality
by building extra problems into the Try This! activities, but you may wish to also
prepare a list of end-of-chapter problems that are suitable add-ons or extensions
just in case you have some extra-fast students.

Especially when groups work at different rates, or when some groups are com-
posed of students of divergent abilities, it is difficult to know when to declare the
activity done. I find it useful to set an approximate deadline by which time I think
it will be appropriate to move on. Still, it regularly happens that students are work-
ing productively at that time, and then you must decide whether to let the students
continue or cut off the activity. I recommend erring in the direction of cutting stu-
dents’ work short rather than allowing it to drag on; over time, you will develop a



Preface for Instructors and Other Teachers XXV

sense from “reading” the groups as to when it is best to have them keep working
and when not.

In order to help students achieve closure on a set of problems, and so that
you can set their work in a larger context, devote some time at the end of class to
large-group discussion. Announce that they should stop working in groups (my
cue is usually some variant on “Let’s talk!”) and ask them to summarize work
on a particular problem or collection of problems. (Sometimes I survey them as to
which problems they have completed before requesting this summary.) In practice,
this can mean that each group gives a presentation at the board, or it can mean that
a few students speak from their seats, or some combination of the two. Once
students are used to this practice, I can use a cue such as, “Tell me about what you
did,” and students will know what to do. At the start of a term, I ask, “How did
you approach problem X and what result did you get?” or “How does the proof
for number Y go?” and students will volunteer responses. If I saw a group taking
a notable approach when circulating among the students, I may say, “Z and W
are going to brief us on their work on problem N.” Because everyone has thought
about the problems, the summaries are usually quick and elicit many nods.

Encourage different groups to describe their work on different problems in or-
der to spread around the practice of mathematical speech. I think it is effective
to reflect students’ speech back to them in slightly more formal (and completely
mathematically correct) language so that they understand the correctness of their
conclusions and can improve their communication of mathematics over time. Such
reflection can be followed by stating or reminding students what the point of the
problem was and (briefly!) how it relates to the larger study in which you are
communally engaged. Now, this sounds quite involved, but should only take ten
minutes or so—perhaps not all problems are discussed, but only those for which
different groups took different approaches, or perhaps very few details are men-
tioned.

When you first try this type of group work, it’s common to feel either distant or
over-involved. By distant, | mean that you might feel shy about intervening with
groups, or feel as though you’re just walking around and listening and not doing
anything. By over-involved, I mean that you end up spending lots of time with
each group, essentially walking the group through the exercise, and not visiting
every group as a result. And you might find that you’re not sure what to say when
you hear students being stuck in ways you didn’t expect, or making errors you
weren’t aware students could make, etc. That’s okay. This type of classroom
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activity takes lots of practice. My personal foibles are (1) I tend to get absorbed
in going from group to group and listening and helping and answering questions
and then suddenly there isn’t enough time to discuss the problems as a large group
(drat!), and (2) if I’'m tired, I tend to float instead of listening carefully, or instead
allow students to get off topic.

3 Chapter (and Bonus-Section) Sequencing and
Dependencies

Roughly speaking, Chapters 1-5 are needed for most of the rest of the book, and
within the Combinatorics and Graph Theory themes, the chapters are mildly se-
quentially ordered. More conceptually, Chapter 1 includes an introduction to proof
and all other chapters use proof; Chapter 2 includes set notation, logical thinking,

and proof by contradiction, all of which are used in the remainder of the text.
Some instructors who use material from Chapters 14—17 place it after the
Theme [-Theme III material, and others place the additional material mid-semester,
for example between Themes I and II or between Themes II and I11.
The following chapter dependency list is given by direct use of content.

Chapter 2 needs:
Chapter 3 needs:
Chapter 4 needs:
Chapter 5 needs:
Chapter 6 needs:
Chapter 7 needs:
Chapter 8 needs:
Chapter 9 needs:

Chapter 10 needs:

Chapter 11 needs:
Chapter 12 needs:
Chapter 13 needs:
Chapter 14 needs:

Chapter 1

Chapter 1, Chapter 2

Chapter 1, Chapter 2, Chapter 3

nothing (Bonus needs Chapter 3)

Chapter 1, Chapter 3, Chapter 4 (Bonus needs Chapter 5)
Chapter 1, Chapter 3, Chapter 6 (Bonus needs Chapter 5)
Chapter 1, Chapter 4, Chapter 5, Chapter 6

Chapter 4, Chapter 6, Chapter 8 (Bonus needs Chapter 1,
Chapter 3, Chapter 5)

Chapter 1, Chapter 3, Chapter 5, Chapter 6 (Bonus needs
Chapter 7 Bonus)

Chapter 3, Chapter 4, Chapter 6, Chapter 10

Chapter 3, Chapter 5, Chapter 10 (Bonus 3 needs Chapter 7)
Chapter 3, Chapter 4, Chapter 5, Chapter 10, Chapter 11
Chapter 1, Chapter 3, Chapter 7 (Bonus needs Chapter 6)



Preface for Instructors and Other Teachers XXV

A ﬂ k
O~0-0= @ Ol
R 7 @®-@
Combinatorics / /

‘;@‘_@_’ﬂA

@

14B

Figure 1. In this chapter dependency chart, Bonus sections are designated by “B.”

Chapter 15 needs:  Chapter 1, Chapter 2, Chapter 3, Chapter 5
Chapter 16 needs: ~ Chapter 1, Chapter 2, Chapter 3, Chapter 4, Chapter 5
Chapter 17 needs: ~ Chapter 5, Chapter 8

Indirect chapter dependency information is given graphically in Figure 1.



Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com


http://taylorandfrancis.com

$

Preface for Students and Other
Learners

1 About This Book (and about Learning Mathematics)

In my experience, it is difficult to learn mathematical techniques without a sur-
rounding context. Attempting to do so is like attending a seminar wherein the
presenter opens a toolbox, holds up each tool and describes its function, and then
passes the tools around the audience. Without a carpentry project, it is difficult to
build a reliable mental library of situations in which each tool is useful. So, in this
text I use discrete mathematics as the context via which you learn about proving
mathematical statements.

I believe that you can discover many interesting mathematical ideas, and even
theorems and proofs, with a bit of guidance. In that vein, I have written Try This!
sections that are sets of problems that allow you (usually collaboratively) to con-
struct fundamental parts of the material. However, I also know that everyone
misses a detail here or there and, more importantly, that as beginning mathemati-
cians you will want to verify that your discoveries are correct! For this reason, |
follow sets of discovery problems with sections that explain related material and
give both examples and details.

The style and tone of this text is, let’s face it, pretty silly. I mean that literally: I
believe that you are more likely to absorb mathematics that is presented in a goofy
way. Completely strange and unrealistic problem setups help you to separate the
abstraction of the underlying mathematics from the presentation of a problem, and
thereby give you practice in recognizing the mathematical essence of problems
you may find in other contexts. I think that if you are laughing about a problem
presentation, it aids you in focusing on the mathematics. It’s easier to remember
a weird introduction to a concept than to recall a straightforward statement. And
there’s no reason to be serious when there’s an opportunity to have fun!

XXIX
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The only way to truly learn mathematics is by doing it and practicing it, not
by observing it. It’s just like any other skill: If you want to learn how to dance,
you watch someone do and explain some steps, and then you practice those steps.
To become really good, you usually have to engage in auxiliary activities, such
as stretching or weightlifting (note that these are also practice). If you want to
learn how to write, you write every day and try different forms of writing and ask
for feedback on your work. You may also study grammar or read examples of
excellent writing. That’s general commentary, but now you need to know how to
proceed with discrete mathematics.

2 How to Use This Book

This book is designed to help you learn discrete mathematics through a mix of
discovery-based activities and the more traditional read-text-and-then-do-problems
technique. You may be wondering how I chose which topics would be initiated via
discovery-based activities and which would be introduced via text; here is the an-
swer. Whenever [ knew of a way that students could come upon ideas reasonably
quickly themselves, I wrote problems and activities that would direct you along
that way. Topics for which my experience has been that students will not readily
reinvent the relevant ideas have gotten the I’11-just-tell-you-about-it treatment.

You may also be wondering, Why did I decide to write the book in this way?
When people discover ideas for themselves, they tend to retain those ideas longer
and to understand them more deeply than if someone else revealed the ideas. So
where possible, I have provided discovery activities. At the same time, it’s easy to
miss part of a relevant idea when you’re thinking about it on your own. Therefore,
I’ve also written about the ideas that you should discover for yourself. Please,
dear reader, do not read this text until you’ve worked through the discovery ac-
tivities! The sections that might spoil your fun begin with a Hey! You! alert and
are accompanied by the stop-sign-holding duck shown here. (By the way, the dis-
covery activities are titled Try This! and are accompanied by a pencil-toting duck,
also shown here, and the same duck signifies other activities and sets of problems
throughout the text.)

Maybe you want to know more about what discovery activities are before you
do them. Some of them are intended to have you create good definitions. (Defi-
nitions are written the way they are because they’re useful for talking about ideas
or proving theorems. It’s easy to make bad definitions—too vague, too restrictive,
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insufficiently relevant—if you’re not careful.) Some are designed to help you con-
struct a theorem and proof at the same time. Some are structured so you will work
with many examples, become familiar with the topic, and generate intuition.

You might be used to solving problems that are direct applications of previous
text, as, for example, in an algebra class where a new type of factoring is introduced
and then 30 problems are given that use this type of factoring. That will only
sometimes be the case here, and there will only be a few such problems at a time.
In this text, problems are of the following kinds:

¥ direct applications of the text (should only take a minute or so);

¥ indirect applications of the text, where it will not be instantly clear how to
apply the text;

¥ creative thinking, where the ideas in the text will be useful but not in a spe-
cific way;

¥ extension problems, where you’ll be trying to extend the ideas in the text to
other situations;

¥ discovery problems, where you won’t have text to rely on and just need to
solve the problems by thinking.

Please don’t be intimidated by these problems. You can do it! And lots of guidance
is given; maybe you won’t even notice how creative and critical your thinking is.

Warning: some problems take a long time to solve. By “a long time,” I mean
“more than an hour.” There are some other problems that take maybe a minute or so
to solve. You can probably recognize these because they are marked as problems to
check your reading comprehension. But feel good about yourself if you can solve
any end-of-chapter problem in under ten minutes. (This means that you should start
your homework earlier than the night before it’s due. A bonus to starting early is
that you can be more efficient—spreading out the time you work on homework
will allow your brain to percolate and soak and produce clearer thinking.)

It’s good practice to write up solutions to problems. At first, you should write
out solutions to everything. This will be a huge pain, but well worth it because
in this way you will gain the skills needed to write difficult solutions when you
encounter them later. As your expertise increases, you can start writing solutions
only to not-immediate-to-solve problems. If you get really good, you can just write
up difficult problems!
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One way to do this course would be to have a notebook in which you record
your work on the Check Yourself problems and on the Try This! problems, for later
reference. Essentially, this would create a solutions manual for the book as you go
but also would contain things that didn’t work, etc. (Maybe you could lightly X
out those pages).

By the way, all links and GeoGebra files mentioned in the text are available
electronically at http://www.toroidalsnark.net/dmwdlinksfiles.html. A final note:
this textbook uses gender-neutral pronouns, with ze as the third-person singular
and /177 as the corresponding possessive, and Mx. as an honorific. (We do not use
“they” in the singular as it can be confusing in writing.) Exceptions are made for
historical figures and people of the author’s personal acquaintance whose gender
identification is public.

2.1 How to Use This Book in a Class

If you are using this book in conjunction with a multi-student course, then certainly
you should use it as your instructor advises. In the absence of advice, refer to
Section 2.2 and substitute “classmate” for “buddy who is also self-studying.”

2.2 How to Use This Book for Self-Study

If you are using this book for self-study, just read it cover to cover and follow
the instructions given in the text. There are sections to read before working on
Try This! problems, and these end with Check Yourself problems. You probably
could have answered these questions immediately after reading about the corre-
sponding concepts, but a page or so later you may need to review a definition or
idea. That’s why they’ve been placed later—to help you reinforce what you’ve
just read. There are also sections for which there is no pre-trying-problems read-
ing but where the problems are designed to help you discover ideas. These are
also labeled Try This! If you can’t solve the Try This! problems after an hour or
two, it’s time to read the corresponding text and then Try This! again. It’s best
to have a buddy—you might find one through The Art of Problem Solving (see
http://www.artofproblemsolving.com)—who is also self-studying and with whom
you can discuss your ideas. Working with a buddy is effective for Try This! prob-
lems, and there are some Check-Yourself Challenges in the book that ask you to
generate your own examples; a buddy can help you determine whether your exam-
ples fit the criteria you desire. Then, of course, there are end-of-chapter problems.
These are not marked with difficulty levels because what’s easy for one person is
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difficult for another (and vice versa). However, there are some problems marked
as Challenges (beware).

3 Tips for Reading Mathematics

Generally mathematics is much more difficult to read than fiction (this is probably
not too surprising) or many kinds of nonfiction such as history books or instruction
manuals (maybe not surprising in practice but perhaps surprising in theory). The
reason is that mathematics is conventionally written in as concise a way as possible,
both in the sense that symbols substitute for some words or phrases and in the sense
that verbosity is avoided.

Hopefully these difficulties have been reduced by the friendly manner in which
this text is written. However, the author is keenly aware that first, it is rarely
possible to sufficiently reduce reading difficulties, and second, she has probably
failed to achieve her ideals. So, here are some tips to help you through.

¥ Reading a sentence or paragraph or chapter multiple times is quite helpful.
Here, “multiple” should be interpreted as some number in the three to seven
range, especially if you don’t think you understood every detail the first time
through.

¥ Ifyou feel like you just don’t “get” some idea after reading supporting text a
few times, go read some other source. Then come back to this one. Exposure
to multiple perspectives helps you synthesize ideas.

¥ Do not skip words (... unless you are intentionally skimming). Every word
in a math book is important and there for a reason. If you are having trou-
ble understanding a sentence (or paragraph or problem) try reading aloud,
even if (especially if) you feel silly. It does help. One of the most common
causes of stuckness when solving a problem is having not read the problem
statement carefully enough.

¥ It’s useful to have some scratch paper and a writing implement nearby when
reading. That way you can do calculations, attempt problems fully (not in
your head), record questions and ideas that occur to you, try examples, note
a definition or two that you keep having to look up, etc.
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¥ Oh, speaking of attempting problems, don’t try to do problems in your head.

I’m serious about this: I know you think that you should be able to, but
almost no one can. And there’s no reason you should—our brains are made
for thinking, not memory, so use the paper as your recording device and free
up your brain for thinking.

Don’t believe any of the mathematical claims made in a book or paper with-
out verifying them. For yourself. Yes, really. You can do it! On the other
hand, don’t let this bog you down; sometimes you just need to read the next
sentence or two in order to clear things up. (This happens to the author all
the time.) Don’t get more than a paragraph or so ahead of that point where
you last understood what was going on, unless you’re completely stuck on
that paragraph. In that case, mark it as something you need to go back to,
and proceed in the hopes that life will improve.

Be active, not passive, while reading. That means that you should try to
answer any questions raised in the text and try to solve any problems posed,
and definitely don’t trust the author’s claims. Yes, that last repeats a point
made in the previous bullet point. That’s because it’s super-important.

Ask yourself questions. (Do you sense a theme? Good.) For example, what
are the main points of the section/chapter you just read? Can you generate
your own examples of the newest definitions? What are some situations to
which a recently stated theorem will apply? If there seem to be extraneous
words, read again—why are they there? (Remember that mathematicians
rarely use excess words.) Is a new concept similar to a concept you already
understood? If so, how?

After a first read-through, read nonlinearly. That is, flip forwards or back-
wards to follow your own train of thought. Perhaps you will need to review
an earlier concept or look up the meaning of a symbol, and in the process
you generate a new question that sends you to yet another page. That’s fine.
Use your scratch paper to note your original goal so you don’t forget it while
following interesting mental tangents.

Read only for 20 minutes at a time (unless you lose track of time and keep
going because you’re having a great time). Then take a 5-minute break to let
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your brain absorb and process behind the scenes, and start reading carefully
again.

4 Problem-Solving Prompts
Questions to ask yourself when you’re stuck:

¥ Do I truly understand what the problem is asking? Maybe I need to read it
aloud or look up some of the terms.

¥ Am I using the constraints introduced in the statement of the problem? They’re
probably there for a reason. Related question: am I using the criteria given
in definitions of terms used in the problem?

¥ Is there a super-easy or even trivial example I can work through? This often
helps to make sure you understand the setup of the problem. Try using 0 or
lorn=0orn=1.

¥ Is there a diagram I could draw? That might help.
¥ Can I break this down into a set of smaller or simpler problems?

¥ Is this problem related to any theorems I know? Or does it look similar to
any examples [’ve seen?

¥ Am I sure that all the statements I’ve written down are correct (both in terms
of reasoning and of symbolic manipulation)?

¥ Is the statement of the problem correct or true? Maybe I should be looking
for a counterexample.

(Faculty readers will recognize this section as inspired by George Polya’s How
to Solve It.)

5 Tips for Writing Mathematics

So. About writing things up. There is not a single correct way to write, and as
you write mathematics you will develop a mathematical writing voice of your
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own. Your first goal is always to communicate mathematics to a reader. Pre-
sumably that reader does not have identical comprehension of the particular math-
ematics to yours, or ze wouldn’t need to read your write-up! This is particularly
true with peers who are stuck on problems and seek your help. But you prob-
ably often have a second goal, namely, to communicate your understanding of
mathematics. Many students who are being graded on problems or proofs mis-
takenly believe (or temporarily fool themselves into thinking) that the idea is to
indicate an answer or a basic reason that a theorem is true and that the instruc-
tor/teacher/grader/professor will see this as a verification of task completion. Not
so. The instructor/teacher/grader/professor wants to verify that you (a) have un-
derstood the mathematical material, (b) have been able to solve this related prob-
lem, and (c) can clearly communicate your understanding. Trust me—no one who
chose to use this textbook would have any lower standard.

While we’re talking about this, let me point out that writing mathematics well
requires a lot of practice. Try not to get miffed if you’re asked to rewrite something.
It’s not necessarily a problem with your understanding (although it might be) but
instead with clarity (i.e., a lack thereof) in your communication. Just take a deep
breath and remember that if a reader didn’t understand something you wrote in
your proof, then your communication has not been sufficient to convey that point.
(Okay, now you’re thinking, So, when I don t understand something in this book, 1
can blame the author because she didn 't communicate clearly! As a mathematical
beginner, it’s more likely that you’re not used to reading mathematics than that the
mathematical writing is unclear. See the Tips for Reading Mathematics given in
Section 3. But also, the author is human and sometimes does write unclearly no
matter how many times she revises. She’s sorry in advance if her writing happens
to be incompatible with your brain at some point in this book.)

Some of the following tips may only make sense to you after you have be-
gun writing proofs, and others will only sink in after you have practiced writing
mathematics for a while, so you may wish to revisit this section regularly.

¥ Make sure to define new terms and symbols as you introduce them and qual-
ify them appropriately. For example, just because you use p doesn’t mean
everyone will know it’s a prime.

¥ Structure a solution as you would a paper (except your solution will hope-
fully not be as long). The introduction usually consists of a restatement of
the problem, the body consists of a discussion and solution of the problem,



Preface for Students and Other Learners XXXV

and the concluding statement either places the solution in context or verifies
that your argument has proved what you set out to prove.

¥ End every statement with a period. A mathematical expression is part of a
sentence; a statement has a verb and therefore is a sentence and therefore
should end in a period.

¥ Try not to have too many symbols appear in a row; insert words between
them. For example, “2+3=5243410=5+ 10 = 15" would make more
sense as “We know that 243 =5 and can add 10 to each side to obtain
243+10=5410=15"

¥ Try not to begin a sentence with mathematical notation. If you have ended
a previous sentence with notation, then it will be confusing. Plus, the capi-
talization can be worrisome; for example, when beginning a sentence with
a it seems one should write A, except that A is a different beast.

¥ Never use a pronoun without an antecedent. No one will know what you’re
talking/writing about. For example, don’t write (or even say) “It’s 5.” What’s
57 If we had been faced with 10 —x =5, it would not be clear whether you
meant “10 —xis 5” or “x =5".

¥ Check to see that your written solution addresses the original question or
proves the original statement. (This is related to making sure your solution
contains a concluding statement.)

¥ Be careful not to write the way you work. This has two meanings: one is
that one’s exposition can always be improved. The other is that often one
works backwards when solving a problem or finding the path to a proof.
But don’t write that way! Often such text begins with (statement) =" (other
statement) and proceeds to change each side of the proposed equation until
a definite equality results. It ends up reading, “If statement § is true, then
(fill in some steps here), so 1 = 1 and we are done.” But of course, 1 = 1
whether or not S is true, so it does not need a proof to accompany it.

¥ Read over your solution or proof after you’re done. You might notice a flaw
in your reasoning, or find that you need to add justification for a statement,
or that you could say something in a way shorter or much clearer way.
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Chapter 1 ¥

Counting and Proofs

1.1 Introduction and Summary

Our introduction to discrete mathematics will begin with some problems. You
should make a significant effort to solve these problems before proceeding further—
it will help if you can meet with others to work collaboratively, but you can also
solve them on your own (it’ll just take longer). Working these problems will al-
low you to discover some basic principles (the sum and product and pigeonhole
principles) of counting.

The problems are followed by some reinforcing text that will make sure you
acquire all the needed details. Please do not read it until after you have worked
through the problems! It might spoil your fun.

After that, things go downhill. (Just kidding.) One of the themes in this text-
book is learning how to prove things, and we’ll start by discussing proof and coun-
terexample right after the reinforcing text about the sum and product principles.
Finally, we will tell you everything you desire to know about the pigeonhole prin-
ciple.

1.2 Try This! Let’s Count

Even though you have no experience with discrete mathematics yet, just jump in
here—these problems do not require any prior knowledge and are great to discuss
with classmates. Do not be alarmed if you do not finish the entire set within a
single class period.

1. At WEBS, America’s Yarn Store, there are two aisle displays of sale yarns,
six aisle displays of closeout yarns in the back warehouse, one aisle display
of Grandpa’s Garage Sale yarns in the back warehouse, and one display
shelving unit of liber-clearance $2/ball yarns in the retail area. To how many
display areas can you go in WEBS to buy yarn that is not full price?
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. A group of friends goes out for single-scoop ice-cream cones. There are
sugar cones, cake cones, and waffle cones. But there are only five flavors
of'ice cream left (peppermint, hoarhound, chocolate malt, gingerbread, and
squirrel). How many cone/ice cream combinations can be ordered?

. At this ice-cream store, ice-cream scoops are stored right in the ice-cream
containers between uses. At least how many ice-cream scoops must be in
use if two of them have to be stored in the same flavor ice-cream container?

. A server at the Luminous Nose restaurant goes to this same ice-cream store
but decides to get a triple-decker cone. The stacking of scoops on the cone is
important: a cone with peppermint atop two scoops of squirrel tastes differ-
ent than a cone with two scoops of squirrel atop a scoop of peppermint, so an
order of peppermint-squirrel-squirrel is different from an order of squirrel-
squirrel-peppermint. How many possible triple-decker ice-cream orders are
there?

. Some people heading to a party stop by the ice-cream store to buy quarts of
ice cream. How many orders of three quarts could they make? What if the
three flavors have to be different? What if no one will agree to order squirrel
ice cream?

. Four teams are attending a local Ultimate Frisbee meet. If each team plays
each other team exactly once, how many games are played?

. Some of the Ultimate Frisbee players decide to form temporary teams in
an arbitrary way. They put royal blue and lime green armbands into a bag,
and each player closes hir eyes and grabs an armband to see which tempo-
rary team ze’ll be on. How many armbands need to be grabbed in order
to ensure that one of the teams has at least two players? How many arm-
bands need to be grabbed in order to assure that one of the teams has at least
seven players?

. Some Ultimate Frisbee meet attendees saunter over to the Healthy Snack
Box Machine, where they each choose one of five kinds of fruit, one of
three herbal teas, and one of six flavors of wrap sandwich to get packed in
a box. How many possible snack boxes are there?

. Let’s generalize Problem 6 to a regional Ultimate Frisbee tournament where
there are n teams attending. Teams are assigned numbers (1 through ) when
they register. As before, each team will play each other exactly once.



1.2. Try This! Let’s Count 5

(a) How many games does Team 1 play?

(b) How many games does Team 2 play? Wait, that counts the Team 1
versus Team 2 game twice. How many not-yet-counted games does
Team 2 play?

(c) Keep going. How many “new” (uncounted) games does Team i play?

(d) How many games are played in total?

10. Let’s also generalize Problems 2 and 3 to a more reasonable ice-cream store.

I1.

12.

There are still three kinds of cones (the usual), but now there are k flavors
of ice cream.

(a) How many different single-scoop ice-cream cones can be ordered?

(b) How many ice-cream scoops must be in use if two of them have to be
stored in the same flavor ice-cream container?

Terminology alert: We write finite sets as lists of their members (also called
elements). For example, {2,3,5,7} is an excellent set. So is {1,4}. These
sets are disjoint because they have no members in common. On the other
hand, {1,2} is not disjoint from either {2,3,5,7} or {1,4}. The union of
two sets A, B (or many sets A,B,...,N) is a set containing all members of
A and of B (and of C,...,N). The union of the three sets listed so far is
{1,2,3,4,5,7}.

(a) How many elements are in the union of two disjoint finite sets?

(b) How many members does a union of finitely many disjoint finite sets
have?

(c) Are the previous two questions related to any of the previous prob-
lems?

(d) How many members does the union of n disjoint sets, each with m
elements, have?

Another terminology alert: We call the notation (a,b) an ordered pair and
(a,b,c) an ordered triple (and yes, we call (a,b,...,n) an ordered n-tuple).
Generally, the first member of the pair (or triple, etc.) is from some set A,
and the second member of the pair (or triple, etc.) is from some set B, etc.
If A has m elements and B has k elements, how many ordered pairs can be
formed from A and B? Is this related to any of the previous problems?
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1.3 The Sum and Product Principles

Hey! You! Don’t read this unless you have worked through the problems in Sec-
tion 1.2. | mean it!

There are two principles that underlie most of the problems you worked in Sec-
tion 1.2. Here they are, stated formally.

Oh, wait, we need to define one piece of notation first. The number of elements
in a set A is denoted by |A|.

The sum principle. The number of elements in a finite number of disjoint
finite sets A, B, ..., N is the sum of their sizes |A|+ |B|+ -+ |N|.

You might think of this visually as in Figure 1.1.

Problem 1, about WEBS, used the sum principle directly. Problems 6 and 9,
about counting the number of games played in an Ultimate Frisbee tournament,
used the sum principle by subdividing a set into smaller disjoint sets.

Here is another example.

Example 1.3.1. An employer offers ten days of paid vacation, three paid sick days,
and four paid personal days per year. How many days can one not work and still
get paid? The sets V of vacation days, S of sick days, and P of personal days are
disjoint, so by the sum principle the total number is |V |+ |S|+ |P| =10+ 3+4=17.

We will eventually get around to figuring out what to do if our sets aren’t
disjoint, but you’ll have to wait for Chapter 7 for that. (There will be lots of other
interesting things to think about in the meantime!)

Figure 1.1. The number of elements in the union of these three disjoint sets is 8 +5 + 2
=15.
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Figure 1.2. There are 18 elements total in three six-element sets, or in six three-element
sets.

Wait, in order to continue, we need a second piece of notation! Ordered n-
tuples (a, b, . ..,n) are members of the set denoted A x B x - -- X N, called the Carte-
sian product of the sets A, B, ..., N.

The product principle. The number of elements in the Cartesian product
of a finite number of finite sets A X B X --- X N is the product of their sizes
|A||B| |N|

You might think of this visually as in Figure 1.2, where we might consider
|A| = 6 and |B| = 3. The same Cartesian product can be grouped as |B| copies of
A, or as |A| copies of B.

The product principle can also be formulated as making a collection of deci-
sions or as putting choices in slots. For example, counting the number of ways
to decide first which of r rooms to enter and then which of the ¢ chairs to sit in
and then which of p pencils to pull out of a case uses the product principle to see
that there are r - ¢ - p ways. Similarly, making license plates that start with three
numbers and end in BAT uses the product principle to see that any ten digits can
be placed into each of the three number slots for a total of 1,000 license plates.

Problems 2, 4, and 8, about counting single-scoop and triple-decker ice-cream
orders and Healthy Snack Boxes orders, used the product principle. The subprob-
lem of Problem 11 that asked for the number of elements in the union of  disjoint
sets, each with size m, could be solved using the sum principle by adding m to
itself n times. Or, notice that adding m to itself n times is exactly what it means
to multiply n - m (geometrically, make an n x m grid of elements), and solve the
problem using the product principle.

Notice that we apply both the sum and product principles by letting sets stand
in for something else—for example, the flavors of ice cream can be represented
by the elements of a five-element set I (for ice cream), as can the types of cone by



8 1. Counting and Proofs

the elements of a three-clement set C (for cone). This is a specific case of a more
general counting technique of using stand-ins. For example, instead of counting
pets in a shelter, one could count paws and divide by four. (It might be a good idea
to check that each pet retains all four paws, as otherwise, modifications will need
to be made to the total.) Sometimes we will let one set stand in for another set in
our attempts to count. This will work as long as we know how the sizes of the sets
in question are related to each other.
Here is another example that uses the product principle.

Example 1.3.2. The Restaurant Quatre-Etoile offers prix fixe meals only. (That
means you pay a fixed amount and get a k-course meal, where k usually varies
between three and five. It’s pronounced “pree fix.”) Their menu allows a choice
of appetizers, a choice of main dishes, and a choice of desserts. We could view
the menu as three sets: A has members Escargot Sampler, Quichelets, Puff Pastry
Plantain Purses, and French Fries; M has members Veal Medallions with Infant
Carrots, Foie Gras Falafel with Fig Fondue, Caviar-Crusted Croutons with Con-
sommé, Zucchini Stuffed with Okra and Mushrooms, and Filet Mignon with Hard-
Boiled Onions; and, D has members Ice Cream with Chocolate-Covered Grasshop-
pers under Mint Sauce, and Eight-Layer Orange-Glazed Pound Cake with Ganache
Filling. The product principle says that the number of different meals that could
be ordered is |A| - M| - |D| =4-5-2 = 40.

Hey, can we use the sum and product principles together in one problem? Yes,
it does happen.

Example 1.3.3. A debit-card company, DCC Corp., decides that in order to in-
crease security, it will allow three-digit and five-digit personal identification num-
bers (PINs) in addition to the usual four-digit PINs. Informally, we notice that
there are ten choices for each digit, so there are 10° possible three-digit PINs, 10*
possible four-digit PINs, and 10° possible five-digit PINs, for a total of 111,000
possible PINs for DCC customers. In terms of sets, we let T be the set of pos-
sible three-digit PINs, F be the set of possible four-digit PINs, and V' be the set
of possible five-digit PINs, so that by the sum principle the total number of pos-
sible PINs is |T'| + |F|+ |V|. But we don’t know the sizes of T, F, and V. Here
is where the product principle comes in: T is secretly the Cartesian product of
three sets 71, 7>, T3, each corresponding to one of the digits of a three-digit PIN.
So ’T‘ = ’T] X T X T3| = ‘Tl‘ . |T2| . ’T3’ We know that |T1| = ‘Tz‘ = ’T3’ = 10.
Likewise, F is the Cartesian product of four ten-element sets and V' is the Carte-
sian product of five ten-element sets. Combining these observations, we obtain
IT|+IF[+ V= (T |T2| - [T3]) + (|F1| - [Ba| - |F3] - [Fa]) + (Vi - [Val - (V3] - [Val
Vs|) = 10° 4+ 10* 4 10° = 111,000.
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Both the sum and product principles are only stated for finite sets and for finite
numbers of sets. If you are interested in learning a little bit about infinite sets, look
at Chapter 15.

You might notice at this point that we haven’t said anything about ordering
quarts of ice cream (as in Problem 5). Ha! This problem involves more advanced
counting ideas, and we will address their governing principles in Chapters 6 and 7.

Check Yourself

1. Gelly Roll pens come in 6 solid colors of fine point and 11 of medium point, 10
moonlight colors, 10 shadow colors, 12 stardust colors, and 14 metallic colors.
(Not kidding.) How many different Gelly Roll pens are there?

2. When redeeming a prize coupon, you may choose one of six charms and either one
of three carabiners or one of two bracelets. How many different prize choices could
you make?

3. Challenge: Invent your own problem that uses both the sum principle and the prod-
uct principle.

1.4 Preliminaries on Proofs and Disproofs

In order to begin our study of careful reasoning and how to communicate our
thoughts, we have to know the meanings of the words most commonly used in
the reading and writing of mathematics.

Definition 1.4.1 (a clump of ’em). A definition is a precise statement of the mean-
ing of a term. (Think dictionary, but better.) A conjecture is a statement proposed
to be true and made on the basis of intuition and/or evidence from examples. (You
already made some conjectures when you worked the problems in Section 1.2, and
you’ll make many more before this book is through.) A tieorem is a statement that
can be demonstrated to be true. A proposition is... well, some people use it as a
smallish theorem, and others use it as a theorem offered (proposed) to the reader.
A lemma is a small theorem, usually stated and proven in the process of proving a
regular-size theorem. A corollary is a statement whose truth follows directly (or
almost directly) from a related theorem. A proofis a justification of the truth of a
statement using reasoning so rigorous that the argument compels assent.

Notice that definitions are precise; they are precise not only so that one can
distinguish between similar concepts but also because they are used as references
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for rigorous reasoning. Definitions are not arbitrary (even though they often seem
that way). Instead, a definition comes about because someone needs it either to
shorten communication or to help justify an idea. (Do you think that our definition
of “definition” fulfills the criteria to be a definition?) Often a definition lists criteria
that must be checked in order for the definition to be fulfilled; be on the watch for
such criteria, as they are the key to using a definition as part of a proof.

Here are a few examples of definitions—you may already be familiar with
these ideas.

Definition 1.4.2. An integer n > 1 is prime if the only positive divisors of n are n
and 1.

By this definition, 3 is prime because 3-1 = 1-3 = 3, and there is no different
possible factorization into positive integers.

Definition 1.4.3. A number is even if it is evenly divisible by 2. Equivalently, a
number m is even if m = 2k for some integer k. A number m is odd if m =2k +1
for some integer k.

The number 64 is even because 64 = 2 -32. However, the number 3 is not even
because 3 =2- % and % is not an integer, but 3 =2-1-+ 1 so the number 3 is odd.

Definition 1.4.4. A binary number is a number expressed using only the digits 0
and 1, with counting proceeding as 1,10, 11,100,101, 110, ... and with places rep-
resenting powers of two, increasing to the left and decreasing to the right.

Thus, the number 64 is not binary because it uses digits other than 0 and 1,
but 101 and 101011.101 can be binary numbers or decimal numbers. The binary
number 101 represents 22 +0 +2° = 5 in decimal notation, and the binary num-
ber 101011.101 represents 2° + 0423 +04+2! +2°0 4271 404273 =43.625 in
decimal notation. (Remember that 27! = % and 273 = %,)

Example 1.4.5. Let’s look at the numbers 5, 28, and 10. Because 5-1=1-5=15
and there are no other integer factorizations of 5, it is prime. It is also odd because
5 =2-2+1. On the other hand, 28 = 14 -2 is even, and not prime; it is also not
binary because it uses digits other than 0 and 1. We can rewrite 28 = 16 +8 44
=24 4+23 4+ 22, 50 its binary representation is 11100. The number 10 could be the
decimal number 10 or the binary number 10 representing the decimal number 2
(which, by the way, is both even and prime).
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You probably made some conjectures when you were working through the
problems in Section 1.2. The creation of conjectures is a most important process
in mathematics, so we will be concerned with it throughout this text. It is part of
what makes mathematics an art rather than a collection of facts or rules. When
you encounter a new problem or concept, you should generate and explore some
examples. This in turn will help you generate ideas, and then you can notice pat-
terns and say what you think is true (and that’s a conjecture!). Practice this process
often. Start now by examining these data:

24=5+19=7+17=11-+13.
8 =3+3.
38=19+19=7+31.

¥ What property do the numbers on the left-hand sides of the equations have
in common?

¥ What property do the numbers on the right-hand sides of the equations have
in common?

¥ Come up with three more examples that fit this pattern.
¥ Do you think the pattern always holds?

¥ What is your conjecture? (We will revisit this later.)

One of the skills you must learn as a mathematician is making conjectures, and
another is determining whether your conjectures—and those conjectures others
share with you—are true. In that vein, you will often be asked to prove statements
that are true, but sometimes you will be asked to prove statements that are false.
(It is not possible to successfully prove a false statement.)

Here are some examples of theorems.

Example 1.4.6 (of theorems). Three. Yes, three theorems are here.

¥ Every natural number greater than 1 has a unique factorization into prime
numbers.

¥ Suppose n teams play in a tournament. Then for each team to play each
other team exactly once, there need tobe (n— 1)+ (n—2)+---+ 1 games,
which is equal to n(n — 1) /2 games.
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¥ Ifanatural number is expressed in both binary and decimal forms, the binary
number will have at least as many digits as its decimal equivalent.

You proved the first part of the second theorem above, and you may prove the
accompanying formula in Chapter 4. A proof must be convincing in the logical
sense, but it need not explain why a theorem is true or provide insight as to why
the theorem is true. Those are both devoutly to be wished, of course. A proof
must compel assent and, in order to do so, must communicate ideas to the reader
or listener. Does this mean that a proof must be intelligible to anyone who reads
or listens? In some sense, yes—if someone doesn’t believe your proof, then it is
inadequate. But the reader/listener must make a reasonable effort to understand,
by translating symbols and checking definitions of unfamiliar terms.

Our next example requires a new bit of notation: a € A means that a is an
element of the set A.

Example 1.4.7 (of a proof). Let us prove a special case of the product principle.
We would like to show that for finite sets A and B, the number of elements in
A x B is |A| - |B|. First note that by definition, the elements of A x B are ordered
pairs (a;,b;), where a; € A and b; € B. For each element a; € A, there are |B]
pairs (a;,*) because there are |B| different ways to put an element of B in the x
slot. Now, there are |A| elements of A, so the total number of pairs is (number of
elements of A) - (number of pairs formable with one element of A) = |A| - |[B|]. We
have reached the desired conclusion, so we are done!

The simplest proof technique is direct proof. Here is how to do it.

Template for a direct proof:

1. Restate the theorem in the form if (conditions) are true, then (conclu-
sion) is true. Most, but not all, theorems can be restated this way. (For
example, some are secretly (conditions) are true if and only if (conclu-
sions) are true, a structure you will learn about in Section 2.3.1.)

2. On a scratch sheet, write assume (conditions) are true or suppose (con-
ditions) are true.

3. Take some notes on what it means for (conditions) to be true. See where
they lead.

4. Attempt to argue in the direction of (conclusion) is true.
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5. Repeat attempts until you are successful.
6. Write up the results on a clean sheet, as follows.

¥ Theorem: (State theorem here.)
¥ Proof: Suppose (conditions) are true.

¥ (Explain your reasoning in a logically airtight manner, so that no
reader could question your statements.)

¥ Therefore, (conclusion) is true. (Draw a box or checkmark or
write Q.E.D.—the abbreviation of guod erat demonstrandum, Latin
for “which was to be demonstrated”—to indicate that you’re done.)

Admittedly, there is a lot of grey area in just how one should argue in the
direction of (conclusion) is true. This is where the creativity and art of proof come
in. However, having a structure to work within is very helpful. Working backwards
from (conclusion) is sometimes helpful as part of the attempts, as long as the results
are presented “forwards.” One must be careful to avoid the temptation to start with
the conclusion and work backwards and then hand that in as a finished proof; the
steps have to be reversible and presented in the appropriate order. (One must also
avoid the temptation to give a few examples and call it a day. That is not a proof.)
Let’s think through a simple direct proof.

Example 1.4.8 (of a direct proof). Let us show that if n is an even number, then
for any integer k, the number kn is even. We have been given the statement in
if-then form, so we may suppose that n is an even number. Our desire is to find
a way to show that kn is even. What do we know about even numbers? Well,
the definition of an even number says that it is a multiple of 2, so that means that
n = 2m for some integer m (in fact, it’s the integer 5). We can substitute this into
the expression we want to know about, kn, to see that kn = k2m. Aha! This is also
2(km) and that means the expression is a multiple of 2, and so it is even. We are
done (except for writing it up nicely, which we leave to you in order to save some

typing).

Usually direct proofs are not so simple. Sometimes they are much longer;
sometimes they require a number of cases. Also, in the wide world of mathematics,
people don’t usually name the proof techniques they’re using (except for induction,
which we’ll learn about in Chapter 4). Thus, it is rare to find the sentence, “We
proceed by direct proof” written outside of an introduction to proof writing.
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Then there is the problem of dealing with false statements. What are you sup-
posed to do if you are given a proposition to prove and it turns out to be false?
Well, here’s the deal. First, you have to figure out that the proposition is false.
(It’s not a bad idea to suspect that any statement you’re asked to prove might be
false.) If a statement is false, you know why: you’ve found a particular case in
which it is untrue, also known as a counterexample. So that’s all you have to do
... state that counterexample.

Example 1.4.9 (of a counterexample). Proposition: 1fn is even, then 2n —5 is also
even.

This proposition is false, because 4 is an even number but2-4 —5=8—-5=3
is odd and thus not even.

An excellent reference for learning about proof techniques and proof writing
is Book of Proof by Richard Hammack. It has tons of examples and elementary
exercises and is freely available online [12].

Example 1.4.10 (of an open problem). Proposition: 1f n > 2 is even, then n can
be written as the sum of two primes.

Maybe you conjectured this on page 11. Surprise! This is a famous statement
known as the Goldbach conjecture. No one knows whether this proposition is true
or not! However, most people think it is very likely that the Goldbach conjecture is
true—it has been verified for numbers up to 3 - 10'8. (Christian Goldbach (1690~
1764) made the conjecture in 1742 as part of a correspondence with Euler, who
figures prominently in Chapter 12.)

Check Yourself
1. Prove that if n is even, then n? is even.
2. Prove that if n is odd, then n? + 51 — 3 is also odd.

3. Challenge: Invent your own false proposition and accompany it with a counterex-
ample.

1.5 Pigeons and Correspondences

We will have much discussion of sets and subsets in Chapter 2, but for now we
will define subsets so that we can count them. A subser A of a set B is a set all of
whose members are also members of B. For example, {1,4,duck} is a subset of
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Figure 1.3. By the product principle, there are 2" ways to fill in these slots.

{1,2,3,4,5,duck}, but {duck,egg} is not. We would like to count the number of
subsets of a finite set with n elements, so we will do it more than once, in different
ways.

The first way excellently uses the product principle. It also uses the idea of
one-to-one correspondence. This is the idea behind converting any counting prob-
lem (call this one Problem 1) into another counting problem (perhaps called Prob-
lem 2): if the items counted in Problem 1 are in one-to-one correspondence with
the items counted in Problem 2, then there are the same number of items counted in
each problem. But before discussing this excellent way of counting subsets, let’s
do an example.

Example 1.5.1. What are all the subsets of {egg,duck}? Certainly {egg} and
{duck} are subsets. Also, {egg,duck} is a subset of itself (the elements are the
same), and the empty set (denoted @) is also a subset. In fact, the empty set is a
subset of every set, though in a rather boring way. So in total, {egg, duck} has four
subsets.

Consider these subsets as follows. Each subset corresponds to a way of filling
in two blanks . The first blank either has egg or doesn’t, and there are
two options there. The second blank either has duck or doesn’t, and there are two
options there. The product principle says there are 2 -2 = 4 subsets in total.

From this, one can abstract that if a set E has n elements, one of which is egg,
then half of the subsets of E contain the element egg. Each subset of E corresponds
to a way of filling in n blanks, as indicated in Figure 1.3. The first blank either
has egg or it doesn’t, and there are two options there. Likewise, each other blank
either has its assigned element or it doesn’t, and each has two options. The product
principle says there are 2- - -- -2 = 2" subsets in total. We will revisit this argument
in another context (graph theory) in Chapter 10.
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Here is arelated way to count the subsets of an n-element set. We assigna 1 or 0
to each set element, depending on whether it is or is not in the given subset (much
like filling in or leaving a blank). This produces a one-to-one correspondence
between subsets and strings of binary digits (called binary strings). We again use
the set {egg,duck} as an example. As shown in the table below, we convert each
subset to a binary string.

Subset | Binary String | Decimal Number | Counting Number
0 | 00 | 0 | 1
{duck} ‘ 01 ‘ 1 ‘ 2
{egg} ‘ 10 ‘ 2 ‘ 3
{egg,duck} | 11 ‘ 3 ‘ 4

We can read each binary string as representing a binary number and then con-
vert each such binary number to decimal (base 10). However, the smallest of those
decimal numbers is 0, which is not useful for counting, so we add 1 to each of the
decimal numbers. This effectively produces another one-to-one correspondence,
between binary strings and counting numbers. (By the way, one-to-one correspon-
dences are more formally known as bijections, and we will discuss them in more
detail in Chapter 3.)

This reduces our original question to “How many binary strings are there with
n digits?” We might note that the largest binary number represented by an n-digit
binary string is 111...1 (n ones). Now, there is one more binary string than there
are numbers counting up to 111...1 (n ones) because we need to include the string
000...0 (n zeroes). So, we can simply add 1 to the decimal equivalent of 111...1
(n ones). Also, we could add 1 before or after converting to decimal, so let’s do it
before and get 1000...0, or 1 followed by n zeroes. That’s 2"—ta da!

Each way of counting the number of subsets of a set is a different proof of

Theorem 1.5.2. A set with n elements has 2" subsets.

It is useful to have different proofs of the same theorem because they give dif-
ferent understandings of, or different perspectives on, the mathematics involved.
Hidden in the above proofs is the following.

Fact. Iftwo sets A and B are in one-to-one correspondence, then they have
the same size.

Yes, you probably knew this, but it is worth stating explicitly so that you will
remember it when it is useful. How exactly will it be useful? Well, we will focus
in Chapters 6 and 7 on a few types of counting problems—and most other counting
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Figure 1.4. Pigeons sitting in pigeonholes.

problems can be solved by creating one-to-one correspondences with those famil-
iar problems. So trying to find one-to-one correspondences is a skill you’ll want
to acquire over time. There are related facts about the sizes of sets that are not in
one-to-one correspondence, and we’ll find those in Chapter 3.

Here is another explicit statement of a fact that you probably already know.

The pigeonhole principle. If you have more pigeons than pigeonholes, then if
every pigeon flies into a hole, there must be a hole containing more than one
pigeon. (See Figure 1.4.)

Really. Not kidding, it is actually called the pigeonhole principle by pretty
much everyone; this is not a silly name invented for this book, unlike some other
names you will find here. How on earth are these pigeons relevant?

Example 1.5.3. Suppose you have a bag of pigeons, some grey and some black.
More classically, suppose you have a drawer full of grey socks and black socks.
How many pigeons/socks must you grab in order to be sure you have two of the
same color? One is clearly not enough, and will only ask to drive the bus; two
might be enough if you’re lucky, but you could also get one grey and one black; but
three gives the guarantee that even if the first two were grey and black, respectively,
the third must be either grey or black and thus be the same color as one of the first
two pigeons/socks.

While we are making explicit things you know (but might not have stated out-
right), here is

How to apply the pigeonhole principle:

1. Figure out what represents the pigeons. In Example 1.5.3, these were both
pigeons and socks.

2. Figure out what represents the pigeonholes. In Example 1.5.3, the pigeon-
holes are pigeon/sock colors.
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3. Figure out how pigeons correspond to holes. In Example 1.5.3, a pigeon
flies into a hole that matches its color.

Sometimes it is not obvious how to apply the pigeonhole principle, and in such
cases the explicit instructions will be useful. Let’s do a more complicated example.

Example 1.5.4. Did you know that in San Francisco, at least five people have the
same number of hairs on their heads? Wow, that’s gnarly. Intuition first:

The population of San Francisco is at least 870,000, according to https:/www.
census.gov/quickfacts/fact/table/sanfranciscocitycalifornia, US/PST045216.

According to various unreferenced sources on “teh intarwebs,” the average
person has 100,000 hairs on hir head; those who are naturally blonde average
140,000 hairs. It seems that 180,000 would be a reasonable upper bound for the
number of hairs on a human head, but let’s be safe and use 200,000 as an upper
bound.

Then, 4 -200,000 < 800,000 < 870,000, and so it looks like we have more than
four people per hair-number. With pigeons:

Pretend that each resident of San Francisco is a pigeon.

And, pretend that there is a set of pigeonholes numbered from 1 to 200,000.

Even if the first 200,000 pigeons fly into different holes, and then the next
200,000 pigeons each fly to a hole containing only one pigeon, and then the
next 200,000 pigeons each fly to a hole containing only two pigeons, and then
the next 200,000 pigeons each fly to a hole containing only two pigeons, there will
be four pigeons in each hole and there are at least 70,000 pigeons who still need
holes. Thus, there must be some hole that houses at least five pigeons, and there-
fore there are at least five San Franciscans with the same number of hairs on their
heads.

By the way, this kind of argument is known as an existence proof. That’s
because we know the five people exist, but we don’t know who they are. (This is
also called a nonconstructive proof, in contrast to a constructive proof, in which
we would explain how to find the five people.) Some people find existence proofs
unsatisfying. Oh, well.

Example 1.5.4 used a variant on the pigeonhole principle, namely

The generalized pigeonhole principle. If you have more than k times as many
pigeons than pigeonholes, then if every pigeon flies into a hole, there must be
a hole containing more than k pigeons.


https://www.census.gov/quickfacts/fact/table/sanfranciscocitycalifornia,US/PST045216
https://www.census.gov/quickfacts/fact/table/sanfranciscocitycalifornia,US/PST045216
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Notice that when proving Theorem 1.5.2, we used a one-to-one correspon-
dence; the pigeonhole principle is essentially using the /ack of a one-to-one cor-
respondence. (After all, if there were a one-to-one correspondence, there would
be the same number of pigeons as pigeonholes.) We will investigate some for-
mal details along these lines in Chapter 3. Similarly, the generalized pigeonhole
principle is essentially using the lack of a many-to-one correspondence.

For a final example, we will use Theorem 1.5.2 together with the pigeonhole
principle.

Example 1.5.5. Given any list of 25 numbers, each of which has at most five digits,
two subsets of the list have the same sum. Again, intuition first:

Any one of the numbers is less than 100,000, so the sum of all 25 of them is
less than 2,500,000. Therefore any subset of the 25 numbers also has sum less
than 2,500,000. (We will ignore the empty set, even though it is a subset of the
numbers.)

To find the lowest sum possible, consider the case of a subset that’s just the
number 00001. It has sum 1. Therefore, there are at most 2,500,000 different
possible sums the subsets could have.

Now, how many subsets are there? We know this from Theorem 1.5.2—there
are 2%° = 33,554,432 possible subsets. (Actually, because we have ignored the
empty set, we are only considering 22> — 1 = 33,554,431 subsets.)

There are way more subsets than sums, so two of the subsets must have the
same sum. In terms of pigeons, we represent the subsets by pigeons and the
subset-sums by pigeonholes; a pigeon flies to the pigeonhole labeled with its
subset’s sum.

Check Yourself

1. Listall the subsets of {egg, duck,goose}. How many are there? How many of them
contain egg? ... duck? ... goose?

2. Consider a standard deck of cards with suits hearts (O), spades (#), clubs (&), and
diamonds (<»), and values 2—10, jack, queen, king, and ace. How many cards must
you deal out before being assured that two will have the same suit? How many
must you deal out before being assured that two will have the same value?

3. Challenge: Invent your own counting question that can be answered using the pi-
geonhole principle.
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1.6 Where to Go from Here

This chapter contained a very basic introduction to enumerative combinatorics,
the science of counting. To learn more, consult Chapters 69 (and then see where
those chapters direct you!).

More specifically, binary numbers and strings are used throughout computer
science as ways of representing data in computers. Sets and subsets are treated
extensively in Chapter 2. The study of number properties such as even, odd, and
prime is part of the larger field of number theory, of which we will encounter more
in Chapter 5 and which is addressed in Chapter 16. One-to-one correspondences
are studied at length in Chapter 3. We will address more proof techniques in Chap-
ters 2 and 4, and Richard Hammack has written the lovely Book of Proof [12] for
further study.

Yes, this is a brief section, but that’s because this is the most introductory
chapter! In other chapters we will give more information and advice.

Credit where credit is due: Most of the problems in Section 1.2 were inspired by [3],
and several problems in Section 1.9 were inspired by [1]. In Section 1.2, WEBS is a real
store (see www.yarn.com) and the Luminous Nose is a real restaurant in Japan (or at least
that’s what I’m told the Luminous Nose building is). Example 1.5.3 refers to Don t Let the
Pigeon Drive the Bus by Mo Willems. Bonus Check-Yourself Problem 9 was suggested
by Doug Shaw; Bonus Check-Yourself Problem 1 was inspired by colleagues at the Centre
for Textiles and Conflict Studies. In Section 1.9, the grape-nut burgers in problem 1 are
Jim Henle’s recipe, Problem 5 references an old internet joke from the age of modems,
and Problems 30-32 were inspired by Karl Schaffer’s notes thereon.

1.7 Chapter 1 Definitions

disjoint sets: Sets with no elements in com-
mon.

union of sets: The union of two sets A,B
(or many sets A,B,...,N) is a set con-
taining all members of A and of B (and
of C,...,N).

subset: A subset A of a set B is a set all of

whose members are also members of B.

definition: A precise statement of the
meaning of a term. (Think dictionary,
but better.)

conjecture: A statement proposed to be
true and made on the basis of intuition
and/or evidence from examples.

theorem: A statement that can be demon-
strated to be true.

proof: A justification of the truth of a state-
ment using reasoning so rigorous that the
argument compels assent.

proposition: A smallish theorem, or a the-
orem offered (proposed) to the reader.


www.yarn.com
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lemma: A small theorem, usually stated evennumber: A number evenly divisible
and proven in the process of proving a by 2. Equivalently, a number m is even
regular-size theorem. if m = 2k for some integer k.

corollary: A statement whose truth follows
directly (or almost directly) from a re-
lated theorem.

odd number: A number m is odd if m =
2k + 1 for some integer k.

counterexample: A particular case in  binary number: A number expressed using
which a statement is untrue. For exam- only the digits 0 and 1, with counting
ple, 3 is a counterexample to the state- proceeding as 1,10,11,100,101,110, ...
ment all numbers are even. and with places representing powers of
two, increasing to the left and decreasing
to the right.

prime number: An integer n > 1 whose
only positive divisors are n and 1.

1.8 Bonus Check-Yourself Problems

Solutions to these problems appear starting on page 593. Those solutions that model a
formal write-up (such as one might hand in for homework) are to Problems 2, 4, and 6.

1. A Timbuk2 custom messenger bag 4. You want to buy an electric car. The

comes in four sizes, has 46 options
for the left-panel and center-panel and
right-panel fabrics, 18 different binding
options, 27 logo colors, 11 liner colors,
three options for pocket style, two hand-
ednesses, and 47 different options for
the strap pad. (Really, not kidding—
these numbers came from the Timbuk?2
website in October 2014.) How many
different custom messenger bags could
one order?

2. Prove that the product of any three odd
numbers is also odd.

3. Takeo, a paper store in Tokyo, has walls
lined with coded drawers. Each code
designates a type of paper. One such
drawer is 2Q08. If the first entry has
to be 1, 2, or 3 (there are only three
walls with drawers), the second is a let-
ter, and the last two are numbers, then
how many drawers could Takeo have?

Chevy Volt comes in eight colors (red,
brown, grey, pale blue, two blacks, two
whites), offers three kinds of wheels,
and has five kinds of interiors (two
cloth, three leather). The Tesla comes
in nine colors (black, two whites, two
greys, brown, red, green, blue), and
gives a choice of three roof styles (one
is glass), four wheel styles, four seat
colors, four dashboard prints, and three
door-trim colors. There are three ver-
sions of the Nissan Leaf (S, SV, SL),
each of which comes in seven col-
ors (two whites, two greys, red, blue,
black). How many different choices of
car do you have?

. Prove, or find a counterexample: the
sum of two consecutive perfect cubes is
odd.

. How many four-digit phone extensions
have no 0Os and begin with 3?
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. You

.In 2016, there were 3,945,875 live

births in the US. (Source: http:/www.
cdc.gov/nchs/fastats/births.htm.) Did
there have to be two of these births
within the same second?

. How many length-8 binary strings have

no Os in the fourth place?

receive a  choose-your-own-
adventure certificate for a jewelry store!
The deal is that you get to pick one of
eight precious gems, and either a ring
or a bracelet to put it in. There are
three possible ring styles and six pos-
sible bracelet styles.
(a) How many possible prizes are there?
(b) How did you answer the previous
question? If you used the product
principle first, re-answer the ques-
tion using the sum principle first.

10.
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(And if you used the sum principle
first, re-answer the problem using
the product principle first.)

(c) On closer look, you realize that nei-
ther the ruby nor the emerald would
look good on the bracelet. How
many prizes are still possible?

I have a lot of stuff in my stuff-holder:
six ball-point pens, a silver star wand,
three teal signature pens, a bronze-
yellow colored pencil, five liquid ink
pens, three mechanical pencils, a high-
lighter, six permanent markers, seven
gel pens, a Hello Kitty lollipop, two
markers, three wooden pencils, a 3-
inch-long pen, a calligraphy marker, a
pen shaped like a cat, and a pair of left-
handed office scissors.

How many writing utensils do [ have in
the stuff-holder?

1.9 Problems That Use Counting or Proofs

Even when a problem statement doesn’t explicitly say that you must explain your rea-
soning, you still should give some justification for your answer—even if it’s just a few

1.

words.

Bruno Burger’s specialty is, you
guessed it, burgers. They offer four
different burger patties (chicken, fish,
soy, and grape-nut) with your choice
of seven vegetables (onions, lettuce,
tomato, kale, red onions, zucchini, and
eggplant). How many patty-with-a-
vegetable burgers can be ordered?

. The Supreme Bruno is any patty-with-

a-vegetable burger plus a condiment
(choose from Worcestershire sauce,
wasabi sauce, or mustard); you can
also have cheese, or not. How many
Supreme Brunos could be ordered?

. Prove that the sum of two even numbers

np and ny is also even.

. Prove that the sum of two odd numbers

np and ny 1is even.

. You are assigned to communicate with

a truly ancient computer. You must
do this by telephone by shouting binary
digits over the line, in clumps of eight
digits. How many different eight-digit
binary strings are there to shout?

. A local creperie offers sweet crepes and

savory crepes. A sweet crepe could
have any fruit (banana, strawberry,
mango, apple, lemon) and any syrup
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10.

I1.

13.

(nutella, chocolate, caramel, honey).
A savory crepe could have any veg-
etable (broccoli, mushroom, spinach)
and any protein (turkey, cheese, prosci-
utto). How many different crepes are on
the menu?

. Prove that every binary number n that

ends in 0 is even.

. Prove that every odd number n ends in

1 in its binary representation.

. Scary Clown offers a Sad Meal contain-

ing a sandwich, a salad, a dessert, and
a drink. (They are not mixed together
in the box.) There are 11 types of sand-
wiches, 3 types of salads, and 5 differ-
ent kinds of desserts. A person with low
standards for food could eat a different
Sad Meal every day for three years. So
how many drinks are possible choices
for a Sad Meal?

Prove, or find a counterexample: the
difference of two consecutive perfect
squares is odd.

Every US coin is stamped with the year
in which it was minted. How many
coins do you need to have in your pocket
to be assured that at least two of them
have the same last digit? How many do
you need to be assured that at least two
have the same first digit?

. Prove, or find a counterexample: the

sum of two perfect squares is even.

In order to keep track of circulation
numbers, the library asks you to note
on a form, when you leave the library,
which combinations of 15 subject ar-
eas and of 8 types of material (books,
current journals, databases, bound jour-
nals, videotapes, microfilm, microfiche,
DVDs) you used. How many possible

14.

15.

16.

17.

18.
19.

23

ways are there to fill in a line on the
form?

(Still about the library) Of course, not
every combination is realistically possi-
ble, as the library does not hold mate-
rials in every type for every discipline.
If the library has six types of material
for each discipline, how many possible
ways are there to fill in a line on the
form?

(And more about the library) More re-
alistically, some disciplines use mate-
rials in more differing forms than oth-
ers. Let’s look at just a few disciplines.
The Dance holdings are in videotape,
DVD, current journals, bound journals,
and books. The Math holdings are
in books, current journals, databases,
bound journals, videotapes, and micro-
film. The Computer Science holdings
are in books, databases, and DVDs. An-
cient Studies holdings are just bound
journals, videotapes, microfilm, and mi-
crofiche. How many possible ways are
there to fill in a line on the form for these
four disciplines?

Prove, or find a counterexample: the
sum of two primes is even.

At Chicago O’Hare International Air-
port, there are an average of 1,185 di-
rect flights per day (source: http:/
www.flychicago.com/ohare/myflight/
direct/pages/default.aspx). Prove that
at least two of these flights must take
off within 90 seconds of each other.

Prove that if n is even, then (—1)" = 1.

How many different seven-digit phone
numbers are there?
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20.

21.

22.

23.

24.

25.

26.

How many different seven-digit phone
numbers begin with 231- and contain
no 9s?

Is the product of two odd numbers even
or odd? Prove it.

Let us try to strengthen the result in Ex-
ample 1.5.5.

(a) Does a list of distinct five-digit num-
bers of length 20 have the property
that there must be two subsets of the
list with the same sum?

(b) What is the smallest list of distinct
five-digit numbers such that there
must be two subsets of the list with
the same sum?

Prove that if z is any integer, then 3n° +
n+5 is odd. (Suggestion: do one case
for n odd and one case for n even.)

A cold-footed centipede has a drawer
filled with many, many socks. And yes,
that centipede does have 100 feet. If the
centipede only owns green and brown
socks, how many must it pull from the
drawer in the dark of the morning to be
assured that it has a matching set for all
of'its feet (100 socks of the same color)?
What if the centipede also owns polka-
dotted socks? What if the centipede’s
drawer has many, many socks of k dif-
ferent colors?

Challenge: What if the centipede wants
50 (possibly different) matching pairs,
one pair for each pair of feet? Consider
first a centipede who only owns green
and brown socks, then a centipede who
also owns stripey socks, and then a cen-
tipede who owns k different colors of
socks.

Let us propose an alternate definition
for prime numbers: An integer n > 1 is

27.

28.

29.

30.
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prime if the only positive divisors of n
are n and 1. Which numbers are prime
under this definition? Why has the
mathematical community chosen not to
use this definition?

Let us propose an alternate definition
for prime numbers: An integer n > 1 is
prime if the only positive divisor of n is
n. Which numbers are prime under this
definition? Why has the mathematical
community chosen not to use this defi-
nition?

The Red Dot company sells laser point-
ers in three colors (red, green, purple)
and two lengths (keychain, pencil). The
green and purple laser pointers only
come with regular tips, but there is also a
Fancy Tip option for the red laser point-
ers. How many options are there for
Red Dot laser pointers?

You buy a Scheepjes Catona Colour
Pack, which contains 109 mini-skeins
in rainbow colors that “create a collec-
tion of mercerized cotton that will daz-
zle and delight you.” However, you only
have eight rainbow-color bins (red, or-
ange, yellow, green, blue, indigo, violet,
and neutral) to store them in. Prove that
some bin must contain at least 14 mini-
skeins.

Magic Trick! You challenge a friend to
choose seven different natural numbers
in the range 1-12. You claim that (and
so you should be able to prove that)...

(a) ... two of your friend’s seven num-
bers sum to 13.

(b) ... two of your friend’s seven num-
bers have a difference of 6.

(c) ... two of your friend’s seven num-
bers have a difference of 3.
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31. Magic Trick #2! This one requires two the dining room has a two-shelf book-
friends. One of your friends picks eight shelf, and the pantry has a shelf full of
different numbers in the range 1-20. books. In addition, there are three other
The second friend chooses one of these shelves in the dining room that have
eight numbers to remove. You claim books on them, and there are three shelf-
that there are two subsets of the remain- like surfaces in the living room that hold
ing numbers that have the same sum. piles of books. How many different
Prove your claim! shelves could be holding the book Keep-

32. In Massachusetts there are a lot of ing Ducks and Geese by Chris and Mike
Dunkin Donutses. It is not particularly Ashton?

unusual to find five Dunkin Donutses 34
within one square mile. Must there be
two of them within % of a mile of each
other? What about within % mile of each

. The Jinhao Shark fountain pen comes
in 12 different colors and two different
nib styles. How many different shark-
headed pens could one own?

other?

33. In the author’s current house, the foyer 35. Prove that if a(ab+ 1) is odd, then one
has a two-shelf bookshelf, the living of a,b must be odd and the other must
room has two six-shelf bookshelves, be even.

1.10 Instructor Notes

Most of the notes for instructors given in this text are simply descriptions of what I do in
class and how I think about it. You should do what works for you in your classroom; feel
free to ignore any advice I give that does not apply to your situation. However, I hope that
some of this commentary is of use.

The first week of the semester often has less class time than most other weeks. It is
feasible to spend only one or two class meetings on this chapter. The first class meeting
must of course begin with some orientation (such as introductions and/or syllabus review)
but the bulk of the class can be spent with students working in groups on problems from
Section 1.2. It is worth reassuring students that even though they have no experience yet
with discrete mathematics, these are problems they can approach just by thinking about
them; discrete math is a natural way of thinking.

Working in groups on the first class day has the advantages of setting a collaborative
and interactive tone early on and having classmates meet each other (this is especially
useful for first-year class members). I advise counting the students off as 1,2, ..., Lfﬂ
(where n is the number of students present), asking the 1s to collect in one area, the 2s in
another, etc., and reminding students to introduce themselves to each other before starting
work. Be sure to reserve ten minutes at the end of class to discern which problems have
been completed by all groups and elicit verbal explanations of their solutions from group
representatives.
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To reinforce what students learned in class, have them read Sections 1.3—1.5 for the
next class, specifically assigning the Check Yourself problems.

A good warmup for the second day of class is asking the students to share their Check
Yourself Challenge responses. This may lead to a discussion of other Check Yourself
problems if students have questions about them. Then have the class walk the instructor
through their choice of proof that a set of size n has 2" subsets, and use this as an opening
to discuss how to turn an argument into a written proof. Generally, students will have
different ways of explaining the same proof, and generally, they will not have very precise
language this early in the semester. It may take one-half to one hour for students to hash
out this simple proof, even with prompts from the instructor. This is a valuable exercise
for them to learn how much work is involved after solving a problem in order to submit
homework. If any time remains in class, ask whether students have questions over the
reading or Check Yourself problems, and then revisit problems not completed or discussed
the first day. (If you have lots of extra time, have the students start in on the Counting
Exercises—but be sure to save a few to have them write up as homework!)

In assessing your students after the first week of classes, remember that they will not
have been able to master basic proof techniques yet—they’re just starting! Mastery will
come over a period of weeks as they practice proof writing in multiple mathematical con-
texts. In case you desire (now or later) additional basic proof problems for your students,
a selection of them is provided in Section TI.2.
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Sets and Logic

2.1 Introduction and Summary

Sets and logic are the fundamentals that underlie all of mathematics, not just dis-
crete mathematics. However, a discrete mathematics course is a customary place
to address them directly. Sets are collections of objects. Logic is a formal way
of describing reasoning. We will both describe and construct sets, and we will
develop truth tables as a way to use logic on compound statements. Logical tools
are available for when we have trouble figuring out how to reason precisely using
English.

Both sets and logic come with a lot of notation. In order to do anything inter-
esting with either sets or logic, you need to be familiar with that notation. (In the
case of logic, we will not use the notation very often after this chapter.) Hence,
this chapter has a lot of reading that you must complete before you can get on with
the discovery and doing of related mathematics. It may feel a bit tedious; sorry.
Break it up into smaller chunks to aid focus and retention.

This chapter also contains our first introduction to the interesting proof tech-
nique of contradiction (and to the less interesting, but super-useful, proof'technique
of double-inclusion). Proof by contradiction basically works by hypothesizing that
atheorem is false (say “suppose not!”) and then obtaining a statement that is clearly
false (such as 0 = 1).

Try not to be intimidated by the amount of unfamiliar material in this chapter.
We will be working with logical thinking and proof techniques all semester, and
you are not expected to fully grasp them yet. The intent of this chapter is to give
you the ideas and terminology so you can work to master the ideas as you use
them in context. You will probably want to reread parts of this material later in the
course to assist in that endeavor.

o7
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2.2 Sets

Sets are ubiquitous in mathematics (and in life!). The definition of the word set
has a long and sordid history, full of confusions such as whether a set is allowed to
contain itself. We will be a bit imprecise here and give more of a description than
a definition.

Definition 2.2.1 (of set). A sef contains e/ements. The elements must be distinct,
but their order does not matter. There may be finitely many or infinitely many
elements in a set. Elements can be words, objects, numbers, or other sets (i.e.,
basically anything).

When an element a is a member of a set A, we denote this by « € A (and read
it aloud as “a is in A” or “a is an element of A”). The notation a;,a; € A means
that both a; and a; are elements of A. Often, sets are denoted by capital letters,
and their elements are denoted by related lowercase letters.

Example 2.2.2 (of your favorite sets). The sets most commonly used in discrete
math are

¥ the natural numbers, N = {1,23,...},
¥ the binary digits, Z, = {0,1},

¥ the integers, Z = {...,—2,—1,0,1,2,...}.

Beware that some people (many computer scientists and some mathematicians)
think that 0 € N, perhaps because computer scientists often start counting with zero
instead of with one. In order to have consistency with mathematical induction (see
Chapter 4), we disagree with this view. Instead, we refer to the set {0, 1,2,3,...} =
W as the whole numbers (but we refer to it rarely).

Example 2.2.3 (of other sets). The set {1,2,3} is the same set as {2,3,1}. Simi-
larly, {...,—6,—4,-2,0,2,4,...} is the same infinite set as {0,2,—2,4,—4,... }.
(The dots indicate that the established pattern keeps on going.) By some defini-
tions, {1,1,2,3} is not a set because elements are repeated, but in this text we will
simply consider {1,1,2,3} as an inefficient expression of the set {1,2,3}. On the
other hand, {1,{1,2,3},3} is a perfectly fine (and well-expressed) set. The set
with no elements {} is often denoted () and called the empry set or the null set. It
is different from {{}} = {0}, which contains one element (the empty set). A set
of four duck heads is shown in Figure 2.1.
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Figure 2.1. The elements of the set {dh,dhy,dh3,dhs} are duck heads.

This is an appropriate moment to recall that |A| denotes the number of ele-
ments in a set, also called its size or its cardinality. We will only consider the
cardinality of finite sets here, and if you are interested in infinite sets, you should
look at Chapter 15. Here are a few examples: [{1,2,3}| =3; [{{1,2,3}}| = 1;
I{{1,2,3},N}| = 2. Do not confuse set cardinality with absolute value, even though
they use the same notation; one applies to sets and the other to numbers, so there
is no conflict.

2.2.1 Making New Sets from Scratch

So far, we have described a set by listing all its elements. Most of the time we
instead describe the pattern that the elements follow. For example, 2Z ={k € Z | k
iseven} ={...,—4,-2,0,2,4,...}. The first expression is read as “two zee is the
set of k in zee such that k is even,” or as “two zee is the set of integers k such that
k is even,” or as “two zee is the set of all integers that are even.” Another way of
writing this same set dispenses with the word “even™: 27Z = {k € Z | k = 2/ for
some ¢ € Z}. Here we have substituted the definition of even for the word “even.”

Example 2.2.4. The set {ajaza3 | a; € Z,} is the set of all three-digit binary strings
{000,001,010,011,100,101,110,111}. Similarly, {ajazrazas | a; € Zp,a; =1,
az = 0} is the set of all four-digit binary strings with first digit 1 and third digit
0, or {1000,1001,1100,1101}. The set {(a,b) | a € 2Z,b € {0,1,2}} is the set
of all ordered pairs where the first component is an even integer and the second
component is 0, 1, or 2.



30 Q. Sets and Losic

Basically, we write sets in the form {type of elements | condition(s)}. Often
the type of elements will include a restriction to some set.

2.2.2 Finding Sets inside Other Sets

Recall from Chapter 1 that if we have two sets A and B, then A is a subset of B if
every element of A is also an element of B. Let’s say it again:

Definition 2.2.5. If A and B are sets, then A is a subset of B if every element of A
is also an element of B. We denote this relationship as A C B.

Technically, the symbol C means that A is a proper subset, so that there is at
least one element in B that is not in A, but we will be loosey-goosey with our usage
and allow A C B to mean that A is perhaps equal to B. The symbol C is used to
indicate that perhaps A and B are equal, and the symbol C indicates that A and B
are definitely not equal. (Do not confuse C with ¢, which means that A is not a
subset of B!) Notice that @ C A for any set A—because all zero of the elements in
(0 are also elements of A! Every set contains some nothingness.

Example 2.2.6 (of flavors of subsets and non-subsets). We start with A = {2k | k >
0,k € Z}, the even natural numbers; A C N and, in fact, A C N. In binary land,
{1} C Z, and {0,1} C Z, but {2} ¢ Z,. Less commonly seen are the equivalent
statements Z, D {1}, Z, 2 {0, 1}, and Z, 2 {2}. We could have instead written
1 € Z,,2 & 7, for the first and last of those statements (do you see why?).

A related concept is that of the power ser Z?(A) of a set A. It is the set of all
subsets of A. (You know from Theorem 1.5.2 that if A is finite, then | 22(A)| = 214].)
We will not use this concept very often, but it is worth mentioning because other
sources you encounter in your mathematical life will expect you to recognize it.

The notion of subset allows us to define the idea of set complement. We denote
the complement of A by A, though other people use notations like A or A’ (that
last one is silly because the symbol’ is used for so many other things, but still, you
should be warned).

Definition 2.2.7. If A C B, then A = B \ A, all the elements of B that are not in A,
is called the complement of A relative to B. (This is sometimes written as B —A.)

So if you see the symbol A, know that there is secretly a B out there that you
must know about in order to understand what A is. Sometimes the universe is
temporarily redefined as a particular set (instead of the universe we live in) and
it takes the place of B for all sets Aj,A;,...,A, in a discussion. (By the way, if
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there are several sets under discussion, we may refer to them as the first set or
A1 (pronounced “A-one”), the second set, the nth set, etc.). We can think of a set
complement as a way of removing one set from another.

Example 2.2.8 (of complements). Asasmall example, note that{1,3,5,7}\{1,5}
= {3,7}. Now let B be the set of four-digit binary strings. Then B\ {a;axazas |
a; € Zo,a; = 1,a3 = 0} = {0000,0001,0010,0011,0100,0101,0110,0111, 1010,
1011,1110,1111}.

The notation B\ A can be extended to situations where A is not a subset of B;
in these cases, we interpret B\ A to mean B\ (elements of A in B) = B\ (ANB).
For example, {1,3,5,7}\ {1,5,6} = {3,7}. We simply remove any elements of
B that are elements of A.

2.2.3 Proof Technique: Double-Inclusion

There is a simple way to show that two sets are equal (if in fact they are), and it
has a special name because it is used so frequently. You may deduce that name
from the title of this section. To show that A = B, show first that A C B and then
show that B C A. This means that A is included in B and B is included in A and
thus arises the term double-inclusion.

Of course, it might be useful to understand how to show that A C B (or B C A)
in order to execute a double-inclusion proof. A technical way to think about A C B
is with the statement if a € A, then a € B. So a formal inclusion proof proceeds as
follows:

¥ Let a be any element of A.
¥ (Reasoning, statements.)
¥ Therefore, a € B, and so A C B.

Example 2.2.9. Two different expressions can describe the same set. Let us show
that two descriptions of the set of even numbers are equivalent. To that end, let
Ey={k€Z|k=2(forsome ¢ € Z} and let E; = {2r+6 | r € Z}. First, we will
show that E| C E;. Let e be any element of E£1. Then e = 2¢ for some ¢ € Z. 1f we
let r=/¢—3, then e = 2 = 2(r+3) = 2r + 6, where r € Z, and therefore e € Ej.
Now, we will show that £, C E;. Let ¢ be any element of E>. Then t = 2r + 6,
where r € Z. Setting ¢ = r+ 3, we have that r = 2r+6 = 2(r + 3) = 2/, where
{ € Z, and therefore t € Ey. Because E; C E, and E> C E;, we conclude that
E| =E,.
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2.2.4 Making New Sets from Old

The most common operations on sets are the three defined here.

Definition 2.2.10. The union of sets A and B is a set A U B containing all the el-
ements in A and all the elements in B (with any duplicates removed). Similarly,
the union of sets A1,A,,...,A,isA] UA U---UA, = UL A; and contains all ele-
ments in the A; (with any duplicates removed). Dealing with infinitely many sets
is a little bit trickier and depends on how many there are (see Chapter 15 for more
on this), but for now we’ll say that [ J;—; A; and (J;cnA; are the same.

Example 2.2.11. Let A = {egg,duck,3,4} and let B = {duck,goose,7,8}. Then
AUB = {egg,duck, goose,3,4,7,8}.
LetA; = {i}. Then U~ A; =N.

Definition 2.2.12. The intersection of sets A and B is a set A N B containing every
element that is in both A and B. Similarly, the intersection of sets Aj,A,...,A,
isA;NA2N---NA, =), A; and contains only elements that are in all of the A;.
We may sometimes take infinite intersections as in ();Z; A; and ;e A;.

Example 2.2.13. With A and B and A; defined as in Example 2.2.11, ANB =
{duck} and N2 A; = 0.

Two sets A and B are called disjoint if ANB = (. We now have enough notation
to give a super-formal way of restating the sum principle.

Theorem 2.2.14. If Ay,... A, are disjoint finite sets, then |A;U---UA,| =
Ar]+ -+ [Anl-

That is perhaps the most boring way to state the sum principle (can you think
of a more boring way?), so we will not generally use it. It is, however, worth
noting that almost every mathematical statement can be rewritten to use formal
set language; and, it is also worth noting that this often borifies a given statement.
(Definition: bor-i- fy, to intensify the level of boringness something has.) At the
same time, we informally use set theory in our daily lives; for example, red-headed
women are the intersection of the set of redheads and the set of women. Most of
the time, we don’t even notice that we’re using set theory, but if you listen to
conversations and look in the media, it’s all over the place (albeit implicitly).

Definition 2.2.15. The Cartesian product of sets A and B is a set A X B containing
all possible ordered pairs where the first component is an element of A and the
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second component is an element of B. In other words, A x B = {(a,b) | a €
A and b € B}. Likewise, the Cartesian product A} x Ay X --- X A, is the set of
all n-tuples (ay,ay,...,a,) where a; € A;.

Example 2.2.16 (of Cartesian products). The set {duck,goose} x {egg} = {(duck,

egg), (goose,egg)}. When the empty set is involved, there’s a trick; {5,7,9,11} x

0 = 0 because there are no possible ordered pairs with the second component

from the empty set. Binary strings of length two are formally Z, x Z, = {0,1} x

{0,1} ={(0,0),(1,0),(0,1),(1,1)}. This is sometimes abbreviated as (Z,)?. Like-
wise, binary strings of length n are formally Z, x Zy x --- x Zp = (Z)".

2.2.5 Looking at Sets

The most common example of a Cartesian product is that the real plane R? is
secretly R x R, as shown in Figure 2.2. (R is shorthand for the real numbers.)
Figure 2.3 shows two other examples of Cartesian products.

Rl A
s+
4
< "R } }
1 2
Figure 2.2. At left, R?; at right, {1,2} x {1,3}.
A v .
ot . A
37T 3
2
D - . .
4
duck egg 1 2
\ v

Figure 2.3. At left, {duck,egg} x {OJ,0}. Atright, {1,2} x {1,3} x {2,3}. Although the
set looks as though it is misplaced, it is not. (Grey lines are added to help locate the points
in space but are not part of the set.)
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Figure 2.4. Each Venn diagram shows the relationship between two sets. Note that B C A
but no subset relationship exists between C and D.

Figure 2.5. At left, A\ B, the part of A that does not include B, is shaded; at right, CN D,
the overlap between C and D, is shaded.

We need ways of visualizing larger and more abstract sets. The usual method
is called a Venn diagram, in which we draw a big box to denote the universe and
then blobs to represent sets. Here are a couple of examples, shown in Figure 2.4.
Those are pretty boring because they simply show two sets each. The information
provided by the Venn diagrams is what kind of subset relationship (if any) exists
between the two sets. Let’s indicate some new sets that are derived from the old
sets—in Figure 2.5 we shade the results of performing set operations on our old
sets. This process extends to some fancy shaded diagrams when we have three sets
and multiple set operations, as in Figure 2.6. In Figures 2.7-2.9, we show how to
find these same sets using hatching.

&1

Ll

e

Figure 2.6. From left to right, (ANB)UC,AN(BUC), and AUC.
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Figure 2.9. From left to right, A, AUC, and AUC.

To exhibit (AN B)UC, we look within the parentheses. We start at left in
Figure 2.7 by hatching A. Because we want A N B, we use a different hatching
for B so that AN B is crosshatched. Then, to demonstrate the union with C, we
crosshatch C to match.

To exhibit AN (BUC) in Figure 2.8, we again look within the parentheses.
We start by hatching B. Because we want BUC, we use the same hatching on C
as on B. In contrast, we want to intersect this set with A, so we use a different
hatching on A so that the intersection is crosshatched.

The first step in showing A U C is to hatch A at left in Figure 2.9. To show AUC,
we use the same hatching on C as on A. Finally, what we want to exhibit is AUC,
so we apply hatching on the remainder of the diagram and erase the previously
applied hatching.




)
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If you would like to practice using Venn diagrams, here are three online re-
sources that you will likely find helpful.

¥ http://demonstrations.wolfram.com/InteractiveVennDiagrams/: This soft-
ware lets you click on parts of a two- or three-set Venn diagram to shade
them, and then it shows the set notation for the corresponding set and its
complement.

¥ http://randomservices.org/random/apps/VennGame.html: This applet has
you click on a set-notation description and then shades the corresponding
regions of a Venn diagram.

¥ http://math.uww.edu/~mcfarlat/143venn.htm: This “quiz” applet has 15
different symbolic descriptions of sets. You have to figure out which regions
on the corresponding Venn diagrams should be shaded, and mousing over a
nearby diagram will show the correct shading.

Check Yourself

There may seem to be a lot of these problems, but each one is quick to do.

1. List the elements of {z€ Z | —10 <z < 10}.

2. Write the set {2,4,6,8,10} as a set of elements subject to a condition.

3. What is the cardinality of the set {duck,0,{duck,egg} {duck {duck,egg,0}}}?
4. 1s {3,6,13,67} C {67,4,53,5,13,6}?

5. List the elements of #2({—1,5,20}).

6

. LetA=1{5,6,7,8,9,23}, B={6,7,9,456,3.142}, and C ={7,4,8,2.3, m,6}. List
the elements of ...

(a) ... AUB.
(b) ... BNC.
(c) ...A\C.

7. Let D = {6.53,42,1,hat} and F = {0,—2}. List the elements of ...

(a) ...DXF.
(b) ... FxD.
(c) ...DxD.

) ...0xF.


http://demonstrations.wolfram.com/InteractiveVennDiagrams/
http://randomservices.org/random/apps/VennGame.html
http://math.uww.edu/~mcfarlat/143venn.htm
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8. Draw a visual representation of the set {1,2,3} x {4,5}.
9. Make a Venn diagram that represents {1,2,3,4,5,6}N{4,5,6,7,8,9}.
10. Challenge:

(a) Invent three sets of your own.

(b) Find a different way to write each of the sets (for example, list the elements,
or describe what the elements have in common using set notation).

(c) Make a Venn diagram showing the relationships between your three sets.

2.3 Losic

Regular old English communication is not very precise, and many sentences have
more than one interpretation. The reason logical notation and language have de-
veloped is so that there can be no question as to what a statement is intended to
convey. The word “logic” is used to refer to an area of mathematics as well as a
type of thinking. In all of mathematics, we use logical thinking, and we use the
notation and language of the area of mathematics known as logic when less formal
communication does not serve us well.

The basic component of logical language is the statement, which is a sentence
that is either true or false. (To say that in a snooty way, a statement has a truth value
from the set {true,false}.) Here is a non-statement: “Be a blue-footed booby.”
That sentence is an imperative; likewise, questions are not statements. Similarly,
“{=3,0,2}\ {0, 1}” is not a statement because it lacks a verb; it is only an expres-
sion.

Example 2.3.1 (of statements). Here are a few statements.
¥ The December 2009 issue of Mathematics Magazine has 78 pages.
¥ 32-6=16.
¥ {1,5,7}n{1,2,8} ={2}.

¥ There is a one-to-one correspondence between four-digit binary strings and
the corners of a four-dimensional cube.

In logic, we don’t care about whether a statement is true or whether it is false.
(Reread Example 2.3.1 with this in mind!) Our intent will be to examine the re-
lationships between statements when they are combined in certain ways. We care
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about the roles that statements play rather than their validity or truth value. Thus,
logical language omits the details of statements by referring to them with variables
(usually P or Q or R), so that one can stick any statements into the templates that
result. This simultaneously makes logical language useful and more difficult to
read.

2.3.1 Combining Statements

There are just a few constructions used in logic to combine statements, called con-
nectives. They are as follows:

¥ and is the verbal analogue to set intersection, so P-and-Q is only true if both
P and Q are true;

¥ or is the verbal analogue to set union, so P-or-Q is true whenever either P
or Q is true;

¥ 50t makes a true statement false and makes a false statement true; it gives a
statement its opposite meaning;

¥ implies means that one statement is a consequence of the other; it is also
written as if-then and is called a conditional statement.

Example 2.3.2 (of a very compound statement). Consider the statement if x € Z
and x < 2.7 then x is negative or x € {0,1,2}. The implication combines the
substatements x € Z and x < 2.7 and x is negative or x € {0,1,2}. Each of those
has two substatements of its own; the and has substatements x € Z and x < 2.7,
and the or has sub-statements x is negative and x € {0,1,2}. Then, note that the
statement under consideration is true. (If we changed x € {0,1,2} to x € {0, 1},
then it would be false.)

Example 2.3.3 (of ambiguity without parentheses). Consider the statement x € Z
and x < 3.6 or x > 628.3. Does it mean (x € Z and x < 3.6) or x > 628.3, or does
itmean x € Z and (x < 3.6 or x > 628.3)? The number x = 1,002.7 is described by
the first statement but not the second statement. The number x = —23 is described
by both statements. When we combine statements, we must be careful that the
resulting statements are unambiguous, and so we must use enough parentheses.

Now we will be completely precise: we will define each of the connective
terms using a fruth table. As the name indicates, a truth table is a table that lists
the truth values of a statement. Here is a silly and useless truth table:
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This can be read aloud as when P is true, P is true; when P is false, P is false.
See? It is indeed useless.

We will now define and (denoted /), or (denoted V), and not (denoted —) using
serious and useful truth tables.

o
T = v

P Q| PAQ P Q|PVQ P | -P P Q| PxorQ
T T T T T T T F T T F
T F| F T F| T F| T T F| T
F T | F F T T F T | T
F F| F F F| F F F| F

Looking at these truth tables, we can see that there is a difference between the
usual English use of or and the formal logical use of or. After dinner, a host might
ask, “Would you like coffee or tea?” (The answer “neither” corresponds to the line
in the truth table where P and Q are both false.) The intent is to offer either coffee
or tea, not both—regular English or is actually exclusive or, abbreviated xor. We
have given a bonus truth table for xor above. Notice that the number of rows in
a truth table depends on the number of statements involved. We need 2 rows for
P, 4 for P,Q, 8 for P,Q,R, 16 for P,Q,R,S, and so forth, so that we can have all
possible combinations of true and false.

Example 2.3.4. We will make a truth table for (PA Q) VR.

P Q R PAQ (PANQ)VR
T T T T T
T T F T T
T F T F T
T F F F F
F T T F T
F T F F F
F F T F T
F F F F F

Sometimes we can ignore a few rows of a truth table: if we have particular state-
ments corresponding to P,Q, R, ..., and we know that one of the statements is true
(or, likewise, false), then we only need the rows of the truth table corresponding
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to that truth (or falsehood). Let us suppose that Q stands for the statement the sun
is plaid. This is clearly false, so we could just write

P Q R|PAQ|(PAQ)VR
T F T F T
T F F| F F
F F T| F T
F F F| F F

Translating between logic and set notations. There is a correspondence
between set and logic notations, particularly when the logical statements are
about sets. The elements for which the statement P A Q holds are those in
the set A = {x | P is true for x} and the set B = {x | Q is true for x}, and
together those elements form the set A N B. Similarly, the elements for which
the statement P\ Q holds are those in the set A = {x | P is true for x} or the
set B= {x| Qs true for x}, and together those elements form the set AUB. In
this sense, A (or and) for statements corresponds to N for sets, and V (or or)
for statements corresponds to U for sets. The analogy for the connective not
is a bit subtler; elements for which =P holds are those not in the set A = {x | P
is true for x}, but then where are they? For this to make sense, we must make
reference to a universe set U so that the elements not in A are those in A, the
complement of A relative to U.

Example 2.3.5 (of combining set and logic notations). We can describe the setA; N

(A2UA3) as {x |x € AN (A2UA3)}. Via a set of equivalences, we can turn it into

another set:

{x|x€AIN(A2UA3)} ={x|x€ A and x € (A, UA3)}

={x|x€A;and x € (A or A3)}
={x|(x€A;andx€Ay)or (x €A and x € A3)}
={x| (x€A1NAy) or (x €A1 NA3)}
={x|(x€AiNA)U(x€A1NA3)}
= (A1 NA2) U (4 NA;3).

Cool!

Next is implies (denoted by =). We read P = Q as “P implies Q” or as “If P,
then Q.” Implication can be seen from different perspectives; when we are writing
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aproof, P = Q needs justification, and we consider P and Q as separate statements,
with = standing in for the chain of argumentation that forms the bulk of a proof.
In a logical context, P = Q is a single statement that has truth values defined by
the following truth table.

P Q|P=0Q
T T, T
T F| F
F T T
F F| T

This might seem a little weird. Or, more precisely, the last two lines of the
table might seem a little bit weird. How can P = Q be true if P is false? Consider
a practical and pleasant example, namely, the statement if you go to the party, then
you will get some candy. If you don’t go to the party, you don’t expect to get any
candy, but you might get some anyway from some other source. But it’s still true
that if you did go, you’d get candy, so even though you don’t go to the party, the
implication still holds; the promise made to you is true.

There are many equivalent ways of writing implication, which is lovely but
sometimes confusing. The statement P =- Q is usually read as P implies Q or as
if P then Q but can also be read as P only if Q and P is sufficient for Q to hold.
On the other hand, Q = P can also be read as P if Q (see, if Q then ...) and P is
necessary for Q. Let’s look again at the statement if you go to the party, then you
will get some candy. Here, P is you go to the party and Q is you will get some
candy. We could restate the statement as going to the party is sufficient for getting
some candy, or as you go to the party only if you get some candy, or also as getting
some candy is necessary when you go to the party.

Now, check this out: we can combine truth tables. (Note that arrows do work
the way they should, so P <= Q means “If Q, then P.”)

P Q P=Q P Q P<Q

T T T T T T

T F| F T F| T

F T | T F T | F

F F| T F F| T
P Q P=Q P<Q (P=QOANP=0)
T T T T | T
T F F T | F
F T T F | F
F F T T | T
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It may not surprise you to learn that we abbreviate (P <= Q) A (P = Q) as
P < O and read that as “P if and only if Q.” This is a fairly common kind of
mathematical statement, used to show that two statements P and Q are logically
equivalent. (More generally, any time two compound statements have the same
truth tables, they are considered logically equivalent.) Some people are irritated
by having to write out the words “if and only if” and abbreviate the phrase to iff.
This statement type is called a biconditional. Additionally, even though we’re
not talking about proofs at the moment, it’s worth pointing out that if you want
to prove a biconditional statement you almost always have to split it into the two
implications and prove them separately. (It’s possible to string together a bunch of
biconditionals, but that’s hard. Don’t bother.) We often write (=) to indicate we’ll
prove that P implies Q and then write (<) to indicate we’ll prove that Q implies
P ... and we start a new paragraph for each.

Advice. Ifyou’re new to the mathematical uses of and, or, not, and implies, then
you might want to carry their truth tables around with you for a while until you
internalize them.

Logic is related to our goal of learning proof crafting because there we need
to produce rigorous and airtight reasoning. Well, using logical language certainly
does that! When we aren’t sure whether we’re being rigorous enough, logic is
here for us to fall back on. However, we don’t want to resort to formal logic too
often because it kills ease of communication. Plus, logical language is devoid of
context—it doesn’t care whether a given statement is true or false, but we do. And
we want to convince others of that truth or falsehood.

On the other hand, logical notation is used in writing computer code, espe-
cially in creating conditionals (that’s code-speak for if-then statements). For ex-
ample, If[ (a==b || a==0) && ¢ < 5, ¢, 0] says if a = b or a =0, and if c is less
than 5, then return the value of ¢, otherwise, return 0. It may seem like the major
use of logic for computer scientists is knowing the notation so that code can be
written, but it is important to understand logical equivalence so that code can
be refined for speed increases. Hardware designers use circuitry that corresponds
to logical connectives, so minimizing their number can have positive consequences
for power consumption and manufacturing cost.

2.3.2 Restriction of Variables via Quantifiers

One can make—and in fact we have already made—statements that include vari-
ables, such as k is even or x> — 3 = 1. In these cases, whether or not the statement
is true depends on what value the variable (here, k or x) has. The statement k is
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even is true only when k is even (duh) and x> —3 = 1 is true only when x = 2
or x = —2 (slightly less duh). Notice that statements always have verbs in them
(is this a “duh”?) so they differ from functions like k or x> — 3 that merely pro-
duce numbers. Sometimes people will refer to a variable-including statement as
P(k) instead of just P; we won’t do that here because it confuses us and, therefore,
potentially you as well.

The guantifiers “for all” (denoted V/, which is sometimes colloquially referred
to as “the upside-down A” by students who forget what it stands for) and “there
exists” (denoted =, which is similarly sometimes colloquially referred to as “the
backwards E”) restrict the variables referred to in a statement. We can rewrite our
two example variable statements using these quantifiers.

Example 2.3.6. The statement for all even k, k is even is certainly true, though for
all k, k is even is false and there exists k such that k is even is true. Similarly, for
all x, x> —3 = 1 is false, whereas there exists x such that x> —3 = 1 is true.

We can prove that last statement. Consider x = 2 and note that 22 —3 =1, so
there does exist an x such that x> —3 = 1. This technique generalizes. Existence
proofs can be done simply by giving an example: you’ve shown that the desired
object exists! But this is the only time an example works as a proof.

Sometimes it would be more convenient if people used quantifiers in ordinary
English. For example, in the common statement every duck wants a cookie, the
speaker could mean that given any duck, it desires some cookie (V d € Ducks, 3 c €
Cookies such that d wants c), or the speaker could mean there exists a cookie that
every duck wants (3 ¢ € Cookies such that V d € Ducks,d wants c¢). Notice that
this exemplifies not only the vagueness of English but that placing quantifiers in
different orders changes the meaning of a statement. So be careful!

Example 2.3.7. Consider the statement Vn € 27,3 a,b € Z such that a = 2k + 1,
b =2ky+ 1, and n = b — a. This basically says that for every even integer, there
exist two odd integers such that the even integer is the difference of the odd inte-
gers. This is a true statement; given any even integer n, the integer a = n — 1 will
beodd,aswillb=n—14+n=2n—1,andb—a=2n—1—(n—1) =n.

If we change the order of the quantifiers, we may obtain 3 a,b € Z such that
a =2k +1,b =2k, + 1, and such that Vn € 2Z,n = b — a. This says that there
exist two odd integers such that for every even integer, that even integer is the
difference of the two odd integers. This is a false statement; no matter which two
odd integers a,b are considered, they have a single difference b — a that is even.
Any other even integer, such as b —a+ 2, cannot be the difference of @ and b, so the
statement does not hold for most even integers (let alone for every even integer).
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2.3.3 Negation Interactions

Even professional mathematicians sometimes find negating statements to be some-
what challenging. To be safe, take the English-mathematics version of a statement,
substitute quantifiers (but don’t go to full logic-speak), and then use the rules we
will see here.

Example 2.3.8. —(4!l ducks like cookies) is logically equivalent to there exists a
duck who does not like cookies. Unsurprisingly then, —(some duck likes cookies)
is logically equivalent to all ducks dislike cookies. More mathematically, —(for all
integers k, k = 2.5) is equivalent to there exists an integer k such that k # 2.5.

Basically, if you have the statement —(V stuff), that converts to 3—(stuff), and if
you have the statement —(3 stuff), that converts to V—(stuff). At least this reduces
the problem of negating to a shorter statement, though (stuff) might have some
more quantifiers hidden within it.

Example 2.3.9 (of wacky negations). Let’s negate a couple of statements. Con-
sider for all ducks, there exists a cookie such that a tree weeps. In logic notation,
this becomes V ducks, 3 a cookie such that a tree weeps. Thus, the negation pro-
ceeds as —(V ducks, 3 a cookie such that a tree weeps), which becomes 3 a duck,
—(3 a cookie such that a tree weeps), and then 3 a duck, such that ¥ cookies —(a
tree weeps ), ending with there exists a duck such that for all cookies, no tree weeps.
Consider now there exists an egg such that it cracks for all cooks. Its negation is
slightly simpler. We translate first to logical notation to achieve 3 an egg, such that
it cracks ¥ cooks. Its negation is —(3 an egg, such that it cracks ¥ cooks), which
becomes V eggs, —(V cooks it cracks), then V eggs, 3 cooks — (it cracks) and finally
V eggs, 3 cooks it does not crack. This doesn’t make much grammatical sense, so
we reword it to read for any egg, there exists a cook who cannot crack it.

Negation plays nicely with other connectives, as follows.

DeMorgan’s laws (logic version). (—P)V (—=Q) is logically equivalent to —(P A
Q), and (=P) A (—Q) is logically equivalent to =(PV Q).

Example 2.3.10. No ducks and no chickens is the same as no ducks or chickens.

People often think DeMorgan’s laws are pretty obvious, but we have stated
them here for completeness (as well as because sometimes they are needed when



2.3. Logic 45

statements P and Q are elaborate). We will investigate another form of DeMor-
gan’s laws in Section 2.4.

Negation and implication.  The statement P = Q is logically equivalent to
the statement -Q = —P.

Definition 2.3.11 (of implication relatives). We sometimes call P = Q the original
statement and always call ~Q = —P the contrapositive statement. Along these
lines, Q = P is the converse statement, and —P = —Q is the inverse statement,
and also the contrapositive of the converse statement. All four of these statements
are known as implications.

Notice that an implication and its converse are usually not both true at the
same time. For example, if [ am at the combination Pizza Hut and Taco Bell, then
I am at the Pizza Hut is always true, but if [ am at the Pizza Hut, then I am at the
combination Pizza Hut and Taco Bell is often false.

Should you wish to practice the use of logic notation, logical thinking, and
truth tables, here are some resources.

¥ http://demonstrations.wolfram.com/PropositionalLogicPuzzleGenerator/:
You are shown some polygons along with a list of statements in logic no-
tation. (The logic notation is not quite the same as used in this book, but
there is a help option that explains it.) Each statement is marked as true
or false. The challenge is that the polygons are not labeled but referred to
in the statements as A, B, C, etc., and you get to match the labels with the

polygons.

¥ http://demonstrations.wolfram.com/LogicWithLetters/ and
http://demonstrations.wolfram.com/2DLogicGameWithLetters/ and
http://demonstrations.wolfram.com/LogicWithLogicians/: These puzzles do
not use formal logic notation but give practice in logical thinking.

¥ http://www.cs.utexas.edu/~learnlogic/truthtables/: After typing in a logi-
cal statement, you are given a corresponding blank truth table to fill in—it
just has headers and a few beginning columns. You can choose whether to
have your work checked entry by entry, or when you’re done filling in the
table. Warning: this applet uses a single arrow for implies instead of the
double arrow we use in this text.


http://demonstrations.wolfram.com/LogicWithLetters/
http://demonstrations.wolfram.com/2DLogicGameWithLetters/
http://demonstrations.wolfram.com/LogicWithLogicians/
http://www.cs.utexas.edu/~learnlogic/truthtables/
http://demonstrations.wolfram.com/PropositionalLogicPuzzleGenerator/
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These problems take less time to do than they at first appear to take.

1.

Let P represent the statement Ximena is pretty, Q represent Ximena is quizzical, and
R represent Ximena is a rugby player. Write (P Q) AR as an English sentence.

Write Miyuki does not like kumquats, but ze likes pickles or daikon in logic notation.

. Rewrite every cat drinks beer as an implication.

Challenge: Come up with two examples of mathematical statements and two ex-
amples of mathematical non-statements.

. Using truth tables, verify that the converse of a statement is not logically equivalent

to the original statement. (Suggestion: make the columns P, Q, P = Q, and Q = P,
and compare the last two columns.)

Write the contrapositive of the statement if the maple tree is orange, then the scis-
sors are closed.

. Using truth tables, verify that the statement if / am at the combination Pizza Hut

and Taco Bell, then I am at the Pizza Hut is always true.

Negate the statement there exists an even number n such that n < 10.

2.4

1.

2.

3.

4.

Try This! Problems on Sets and Logic

These problems are intended to be discussed with peers. Some students find these
problems quite challenging and others find them easy. Your eventual success in
discrete mathematics is unlikely to be related to your feelings about this particular
collection of problems.

What is the cardinality of {0, cat,{dog},{2.1,6}}? Listall its subsets. (How
many should there be?)

Formally negate the statement “You can fool all of the people all of the time.”

List several elements of the set E = {x € Z | %x € 7} and then give a simpler
description of E.

Here are DeMorgan’s laws, given in logic notation: —(PV Q) is logically
equivalent to (—P) A (—Q) and —(P A Q) is logically equivalent to
(=P)V (=Q).
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2.5

(a) Express DeMorgan’s laws using set notation.
(b) Prove DeMorgan’s laws using truth tables.
(c) Prove DeMorgan’s laws using Venn diagrams.

(d) Prove DeMorgan’s laws using set-element notation. (Suggestion: use
double-inclusion.)

(e) Can you state DeMorgan’s laws for three or more sets?

(f) Does that give you any ideas for stating, using logic notation, DeMor-
gan’s laws for three or more statements?

. Let A be the set of even numbers from —6 to 6 (inclusive), and let B be the set

of odd numbers from —6 to 6 (inclusive), living in the universe of integers
from —10 to 10 (inclusive).

(a) List the elements of B.

(b) Whatis AUB?

(c) Describe A\ B using fewer symbols.

. Is =(P = Q) logically equivalent to P A ~Q?

Let Ay ={0,1,...,k}. Whatis |J?_, A;? How about (|_yA;?
Draw a Venn diagram representing (ANB) N (AUC).

Isittruethat Im € Z | Vn € Z,m =n+5?

Proof Techniques: Not!

After all that boring reading, you probably are sighing at the thought of dealing
with more material in this chapter. But fear not! This is shorter and more interest-
ing (really!).

We already know how to do a straightforward proof, by directly proving an
implication P = Q: we assume P is true and then deduce that Q is therefore true.
We already know one way to disprove P = Q: find a counterexample. Now we
will use a single fact from logic to burst wide open the clouds surrounding proof
and shine glowing rays of truth on the situation.

Remember from Section 2.3.3 that the contrapositive of a statement is logi-
cally equivalent to the statement itself. That means we could prove (—=Q) = (—P)
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instead! This is but a tiny step removed from doing a direct proof: here we assume
—Q and deduce that —P is therefore true. In fact, you can use the template from
Section 1.4 (page 12) by simply inserting —=Q for P and inserting —P for Q.

Example 2.5.1. Let n,m € N. We will prove that if n-m is odd, then an n x m
grid cannot be tiled with dominoes. (A grid is tiled if every square is covered
exactly once.) The contrapositive of this statement is if an n x m grid can be tiled
with dominoes, then n-m is not odd. So, suppose an n x m grid can be tiled with
dominoes. There are a total of n- m squares, and every domino covers two squares.
Therefore, the tiling uses “5* dominoes, and so n-m must be even. Therefore, n-m
is not odd.

There is a related technique we can use—it is called proof by contradiction and
it proceeds by assuming the statement we want to prove is false and obtaining a
logical problem of some kind. For an oversimplified example, if we want to prove
that P = Q, we would assume P is true and Q is false, and if we can show that O
false implies P false, then this contradicts our assumption that P was true. (Read
that aloud three times...) You may astutely notice that this is actually proving the
contrapositive. In this case, we might start by drafting a proof by contradiction,
continue by discovering that we’ve proven the contrapositive, and write the clean
version of the proof as a contrapositive proof.

More commonly when using proof by contradiction, the P in P = Q is a com-
pound statement containing several conditions (e.g., if k is an integer, { is even,
and the moon is green), and we will only contradict one part of P rather than prov-
ing the negation of P as a whole (e.g., showing that the moon is not green and thus
deriving a contradiction).

Less common but still useful is assuming Q is false and deriving a contradiction
unrelated to the statements under consideration—for example, showing that Q is
false implies that 2 is an odd number.

Template for a proof by contradiction:

1. Restate the theorem in the form if (conditions) are true, then (conclu-
sion) is true.

2. On a scratch sheet, write suppose not. Then write out (conditions) and
the negation of (conclusion).
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3. Try to simplify the statement of —(conclusion) and see what this might
mean.

4. Attempt to derive a contradiction of some kind—to one or more of (con-
ditions) or to a commonly known mathematical truth.

5. Repeat attempts until you are successful.
6. Write up the results on a clean sheet, as follows.

¥ Theorem: (State theorem here.)

¥ Proof: Suppose not. That is, suppose (conditions) are true but
(conclusion) is false.

¥ (Translate this to a simpler statement if applicable. Derive a con-
tradiction.)

¥ Contradiction!

¥ Therefore, (conclusion) is true. (Draw a box or checkmark or
write Q.E.D. to indicate that you’re done.)

Example 2.5.2. We will prove that there are infinitely many powers of 2, i.e.,
20,2122 ... Suppose not. Then there are finitely many powers of 2; let the num-
ber of them be n. Therefore, we can sort them in increasing order of size. Consider
the largest of these, k. Then 2 is not one of the n powers of 2; it is larger than
any of them because 2F > k. Therefore, there are at least n + 1 powers of 2, which
contradicts the supposition that there were only n of them.

Contradiction can also be used to disprove false statements. In this case, as-
sume the statement is true and derive a contradiction.

Check Yourself

1. Prove that if n® is odd, then n is odd. (Suggestion: try proving the contrapositive.)

2. Prove that if there are ten ducks paddling in four ponds, then some pond must con-
tain at least three paddling ducks. (Suggestion: try contradiction.)

3. Challenge: Develop your own statement that can be proved by contradiction.
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2.6 Try This! A Tricky Conundrum

Consider the following argument: You must learn about sets or learn about logic
if you go on to the next chapter. You did not learn about sets and did not go on to
the next chapter. Therefore, you must not have learned about logic.

1.

Decide for yourself whether or not the conclusion is correct (that you must
not have learned about logic). Make a note of this decision.

. In a small group, exchange your decisions and share your reasoning (justify

your decisions). Please collaborate from here on out.

. Let’s check our logic formally.

(a) Dissect the first sentence and find three statements within it that you
can label with letters.

(b) Turn the first sentence into an expression using formal logic symbols.

(c) Express the second and third sentences in formal logic symbols, too.

(d) Make a (big) truth table that includes parts for each of the sentences
and for the argument as a whole.

Compare the result of this truth table to your original idea. If they agree,
explain how they are compatible. If they do not agree, find the source of the
error.

. If you have some time left over, work on these proofs.

(a) Forn € N, prove that if n® 4+ 6n> — 2n is even, then n is even.
(b) Let x € R. Show that if x° +7x> + 5x > x* + x> 4 8, then x > 0.

(c) Prove that an 8 x 8 chessboard with a square missing cannot be tiled
with dominoes.

(d) Prove that for n odd, an n x n chessboard missing its lower-right-hand
corner can be tiled with dominoes.

2.7 Additional Examples

Example 2.7.1 (of manipulating set notation). Let S} = {¢+ 1 € Z | ¢ = 2k for
some k € Z}, and let So = {2r+5 | r € Z}; we want to show that S| = S». First,
we will show that S| C S,. Let s be any element of S;. Then s = 2k + 1 for some
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keZ. Ifweletr=k—2,thens=2k+1=2(r+2)+1=2r+5, where r € Z,
and therefore s € S. Now, we will show that S, C §;. Let ¢ be any element of
S>. Then t = 2r+5, where r € Z. Setting k = r+2, we have that t =2r+5 =
2(k—2)+45=2k+ 1, where k € Z, and therefore ¢ € S;. Because S| C S, and
S> C Sy, we conclude that S; = S5.

Example 2.7.2 (of Venn diagrams). We will exhibit (AN B) U (AN B) using Venn
diagrams.

We begin by looking within the parentheses. The first set of parentheses con-
tains A N B. We start at left in Figure 2.10 by hatching A. Because we want
AN B, we use a different hatching for B and then combine these so that AN B
is crosshatched.

Figure 2.10. At left, A; in the middle, B; at right, AN B.

The second set of parentheses contains ANB. We start at left in Figure 2.11
by hatching A. Because we want AN B, we use a different hatching for B and then
combine these so that A N B is crosshatched.

Figure 2.11. At left, A; in the middle, B; at right, A N B.

Finally, we combine these sets. We start at left in Figure 2.12 by showing
ANB, and in the middle we show AN B. Because we want (ANB)U (ANB), we
display both at once using the same type of hatching.
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Figure 2.12. At left, ANB; in the middle, AN B; at right, (ANB) U (AN B).

Example 2.7.3 (of breaking down a very compound statement). Consider the state-
ment ifx € Z and x > —7.2 then x is positive orx € {0,—1,—2, -3, —4,—5,—6,—7}.
The largest logical substructure is the if-then implication, which combines the sub-
statements (x € Z and x > —7.2) and (x is positive or x € {0,—1,-2,-3,—4, -5
—6,—7}). Each of those has two substatements of its own; the and has substate-
ments (x € Z) and (x > —7.2), and the or has substatements (x is positive) and
(xe{0,—-1,-2,-3,—4,-5,—6,-7}).

Example 2.7.4 (of evaluating statements with truth tables). Here is an argument
someone might make: The jelly bean is blue. Blue things are tasty. Therefore,
the jelly bean is tasty. Is this argument correct? We will represent jelly bean as J,
blue as B, and tasty as T. Then the jelly bean is blue is really if it is a jelly bean,
then it is blue or J = B. We can similarly write the other statements as B = T and
J=T. Surely, if/ = Band B=T, then J = T, right? Let’s see...

J BT J=B B=T|(U=BAB=T)|J=T | (=pra=1)=0=7)
TTT T T T T T
TTF T F F F T
TFT F T F T T
TFF F T F F T
FTT T T T T T
FTF T F F F T
FFT T T T T T
FFF T T T T T

Yup, it’s all true! Literally, all entries in the last column of the truth table are
T—this means the implication, and therefore the argument, is correct.

Example 2.7.5 (of quantifier order mattering). Let d,e € Z. Consider the state-
ment Ve,3d such that d < e. This true statement basically says that given an
integer, we can find a smaller one. For example, given e = —32, we can find
d=—47389.
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If we change the order of the quantifiers, our new statement is 3d, Ve such that
d < e. This statement says there is some integer such that every other integer is
larger. That’s not true!

(If you are (or have been) a student of calculus, compare this example to the
formal (€-8) definition of limit.)

Example 2.7.6 (of wacky negations). Consider the statement for all futons, there
exists a duck such that stripes are in fashion. In logic notation, this becomes V
futons, 3 a duck such that stripes are in fashion. Thus, the negation proceeds as
(=(V futons, 3 a duck such that stripes are in fashion)); (3 a futon, —~(3 a duck
such that stripes are in fashion)); (3 a futon, such that ¥ ducks —(stripes are in
fashion)); ... and finally, (there exists a futon such that for all ducks, stripes are
not in fashion).

2.8 Where to Go from Here

Commandment.  Go back and reread the material on proof in Section 1.4.
And (grin) reread Section 3 on how to read mathematics.

We will apply the concepts introduced in this chapter throughout the text, but
logic will be particularly important in Chapter 5 when we study the construction
of algorithms. The type of basic set theory introduced in this chapter is pervasive
in and essential for all of mathematics and has a somewhat different flavor when
used in courses based in continuous as opposed to discrete mathematics, such as
real analysis and topology. Ifafter working through the material in this chapter, you
want to see more examples and have more elementary exercises to work, consult
Book of Proof by Richard Hammack [12].

Venn diagrams are a source of much interesting investigation. If you try to
draw a Venn diagram that represents four or more sets, you will quickly run into
trouble showing all possible intersections. For a good survey of approaches to this
problem, see http://www.combinatorics.org/Surveys/ds5/VennEJC.html, which
also tells you more than you ever wanted to know about Venn diagrams—and
includes a zillion references.

Set theory and logic are subfields of mathematics on their own, so there is a
great deal to learn about each of these. (Sometimes they are lumped together as
foundations of mathematics.) We will address a small bit of set theory in Chap-
ter 15. You can take upper-level undergraduate courses on set theory and on logic;
if you wish to self-study, Sweet Reason: A Field Guide to Modern Logic by Tom
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Tymoczko and Jim Henle and An Outline of Set Theory by Jim Henle should be
the resources you use first.

Within mathematics, set theory and logic are small subfields but are quite ac-
tive. For example, the Association for Symbolic Logic sponsors sessions of re-
search talks at national mathematics conferences. One famous result in the area is
Godel’s incompleteness theorem, which basically says that in any logical system
there are statements that cannot be proven to be true or shown to be false. Classical
problems in foundations of math were often related to what set of axioms (assump-
tions or rules) is needed, or is best, for various statements to be true. Modern logic
research involves making formal abstract models of other parts of mathematics in
order to prove more powerful theorems.

Credit where credit is due: The first activity in Section 2.6 was adapted from an example
in [8]; the first puzzle and the project in Section 2.10 were adapted from exercises in [1].
The example on page 45 references a song by Das Racist (find it on YouTube). Problem 12
in Section 2.12 includes a phrase from “Song for a Future Generation” by the B-52s. Four
problems in the latter part of Section 2.12 were donated or inspired by Heather Ames
Lewis.

2.9 Chapter 2 Definitions

set: A mathematical object that contains power set: The set of all subsets of A, de-
distinct unordered elements. There may noted Z(A).

be ﬁmj[ely many or infinitely many ele- set complement: IfA C B, then 4 = B\ A,
ments 1n a set. all the elements of B that are not in A, is

element: Elements can be words, objects, called the complement of A relative to B.
n;mbers, or sets (ie., basically any- union: The union of sets A and B is a set
thing). AUB containing all the elements in A and

empty set: The set with no elements. Also all the elements in B (with any duplicates
called the null set. removed). The union of many sets A;

contains all elements in the A; (with any

null set: The empty set. °
duplicates removed).

cardinality: The number of elements in a set.

intersection: The intersection of sets A and
B is a set AN B containing every element

subset: A is a subset of B if every element that is in both A and B. The intersection
of A is also an element of B. of many sets A; contains only elements

that are in all of the A;.

size: The cardinality of a set.

proper subset: A is a proper subset of B
there is at least one element in B that is disjoint: Two sets A and B are called dis-
not an element of A. jointif ANB = 0.
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Cartesian product: The Cartesian product
of sets A and B is a set A X B contain-
ing all possible ordered pairs where the
first component is an element of A and
the second component is an element of
B. In other words, A x B={(a,b) | a €
A and b € B}. Likewise, the Cartesian
product A; X Ay X --- X A, is the set of
all n-tuples (aj,as,...,a,) where a; €
A;. The name Cartesian is derived from
René Descartes (1596—-1650).

Venn diagram: A picture in which a big
box denotes the universe of things under
consideration and blobs represent sets.
Venn diagrams are used to show relation-
ships between sets. Named after John
Venn (1834-1923), who wrote influential
works on logic and probability/statistics.

statement: A sentence that is either true or
false; it is the basic component of logical
language. (To say that in a snooty way,
a statement has a truth value from the set

{true,false}.)

connective: A logical construction used to
combine statements.

truth table: A table that lists the truth val-
ues of a statement.

and: The verbal analogue to set intersec-
tion, so P-and-Q is only true if both P and
Q are true; denoted A. The corresponding
truth table is shown in Figure 2.13.

or: The verbal analogue to set union, so P-
or-Q is true whenever either P or Q is
true; denoted V. The corresponding truth
table is shown in Figure 2.13.

xor: “Exclusive or” means that one state-
ment or the other is true, but not both.
The corresponding truth table is shown in
Figure 2.13.
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not: This gives a statement its opposite
meaning; denoted by —, it makes a true
statement false and makes a false state-
ment true. The corresponding truth table
is shown in Figure 2.13.

implies: This means that one statement is
a consequence of the other; denoted =-.
The corresponding truth table is shown in
Figure 2.13.

if-then: A statement involving implication.
conditional: An if-then statement.

ifand only if: “P if and only if Q” is de-
noted P < Q and means that the state-
ments P and Q are logically equivalent.
The corresponding truth table is shown in
Figure 2.13.

DeMorgan’s laws: The logical rules for
how not interacts with or and and.
Named after Augustus DeMorgan
(1806-1871).

iff: If and only if.

biconditional: An
ment.

if-and-only-if  state-

quantifier: Quantifiers such as “for all” and
“there exists” restrict the variables re-
ferred to in a statement.

implication: A statement of the form P = Q.

contrapositive: When P = Q is the original
statement, —~Q = —P is the contrapositive
statement.

converse: When P =- Q is the original
statement, Q = P is the converse state-
ment.

inverse statement: When P = Q is the
original statement, =P = —Q is the in-
verse statement.



56 Q. Sets and Losic

P Q| PAQ P Q| PvQ P Q| PxorQ
T T T T T T T T F
T F F T F T T F T
F T F F T T F T T
F F F F F F F F F
P Q| P=0Q P Q| PeQ
P | -P T T T T T T
T| F T F F T F F
F| T F T T F T F
F F T F F T

Figure 2.13. The truth tables for and, or, xor, not, implies, and if and only if.

2.10 Bonus: Truth Tellers

One application of logical thinking is the class of truth-teller puzzles. The basic
format for these is that some statements are made, and each speaker either always
tells the truth or always lies. Your assignment is to figure out what’s going on
(either who is telling the truth or what the truth of the matter is). Such puzzles can
be unraveled using truth tables or simply by using logical reasoning. Here we will
give a few examples of how to use truth tables to resolve these puzzles.

Suppose you meet some ducks. It is known that a given duck either always
tells the truth or always lies. (This is theorized to be the origin of the common
expression “Ducks usually lie.” See [21].)

Example 2.10.1. One duck says, “I am a truth-telling duck.” Another duck quacks,
“I am a lying duck.” Can we determine anything about either duck’s nature? Let
us make a truth table to investigate. Let D represent the duck; it gets the value T if
it is a truth-telling duck and the value F if it is a lying duck. The statement “D tells
the truth” is true exactly when D is a truth-telling duck; the statement “D lies” is
true exactly when D is a lying duck.

D ‘ D tells the truth ‘ D lies
T T F
F F T

That’s the unvarnished truth of the situation. But, of course, a lying duck lies
(duh)... and our truth table doesn’t take that into account. So we modify the truth
table to reveal what each type of duck would say in each situation—we swap T
and F for the lying duck:
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D ‘ D tells the truth ‘ D lies
T | T . F
F | FT . TF

We can now see that either sort of duck would say that it tells the truth, so we
can determine nothing about the first duck. We also see that neither sort of duck
would say that it lies, so the second “duck” must not be a duck at all.

Example 2.10.2. A pair of ducks approaches. One quacks, “Exactly one of us is
a liar.” The other says, “Both of us tell the truth.” Huh! What is going on? Let’s
look at a truth table.

D; D, | Dy xor Dy lies | Dy AD; tell the truth
T T | F | T
T F | T | F
F T T | F
F F | F | F

Again, we modify the table to account for what lying ducks say, and remember
that D; made the statement in the third column, whereas D, made the statement in
the fourth column:

D D, | Dy xor D, lies | Dy AD; tell the truth
T T | F | T
T F | T | FT
F T TF | F
F F | FT | FT

Interestingly, we can only conclude that D is a liar—the statements are consistent
whether D is a truth teller or a liar!

Puzzle 1. Amy finds a present on hir doorstep. Ze suspects it was left by either
Rachel, Tess, or Nicol. Ze confronts each one.
Rachel: Not me! Tess knows you, and Nicol is your BFF.

Tess: 1 don’t know you, and besides, I’ve been on vacation in Europe
for the last several weeks. I didn’t leave you a present.

Nicol: It wasn’t me, but I did happen to see Tess and Rachel walking
along the river together last week. It must have been one of them.
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Let us assume that the present-giver is lying and the other two individuals are
telling the truth. Who left Amy the present?

Puzzle 2. In Math Curse [22], the main character has a strange experience at
dinner. “While passing the mashed potatoes, Mom says, ‘What your father says
is false.” Dad helps himself to some potatoes and says, ‘What your mother says is
true.” ... Can that be true?” Figure out what is going on here... and if you have
not already done so, read Math Curse. Your local public library surely has it in the
picture-book section.

Project: You are walking about and see some tasty-looking berries. You also
meet a duck, which, like any duck, always lies or always tells the truth. You
may ask the duck exactly one question. Explain why you will not definitely
learn whether the tasty-looking berries are safe to eat by asking any of the
following questions:

¥ Are these tasty-looking berries safe for a human to eat?
¥ Do you tell the truth?

¥ Do you tell the truth and are these tasty-looking berries safe for a human
to eat?

¥ Do you tell the truth or are these tasty-looking berries safe for a human
to eat?

¥ Ifyou tell the truth, then are these tasty-looking berries safe for a human
to eat?

¥ If these tasty-looking berries are safe for a human to eat, then do you
tell the truth?

¥ Do you tell the truth if and only if you lie?

Design a single question to ask the unknown duck such that the answer will
tell you whether the tasty-looking berries are safe to eat.

If you want to play with many, many, many more puzzles of this sort, consult a
book by Raymond Smullyan. He has written lots of logic puzzle books—perhaps



2.11. Bonus Check-Yourself Problems 59

the first was What Is the Name of This Book?—and they are easy to find. If you
prefer an electronic playground, here are a few sources of logic puzzles:

http://demonstrations.wolfram.com/KnightsKnavesAndNormalsPuzzleGenerator/,
http://demonstrations.wolfram.com/KnightsAndKnavesPuzzleGenerator/,
http://demonstrations.wolfram.com/AnotherKnightsAndKnavesPuzzleGenerator/.

All generate collections of statements. You decide which speakers are knights
(who tell the truth) and which are knaves (who lie). The software has options
to translate each statement into logic notation and to reveal the solution to each
puzzle.

2.11 Bonus Check-Yourself Problems

Solutions to these problems appear starting on page 595. Those solutions that model a
formal write-up (such as one might hand in for homework) are to Problems 7 and 9.

1. On an October 2014 visit to the CVS
Minute Clinic, the check-in kiosk asked
the question, “If you have a copay for
today’s visit, will you be paying for it

with a credit or debit card?” '
(a) Identify the formal logic quantifiers ‘
and structure in this question. “

(b) The visit in question was for a flu

vaccine, which does not require a ) )
copay. The kiosk gave options of Figure 2.14. A Venn diagram of mys-

Yes and No. How should the visitor tery.
have answered?

(c) Can you find a simpler way to 3 Consider the Venn diagram in Figure

word the question clearly? (In other 2.14.
words, what should the kiosk ques-
tion ask?) (a) Express the shaded area as a set

using unions, intersections, and/or

2. There was a recent campaign slogan
complements of the sets O, R, and S.

heard on the radio: Not just Blue Cross
Blue Shield of Massachusetts, but Blue (b) LetQ={k € Z||k| <10},R=even
Cross Blue Shield ... of you. Why is numbers, and S = {n € N | nis aper-
this mathematically nonsensical for res- fectsquare}. List the elements of the
idents of Massachusetts? shaded area.


http://demonstrations.wolfram.com/KnightsKnavesAndNormalsPuzzleGenerator/
http://demonstrations.wolfram.com/KnightsAndKnavesPuzzleGenerator/
http://demonstrations.wolfram.com/AnotherKnightsAndKnavesPuzzleGenerator/
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4. Let A = multiples of 4, and B = multi-
ples of 6. Write AN B as a set in the form
{ sets | conditions }.

5. Negate the statement Vn € Z,3y € 2N
such that n =y -k for some k € Z. 1s
either the statement or its negation true?

6. Prove that k € 7Z is positive if and only
if k3 is positive.

7. Make a truth table for =(P A Q) A
((PVQ)AR). Can you express this

Q. Sets and Losic

statement (henceforth referred to as
aaaaaa!) more simply?
8. LetA={0,1,2} and B={1,3,5,7}.
(a) List the elements of
(AxB)N(BxA).
(b) List the elements of
(A\B) x (B\A).
9. Show that
(AXxB)U(CxB) =(AUC) xB.
10. Show that {2k | ke N}U{4k+1 | k €
WU{4k+3 | ke W} =N.

2.12 Problems about Sets and Logic

1. List the elements of {n € N | n?> = 4}.

2. Anexcerpt from a 2010 Blue Cross Blue
Shield survey: “Do mot include care
you got when you stayed overnight in a
hospital. Do not include the times you
went for dental care visits ... In the last
12 months, not counting the times you
needed care right away, how often did
you get an appointment for your health
care at a doctor’s office or clinic as soon
as you thought you needed?” What type
of needed care is the question asking
about? What is excluded? Can you
find a simpler way to word the question
clearly?

3. Another excerpt from a 2010 Blue Cross
Blue Shield survey: “In the last 12
months, how often did your doctor or
health provider discuss or provide meth-
ods and strategies other than medica-
tion to assist you with quitting smoking
or using tobacco?”” Analyze the connec-
tives in the question. Are any or all of

them used in the same way we use them
in mathematics?

4. Compute |[{z€Z | z> —10,23 < 0}|.

5. Make a truth table for PA (=P V Q).

6. Write the set {1,2,4,8,...} without us-
ing dots.

7. Use Venn diagrams to indicate the even
numbers less than ten.

8. LetA={1,2,3} and B={2,3,4}. List
the elements of ...
(@) ... AxA)N(BxB
(b) ... (AxB)U(BxA
(c) ... Ax (A\B).

9. Using truth tables, verify that the contra-

positive and original statement are logi-
cally equivalent.

).
).

10. Again using truth tables, verify that the
converse and inverse statements are log-
ically equivalent.

11. Give a counterexample to the statement
|AUB| = |A|+ |B|.
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12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

Is the statement if the moon is made of
green cheese, then Aristotle is the Pres-
ident of Moscow true or false?

Draw a Venn diagram that indicates
(AUB)\C.

Decide whether or not it is true that
(AXxB)U(CxD)=(AUC) x (BUD).
If true, give a proof. If false, give a
counterexample.

Show that if A and B are sets, then if
A\ B =0, then B # 0 (unless A = 0).
Suppose R is false but that (P = Q) <
(RAS) is true. Is P true or false? What
about Q?

Could we rewrite the conditional
((c>588&b==2a)|lc>=5)

in a simpler way? If so, what is it? (Sug-
gestion: use a truth table.)

Write this in English: Vk € 3Z,3S C
N, |S| = k. (Isittrue?) What is the nega-
tion of this statement? (Is the negation
true?)

Prove that n € N is odd if and only if n*
is odd.

Prove that Z = {3k | k € Z} U{3k+1
| ke ZYU{3k+2 | ke Z}.

Prove that there are infinitely many
prime numbers. (Suggestion: try using
contradiction.)

Show that n € N is not divisible by 4 if
and only if the binary representation of
nends in 1 or in 10. (Suggestion: use
the contrapositive.)

Express P = Q using — and V but not
=. (Suggestion: play around with truth
tables.)

Some of the pigeonhole principle proofs
in Chapter 1 are secretly proofs by con-
tradiction or proofs that use the contra-
positive. Which ones?

25.

26.

27.

28.

29.

30.

31.

32.
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On route 1-91 near Springfield, MA,

there was once a sign that said “WASH

YOUR BOAT” (pause) “AFTER USE”

(pause). Explain why you are comply-

ing with the sign if you do not own a

boat. How does this relate to truth ta-

bles?

Compute the cardinality of the set ...

(@) ... {wiggle,worm,wiggle worm}.

(b) ... {wiggle,{wiggle},{worm},
worm}.

©) ... {{{wiggle,worm}}}.

Let A = {(2,5),(-3,1),(4,2),(1,1),

(0,1)}. List the elements in each of the

following sets (or write @ if appropri-

ate).

(@) {(a1,a2) €A | a1 < az}.

(b) {a1 | (a1,a2) €A and a; > az}.

(c) {az | (a1,a2) € A and ap = 0}.

Let the universe be U = {x e N | x <

10}, and let A = {1,2,3,4,5}, B =

{5,6,7}, and C = {1,6,9}. List the el-

ements of ...

(@) ...AUC.

(b) ... (B\C)\A.

(¢) ... (ANB) xC.

Write the negation of x is prime or x <

52. (Don’t say, “It’s not true that ....”)

Use a truth table to show that ((—p) A

q) AN (pV (—q)) is a contradiction.

Write the negation of for all integers

x and y, the number )% is an integer.

(Don’t say, “It’s not true that ....”)

Write each of the following statements

using formal logic notation.

(a) Even numbers are never prime.

(b) Triangles never have four sides.

(c) There are no integers a,b such that
a®/b* =2.
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33.

34.

35.

36.

37.

38.

2.13

(d) No square number immediately fol-
lows a prime number.

Write the contrapositive of if x> > 100,
then y has a sister.

Carefully write out some of your re-
sults from Problem 4 of Section 2.4:
State DeMorgan’s laws for two sets us-
ing set notation, and prove them using
set-element notation. Now state De-
Morgan’s laws for 7 sets.

Carefully write out more of your results
from Problem 4 of Section 2.4: Prove
DeMorgan’s laws for two statements us-
ing Venn diagrams, being sure to in-
clude intermediate steps and complete
sentences. Now state DeMorgan’s laws
for n statements.

Prove that if a natural number # is even,
thenn—11isodd ...

(a) ... using a direct proof.

(b) ... by proving the contrapositive.
(c) ... using proof by contradiction.
Prove that x is even if and only if 4x* —
3x+1is odd.

Challenge: Try to rewrite this sen-
tence as a logical statement!! (That is,
write it as a collection of short state-
ments joined by logical connectives and
quantifiers.) Can you write a simpli-

Instructor Notes

39.

40.

Q. Sets and Losic

fied version of the next statement? The
following two categories of charitable
organizations are not required to have
a “Certificate of Solicitation”: An or-
ganization that is primarily religious
in purpose and falls under the regula-
tions 940 CMR 2.00; or An organization
that does not raise or receive contribu-
tions from the public in excess of $5,000
during a calendar year or does not re-
ceive contributions from more than ten
persons during a calendar year, if all
of their functions, including fundrais-
ing activities, are performed by persons
who are not paid for their services and if
no part of their assets or income inures
to the benefit of, or is paid to, any offi-
cer or members (M.G.L. c. 68, s. 20).
(Source:  http://www.mass.gov/ago/
doing-business-in-massachusetts/
public-charities-or-not-for-profits/
soliciting-funds/overview-of
-solicitation.html)

Write the set {...,—8,—4,0,4,8,...}
without using dots.

Evaluate the statement ANB=A\B. Is
it true? If so, prove it. If not, find a
counterexample and determine whether
it is always false or whether there exist
A, B for which the statement is true.

This chapter is written with the intent that students will read Sections 2.1, 2.2, and 2.3 and
attempt the Check Yourself problems before the first class of the week. You may look at
the amount of text/material in the chapter and think, “There’s no way we can get through
this much material in a week.” If you expect mastery from the students, then yes, there’s
no way. But if you expect that the students will get the gist of the material, with little
immediate recall and some details filled in over time, then a week is enough time (says the
author from experience). The point of dumping all this material on the students at once,


http://www.mass.gov/ago/doing-business-in-massachusetts/public-charities-or-not-for-profits/soliciting-funds/overview-of-solicitation.html
http://www.mass.gov/ago/doing-business-in-massachusetts/public-charities-or-not-for-profits/soliciting-funds/overview-of-solicitation.html
http://www.mass.gov/ago/doing-business-in-massachusetts/public-charities-or-not-for-profits/soliciting-funds/overview-of-solicitation.html
http://www.mass.gov/ago/doing-business-in-massachusetts/public-charities-or-not-for-profits/soliciting-funds/overview-of-solicitation.html
http://www.mass.gov/ago/doing-business-in-massachusetts/public-charities-or-not-for-profits/soliciting-funds/overview-of-solicitation.html
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and quickly, is to de-emphasize background material while giving them surface familiarity
with the concepts; they can then develop deeper familiarity over time as they use sets and
logical thinking in other contexts. The practical effect is that students will need to look up
notation and terminology and facts/theorems/truth tables all week and for some weeks to
come.

Because set theory and logic involve so much new notation, and because different
sources use different notation, it is worth exposing students to variances. Examples in-
clude denoting such that as s.t. or | or :, denoting the set {1,...,n} as [n], using — or \ for
set subtraction, noting that | can mean divides as well as such that, and denoting comple-
mentation by an overline versus a superscripted C versus a prime. Whatever notation you
like to use, point it out to the students. Of course, you may not prefer the notation used in
this book, and students are likely to encounter other notations in their mathematical lives;
you may as well warn them now.

Such a discussion of notation is a good warmup for the first class of the week. There
is a lot of reading in Sections 2.2 and 2.3, so it makes sense to follow a short warmup
with a request for any questions over the reading or Check Yourself problems. After such
a discussion, break students into groups to work on Section 2.4. The DeMorgan’s law
exercise is likely to take them quite a while, so it is unlikely that they will complete these
problems in the remaining class time.

Ask the students to read Section 2.5 for the next class. You may want to devote some
class time to further work on Section 2.4 before embarking on the activity in Section 2.6,
and it’s always good to ask whether there are questions over the reading or the Check
Yourselfs. (Should those be pluralized as Check Yourselves?) It is likely that this activity
will take most of a class period, if not all of it. My experience is that much of a third class
meeting is needed to fully address all the problems.

A cheery warmup for a third day of class is to project the Greek alphabet (Google
Images will produce a table to your liking) and go through the pronunciations and uses of
the letters. Some are listed on page 641. Students like to share their prior knowledge as
part of this discussion.

If you choose to include the Bonus Section 2.10 material in class, you might show your
class a Doctor Who clip (from “The Pyramids of Mars”) containing a truth-tellers problem;
it is available at https://www.youtube.com/watch?v=W90s58LtYhk. (This tip courtesy of
Tom Hull!) Beware that this may provide savvy students with significant clues for solving
the final question of the Section 2.10 Project.

Finally, please remember that this chapter is an overview of set theory and logic and
proof techniques. Students will practice using these ideas throughout the course and need
not have mastered them just yet. Should you want to supplement this material with some
additional basic proof problems, a few are provided in Section T1.2.


https://www.youtube.com/watch?v=W90s58LtYhk

Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com
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Chapter 3 ¥¥¥

Graphs and Functions

3.1 Introduction and Summary

We will combine an introduction to graphs (sets of dots connected in various ways)
with a study of functions, taking as our primary example graph isomorphism. The
same graph can be drawn in lots of different ways, and sometimes it is hard to tell
that two drawings represent the same graph. A graph isomorphism is a function
that turns one representation of a graph into another. The idea of isomorphism is
ubiquitous in mathematics, so we will discuss how it is used with other mathemat-
ical objects as well.

We begin with basic material on functions, after which we link functions to
sets and counting and the pigeonhole principle (see Chapters 2 and 1). Then we
will do some exploratory exercises and follow this by playing some graph games.
(Yes, really.) You will definitely want a game-playing partner for those activities!

Graphs are cool. They are the focus of Chapters 10—13, as well as the focus of
the author’s (pure mathematics) research. Graphs come with lots of terminology,
not all of which is standard; this can be a bit tiresome, but graphs are fundamental
to computer science and applied mathematics, so the terminology is well worth
learning. This chapter gives common examples of graphs and investigates some
simple graph properties.

The introductory graph material is followed by an introduction to isomorphism
and then an activity on graph isomorphism. Finally, we explain the graph theory
behind the game played near the beginning of the chapter.

3.2 Function Introdunction

Most people have a general idea of what a function is; it’s like a machine where
one puts something in the hopper at the top and gets something out of the slot on

65
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the side. But that doesn’t help anyone figure out which mathematical items are
functions and which are not! Therefore, we need a definition.

Definition 3.2.1. Wecall f: A — B a function when, given any element a of the set
A as input, the function f outputs a unique element f(a) = b € B. We sometimes
say that f maps a to b and call f a map. In particular, a function is wel/ defined: it
satisfies the criterion that if a; = ap, then f(a;) = f(a2). (Sometimes people state
the contrapositive of this criterion, namely, that if f(a;) # f(az), then a; # ay; this
may be easier to conceptualize but quite difficult to use when proving something
is a function.)

The set A from which inputs are taken is called the domain and the set B from
which outputs are selected is called the rarger or target space. The element f(a)
is called the image of the element a. The range of a function is all the elements of
the target space that are mapped to by the function; that is, for f : A — B, the range
of fis Range(f) = {f(a) | a € A}. We may intuit from Figure 3.1 the origins of
these terms. A function is not just the rule for transforming elements of A into
elements of B but also includes what sets A and B are. For example, f : A — B is
a different function than f : C — B. If D C A and we want to talk about applying
f:A— Bjustto elements of D, we write f|p to indicate that we are restricting the
domain of f to D.

We sometimes need a word for a thing that given input, produces output, but is
not necessarily well defined; we will use the word gipo for this purpose. (Notice
that every function is a gipo, but not every gipo is a function.) All of the definitions
given in the previous paragraph apply to gipos as well as to functions.

Let us examine a few examples and nonexamples of functions. (A nonexample
is an example that does not fit the desired definition.) In Figure 3.1, we show
domains on the left and targets on the right, with each gipo rule indicated by arrows.
Notice that the input elements hang out in their domain and are sent by arrows
to their target. (It’s not literally the input elements in the target space—it’s their
images as seen through the lens of the gipo rule.)

Here are some aspects of the definition of function to which we should pay
special attention:

¥ A function f on a domain A has to be defined on every single element of A.
If some of them are skipped, either it’s not a function after all or else it is a
function, but secretly defined on some subset of A.

¥ Itis not cool to have two outputs for one input. For example, consider a gipo
f defined on the set S of length-6 lists of binary digits, with target {—1,0,1}
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Figure 3.1. Exactly three of these are functions. Which three?

and gipo rule

—1 ifsendsin (...,1,1),
f(s)= 0 ifsendsin(...,0),
1 ifsendsin(...,1).

The element so = (0,1,0,1,1,1) has f(so) = —1 and f(so) = 1, so this gipo
is not a function.

These are not the main attributes of the definition, but it’s easy to get confused
about them. That’s why they’ve been highlighted.

There are two other properties that some functions (and gipos) have and some
do not. Zoomed-in bits of functions that do not have these properties are shown in
Figure 3.2.
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Figure 3.2. Pieces of gipos are shown. Any gipo containing the bit on the left cannot be
one-to-one, while any gipo containing the bit on the right cannot be onto.
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Definition 3.2.2. A function is one-to-one, also called injective or 1-1 or into, if
whenever f(a;) = f(a2), then a; = ay.

Notice that the condition for injectivity is the converse of well-definedness
(that defines a function). Three of the gipos shown in Figure 3.1 are one-to-one;
can you discern which three?

Definition 3.2.3. A function is onfo, also called surjective, if for every b € B, there
exists some a € A such that f(a) = b.

Notice that if a function is onto, then its target and range are equal. Four of the
gipos shown in Figure 3.1 are onto; can you tell which four?

Definition 3.2.4. A function that is both one-to-one and onto is known as a bijec-
tion.

Here is another way to think of these definitions: in a surjection, every element
of the target space is mapped to at least once; in an injection, every element of the
target space is mapped to at most once; and in a bijection, every element of the
target space is mapped to exactly once.

It’s hard to know what terminology is best to use for functions. The only other
term for bijection is one-to-one correspondence, but that could be confused with
a function being one-to-one. And using bijection suggests using surjection and
injection for parallelness. However, surjection and injection are hard to remember.
Surjective is the same as onto, which seems to be a better term because onto refers
to the function mapping onto every element of the target. Injective is the same
as into, which is not frequently used. That’s a pity because it refers to a copy of
the domain landing in the target. (Every element of the domain lands on exactly
one corresponding element of the target, so one can recover the domain by going
backwards along the arrows.)

Example 3.2.5 (of a function that is one-to-one but not onto). Let f : Z — Z be
defined by f(k) = 2k. Notice that f is not onto because 3 € Z is not the image
of any k € Z. (If there were such a k, then k = % ¢ 7.) On the other hand, f is
one-to-one, and we’ll prove it: Let f(k;) = f(k2). Using the definition of f, this
becomes 2k; = 2k,, and dividing through by 2 we obtain k| = k; as desired.

Example 3.2.6 (of a function that is onto but not one-to-one). Let g : N x Z; —
W be defined by g(n,d) = n-d. Notice that for any n € N, the element (n,0) maps
to 0. Therefore, g is not at all one-to-one. However, it is onto: any element of W
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is either 0 or an element of N. We just saw that plenty of elements of N x Z; map
to 0, so consider n € N. Then g(n, 1) = n, so given any w € W, we have found an
element (n,d) of N x Z, such that g(n,d) = w.

Example 3.2.7 (of a bijection). We will modify Example 3.2.5 to produce a bijec-
tion. Let f : Z — 27 be defined by f(k) = 2k. Our proof of injectivity still holds,
so we just have to prove that this map is surjective. Consider any z € 27Z. Then let
k=35, sothat f(k) = f(5) =25 = z. We’re done!

Example 3.2.8 (of a bijection proof). Let g: W x Z, — Z be defined by

—n—1 whent =0,
n whent = 1.

s(() = {

We will show that g is a bijection.

First, we must show that g is injective.
Suppose g((n1,11)) = g((n2,12)). Then we have one of the following four cases,
depending on the values of #1,,:

1. n; = ny (in which case we’re done).
2. —ny —1 = —ny — 1, so that n; = n; (in which case we’re done).

3. —n; — 1 = ny, which is a contradiction because either n; or ny must be neg-
ative and there are no negative numbers in W; thus, this case can’t happen.

4. ny = —ny — 1, which cannot happen for exactly the same reasons.

We conclude that g is one-to-one.

Second, we must show that g is surjective.
Consider z € Z. If z < 0, then —z € N so that —z—1 € W and g((—z—1,0)) =
—(=z—1)=1=12z Ifz=0, then g((0,1)) = 0. If z > 0, then g((z,1)) = z. Thus
g is onto.

This all leads to a way of linking functions, sets, and counting.

Fact 1. If there is an injective function from A to B, then |A| < |B.

and

Fact 2. [Ifthere is a surjective function from A to B, then |A| > |B|.
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You may recall the Fact given in Section 1.5; this can be restated as

Fact 3. Ifthere is a bijective function from A to B, then |A| = |B].

While we’re at it, let’s state the pigeonhole principle in terms of functions.
It is the contrapositive of Fact 1. First, though, you might want to visualize the
situation: think of the left blobs of Figure 3.1 as being pigeons who fly along the
arrows to their right-blob holes.

Hey. If |A| > |B|, there is no injective function from A to B.
Wait! How is that the pigeonhole principle? Let’s try again.

Hey Hey.  If |A| > |B|, there is no injective function from A to B and so every
function from A to B must send at least two elements of A to a single element of B.

Hmm. Closer, but still not very clear.

Hey Hey Hey. If |A| > |B|, there is no injective function from A to B and so
every function from A to B must send at least two elements of A to a single
element of B. Let A represent pigeons and B represent pigeonholes, and now
we see that any function of pigeons to holes must place at least two pigeons
in some hole. Yeah.

We did not place any restrictions on the sizes of A and B in the above discussion.
If we examine only finite sets, we have an interesting theorem with an informal
proof (because the formal proof is unenlightening).

Theorem 3.2.9. Let A, B be finite sets and let f be a function f:A — B. If
|A| = |B|, then f is one-to-one <= f is onto.

Proof: As with any if-and-only-if proof, two subproofs are needed.

(=) Suppose f is one-to-one. Then there are at least as many elements in the range
of f as there are in the domain (and no more, because f is a function). Therefore
|Range(f)| = |A|, but also |A| = |B| and thus |Range(f)| = |B|. This means that
the range of f fills up the target space B, so f is onto.

(<) Suppose f is onto. We will proceed by contradiction, so also suppose that f
is not one-to-one. In other words, suppose at least two elements of A map to a
single element of B. But |A| = |B|, so there are the same number of elements in f’s
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domain and f’s range (which is also its target because f is onto). That means some
element of A isn’t in f’s domain... so f isn’t a function after all... or some element
of A maps to two elements of B... and in this case f isn’t a function, either. Those
are both contradictions to the conditions of the theorem, and so our assumption
that f is not one-to-one must have been wrong. Thus f actually is one-to-one. []

A version of Theorem 3.2.9 also holds for infinite sets; see Bonus Section 15.8
for more.

Check Yourself

The sum principle reveals that what seem like three problems are in truth eight.

1. Here are some gipos that have domain N. For each gipo, determine whether it is a
function, whether the target space could be N, and whether it is one-to-one.

@ f(n
(b) f(n
(
(

() f(n
(d) f(n

Y
n.
n—1.
n?—1.

)
)
)
)

2. Here are some functions that have domain Z and target space W. For each function,
determine whether it is one-to-one or onto.

(a) f(k)=0.

(b) f(k)=][%] | (The notation |x| is known as the floor function, as it returns
the integer equal to or just less than the input. Thus, L%J returns % if k is even
and % if k£ is odd.) (Oh, and there is a matching ceiling function, which
returns the integer equal to or just greater than the input.)

() flk) =k +2.

For those functions that are not onto, what is the range? Are any of the functions
bijections?

3. Challenge: Write out proofs for Problems 1 and 2: that is, prove that the relevant
gipos are well defined, one-to-one, and onto, and for those that are not, give coun-
terexamples.
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3.3 Try This! Play with Functions and Graphs

There are three subsections of playing; try to spread your playtime equally among
them!

3.3.1 Play with Functions

Functions are related to counting, so let’s count functions.

1. List all the functions from {a,b} to {c,d,e}. Here’s a start on that list:

=
—
&
I
o
=
—
=
I
QU

fola)=d, fa(b)=d.
How many functions are in your list?

2. How many functions are there from {a,b,c} to {d,e}? Try to complete this
computation by reasoning rather than by listing.

3. Without making lists or drawing pictures ... how many functions are there
from a two-element set to a ten-element set?

4. ... from a ten-element set to a two-element set?

5. Generalize. That is, how many functions are there from an m-element set to
a g-element set?

3.3.2 Play with Graphs

We need to have a couple of definitions before we can dive into exploration.

Definition 3.3.1. A graph is a set of dots (drawn as e or e ) called vertices and a
set of edges (drawn in any line- or curve-like way) that represent pairs of vertices.
Thus, G = (V,E), where V (or V(G)) is the vertex set and E (or E(G)) is the edge
set. Elements of E are e = {vy,v,} where vi,v, € V. (Sometimes we abbreviate
to viv;.) The order of v; and v, does not matter (for now; see page 84 later).
Two vertices joined by an edge are adjacent and that edge is incident to each of
those vertices. The vertices adjacent to a vertex v are called v’s neighbors. A few
examples of graphs are shown in Figure 3.3.

Note. The word vertices is plural. The singular form is vertex. It is criminal to
leave the “s” off the plural form and use it as singular... so criminal, in fact, that
we cannot even type the offending “word” here. Just don’t do it.
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Figure 3.3. Three graphs.

In Figure 3.3, two of the graphs have vertices labeled (arbitrarily) and one does
not. Vertex g has a loop, or an edge {g, g}, as well as a multiple edge connecting
vertices b and h twice with multiplicity two. (In the case of multiple edges, our
usual set-theoretic notation fails us, as {b,h} and {b,h} should describe the same
edge... yet there are physically two different edges. One way around this is to
mark the copies of the edge as {b,h} and {b,h},.) The degree of a vertex is the
number of edges that emanate from it; so, f has degree 1, 2 has degree 2, b has
degree 4, and g has degree 5 (because both ends of the loop are incident to g). Now
let’s explore.

1. Draw your own graph with

¥ at least ten vertices,

¥ an edge with multiplicity three,

¥ at least three vertices that are all adjacent to each other, and
¥ a vertex with five neighbors.

Draw this same graph again, but make sure that your second drawing has a
different number of edge crossings than your first drawing.

2. Determine the degree of each vertex in the graph you just drew. Add up the
numbers you get. How does this compare to the number of edges? Do the
same with the unlabeled graph of Figure 3.3.

3. You now have four examples to work with: conjecture a relationship be-
tween the sum of the degrees of a graph (with a finite number of vertices)
and the number of edges of that graph. Next, prove that your conjecture is
correct.

4. Count the number of vertices of odd degree in each of the four graphs (in-
cluding the one you created). For each graph, is the number even or odd?
Make a conjecture about the number of vertices of odd degree a graph has.
Can you prove it?
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Figure 3.4. Five vertices hanging out (left), and six vertices chillin’ (right).

3.3.3 A Dot Game

Let’s play a game! You’ll need two people, something to write on, and writing
implements of two colors. Each person writes in only one color. Start with either
five or six dots, no edges, as shown in Figure 3.4. Players alternate moves—a
move consists of drawing an edge (we don’t allow multiple edges or loops in this
game)—and the goal of the game is to force the other player to complete a triangle
in hir color. So, for example, the player who draws teal edges wants to force the
player who draws purple edges to complete a purple triangle. The game ends when
one player wins, or when all possible edges have been drawn (by the way, that’s
called a complete graph).

Play a few games so you can get the hang of how to strategize. Then try to
answer these questions (assuming that neither player makes mistakes in play):

¥ Does the game always have a winner and a loser? Or, can it sometimes end
in a draw?

¥ How does the game on five vertices differ from the game on six vertices?
¥ What if you start with fewer vertices? More?

Make some conjectures as to what is going on here, and try to prove them.
If you want to play the dot game by yourself later, you can do so at http://
www.dbai.tuwien.ac.at/proj/ramsey/.

(This space inserted to encourage you not to look at the hints below until you’ve
genuinely thought about what’s going on with the dot game!)

Hints. Ifyou have six dots, after the game is played, there are five edges coming
out of each dot. Those edges come in two colors. How do they have to be split
up between the colors? And what happens if you try to avoid making triangles in
each color, starting from those edges? (How is the situation different if you have
five dots?)


http://www.dbai.tuwien.ac.at/proj/ramsey/
http://www.dbai.tuwien.ac.at/proj/ramsey/
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3.4 Functions and Counting

Hey! You! Don’t read any further unless you have worked through the problems
in Section 3.3.1. | mean it!

You probably discovered in Section 3.3.1 that the number of functions from an
m-element set to a g-element set is ¢”". We can denote a function by an ordered
m-tuple, with the jth component corresponding to the image of the jth domain
element. There are ¢ choices for the image of each of the m domain elements, so
atotalof g-g- --- - g = ¢" possible functions. (If this reminds you of the product
principle from Chapter 1, you are correct and astute!)

Now imagine for a moment that we want to count only the injective (or one-
to-one, or 1-1) functions. This is a significant restriction because we are not al-
lowed to use any target space element more than once. So, we have g choices
for the image of the first domain element, but only ¢ — 1 choices for the image
of the second domain element. If there are m domain elements, then there are
qg-(g—1)- -+ -(g— (m—1)) possible functions. Notice that if m > ¢, we have a
problem! Then there are no 1-1 functions (by the pigeonhole principle). This is
secretly a preview of one type of counting addressed in Chapters 6 and 7. Count-
ing surjections is more difficult; you may investigate it in Problem 24 at the end
of Chapter 6.

There is also a meta-relationship between counting and functions: bijections
are frequently used to reframe counting problems. Instead of directly counting
elements of a set S, we create a bijection to a set T that we find conceptually easier
to manage (and therefore count). We might, for example, count grey-spotted ducks
by finding a bijection between ducks and set elements such that grey-spotted ducks
are in correspondence with those elements that are divisible by 3. Then, we would
count set elements that are divisible by 3 to obtain the number of grey-spotted
ducks. We will use this technique in Chapters 6-9.

3.5 Graphs: Definitions and Examples

Hey! You! Don’t read any further unless you have worked through the problems
in Section 3.3.2. | mean it!

There are lots and lots of terms to use when discussing graphs—we saw vertex
and edge above. Here are more. Imagine walking on a graph and you’ll believe
that a walk is encoded by a list of vertices alternating with edges. Both ends of
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Figure 3.5. Two more graphs.

the list must be vertices; you can’t just end a stroll mid-edge. A walk where no
vertices repeat is a path, and a cycle is a walk whose only repetition is the first/last
vertex. The /ength of a path or cycle is the number of edges it has. For example,
in Figure 3.5 one walk of length 3 is [-4-j-1-m-2-j; it is not a path, but k-3-m-5-1
is a path and j-2-m-1-j is a cycle of length 2. The distance between two vertices
of a graph is the length of the shortest path between those vertices. A graph that
is nothing but a path is called P,; it has n vertices and length n — 1. A graph with
n vertices that is nothing but a cycle is called C,,. Some cycle and path graphs are
shown in Figure 3.6. Any two vertices in a connected graph can be joined by some
walk. A graph with no cycles is a forest, and a connected graph with no cycles is
a tree (Really! Find one in Figure 3.3), and a /eafis a vertex of degree 1 (such as
k in Figure 3.5).

Despite the large amount of terminology (it’s all in the index, and listed in
Section 3.11, for when you need to look it up later), we are now just touching on
the basics of graphs, which will be the focus of Chapters 10—-13. Later we have an
entire chapter (Chapter 10) devoted to trees, and we will investigate special sorts
of walks in Chapter 12.

A first result about graphs, which you have likely already discovered from
Section 3.3.2, is known as the handshaking lemma. Wait, we’d better say that
more officially.

RO WA

&) o—0 oU—o—0 —o—o0—0

Figure 3.6. Cycles C1, C>, C3, Cy4, and Cs (top); paths P;, P>, P3, and Py (bottom).
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Lemma 3.5.1 (the handshaking lemma). Because each edge is incident to two
vertices, the sum of the degrees of the vertices of a graph must be twice the
number of edges (and thus a multiple of two (i.e., even)).

To visualize this, imagine that an edge in the graph is like two vertices shaking
hands. Each edge has been counted twice, once for the vertex on each end/hand.
This technique—overcounting and then tracking how much we overcounted—will
be studied in more depth in Chapter 6 and used regularly thereafter.

It follows from Lemma 3.5.1 that the number of vertices of odd degree must
be even. If not (notice the signal that we’re about to do proof by contradiction),
the number of vertices of odd degree is odd. Then, the sum of the degrees is
(odd+---+o0dd) + (even + - - - +even), which simplifies to odd + even because
the sum of an odd number of odd numbers is odd. Of course, odd + even = odd...
but that’s a contradiction, because the sum of the degrees should be even.

Here is another basic term. A simple graph has no loops or multiple edges.
Many people and textbooks mean that a graph (with no adjectives in front of
the word) is simple unless otherwise specified. Around here, we like multiple
edges and loops and so we generally allow them, though one challenge for you,
the reader, is to figure out when loops or multiple edges cause problems but we,
the author, haven’t mentioned it. (For example, we are about to restrict ourselves
to simple graphs for a while, but we won’t say so.) This is good practice for being
in the rest of the world....

A simple caution. Sometimes “graph” means “simple graph” and sometimes it
doesn’t. This depends on who is speaking/writing and on the situation, so be aware
that you may have to figure out whether the presence (or absence) of loops and/or
multiple edges makes any difference.

When you are trying to make a conjecture about graphs in general, it is a good
idea to check your conjecture on several common classes of graphs, including
trees, cycles, paths, and the graphs we are about to introduce in the next four para-
graphs.

The complete graph with n vertices, called K, (you know, K for komplete)
has every possible edge; that is, every vertex is adjacent to every other vertex.
Examples of complete graphs are shown in Figure 3.7.

- — A X W

Figure 3.7. Complete graphs K|, K>, K3, K4, and Ks.
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Figure 3.8. Two different drawings of the same bipartite graph.

There are two ways to think of a bipartite graph. One is to start with two piles
of vertices V| and V,, called parts, then draw some edges between the parts, but no
edges within either part. This is a constructive way to produce a bipartite graph,
but not every graph that is bipartite looks that way. Given a graph, it is bipartite if
the vertices can be split into two parts so that neither part has internal edges. One
common way of pointing out which vertices correspond to which part is coloring
the vertices—V) gets one color and V; gets the other color. Both perspectives are
illustrated in Figure 3.8.

A complete bipartite graph has all possible edges, so every vertex in V is
adjacent to every vertex in V,. If |Vi| = m and |V»2| = n, then we denote the cor-
responding complete bipartite graph by K, ,. We can extend these notions to tri-
partite graphs (with three parts Vi, V,,V3) and multipartite graphs (with n parts
Vi,Va,...,V,). Examples are given in Figure 3.9.

Every vertex of K,, has degree n — 1. Every vertex of a cycle C,, has degree 2.
Such graphs, where every vertex has the same degree, are called regu/ar. Thus, K,
is (n — 1)-regular and C, is 2-regular. The degree sequence of a graph is a list of
the degrees of the vertices in increasing order. For example, the degree sequence
of the first graph shown in Figure 3.3 is (1,3,4,4,4,4,5,5), and the degree se-
quence of C,, is (2,2,2,...,2). The best graph of all is the Petersen graph, which

Figure 3.9. The complete bipartite graph K33 and the complete tripartite graph K> > 3.
Indicated by a dotted oval is part of this complete bipartite graph.
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Figure 3.10. Your friend and mine, the Petersen graph.

is 3-regular, pictured in Figure 3.10, and either an excellent example of or a quick
counterexample to almost every theorem and conjecture in graph theory. It is your
friend.

Check Yourself

Try these ten quickies.

1.
2.

10.

Find the degree sequences of the graphs in Figure 3.5.

Look through the graphs pictured so far; identify one that is simple and one that is
not simple.

For each graph in Figures 3.3 and 3.5, decide whether or not the graph is connected.
Is any of the graphs a tree? A forest?

Find the longest possible path in the middle graph of Figure 3.3 and in the left-hand
graph of Figure 3.5.

. What is the largest cycle in any graph shown in Figures 3.3 and 3.5? How about

the smallest?

There is at least one bipartite graph pictured in Section 3.3. Identify one; is it
complete?

Draw K7, Cg, and Pj.

Draw two 2-regular graphs on ten vertices, one of which is connected and one of
which has two components.

What is the length of a smallest cycle in the Petersen graph?

Draw a bipartite graph with nine vertices.
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1
, ) %2 e
1 <-' A . %d
3 E 5 6 b ‘

Figure 3.11. Are these two drawings of Figure 3.12. How about these?
the same graph?

3.6 Isomorphisms

We need a notion of when two graphs are the same. This will generalize to other
types of mathematical objects as well, but we will begin with graphs. Should the
graphs in Figure 3.11 be considered the same? How about in Figure 3.12?

The information encoded by a graph is only which vertices are adjacent. There
is nothing in the definition of a graph that says how long or short or curly or straight
the edges should be, whether or not they cross, what colors they might be, etc. So
whatever definition of “sameness” we have, it should definitely include adjacency
and exclude color.

Definition 3.6.1. Two graphs G,H are isomorphic if there exists a bijection ¢ :
V(G) — V(H) such that {v;,v,} is an edge in G if and only if {@(v;),@(v2)} is
an edge in H.

Basically, Definition 3.6.1 says that two graphs are isomorphic if two vertices
are adjacent in one graph exactly when the corresponding vertices form an edge in
the other graph. And even more basically, it says that two graphs are isomorphic
if the vertices can be labeled in such a way that one graph can be redrawn to look
exactly like the other.

Example 3.6.2 (of graph isomorphism). Consider the two graphs in Figure 3.13.
Dragging vertex b to the left of vertex a (or, alternatively, dragging vertex 5 to the
right of vertex 6) demonstrates that these are two different drawings of the same
graph.

Figure 3.13. Each of these graphs is isomorphic to Py.
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Figure 3.14. An arbitrary graph drawn in GeoGebra.

What one wants, in order to be able to determine whether two graphs are iso-
morphic, is to be able to draw a graph and then drag the vertices around and have
the edges follow, to see if it can be made to look like another graph. Hurray! Tech-
nology exists to enable this! The free software GeoGebra can be used to draw and
fiddle with graphs. Go to www.geogebra.org and choose GeoGebra Geometry or
GeoGebra Classic. Click on the point icon—it stays selected—and place a pile
of vertices on the screen. Then click on the segment icon, and draw in edges by
clicking on their respective vertices. A sample result is shown in Figure 3.14. Fi-
nally, click on the pointer-arrow icon to enable the dragging of vertices all over
the place. Go to town with this! It’s fun.

The notion of graph isomorphism is a specific example of the more general
notion of isomorphism between two mathematical objects A and B. For our def-
inition, we will need new notation: x4 represents an operation defined on A and
*p represents an operation defined on B. For example, xy might be addition in N
and 7z might be addition in Z. (The notation could also indicate multiplication in
either of those cases.) When A and B are graphs, x4 and *p represent adjacency of
vertices, so that a; x4 a can return either true or false.


www.geogebra.org
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b e
— o — o

Figure 3.15. The two nonisomorphic (left) and three distinct (right) subgraphs of K». (See
Section 3.7.1 for the definition of subgraph.)

Definition 3.6.3. Let ¢ : A— Bbe a function; ¢ is an isomorphism if it is a bijection
and preserves every operation defined on A, that is, if ¢ (a; x4 a2) = @ (a1 ) xg ¢ (az).
If there is an isomorphism mapping A to B, we say A and B are isomorphic and
write A =2 B.

Example 3.6.4. The two graphs in Figure 3.13 of Example 3.6.2 are isomorphic
because the function a — 6,b + 5,c¢ +— 7,d — 8 is an isomorphism. It is one-to-
one and onto, and the edges {a,c},{a,d},{b,d} map to the edges {6,7},{6,8},
{5,8}; no other pairs of vertices correspond to edges in either graph.

Isomorphisms preserve just about any property you can think of. For example,
two isomorphic graphs have the same number of vertices and the same number of
edges; either they both have triangles or neither has any triangles.

The opposite of isomorphic is nonisomorphic, and this is not the same as dis-
tinct. For example, two copies of the same graph are distinct and also isomorphic;
see Figure 3.15.

You may be wondering about the word “isomorphism.” The particle iso- means
“same” and the root -morph- means “shape.” Throughout mathematics, isomor-
phisms are used to determine when two objects that seem different are secretly the
same in some shape-like way.

Check Yourself

Test your understanding with these three brief problems.

1. Pick a graph from Figures 3.3 and 3.5 and draw it so that it looks different but is,
in fact, the same graph.

2. List all nonisomorphic subgraphs of C4. (See Section 3.7.1 for the definition of
subgraph.)

3. Label the vertices of the graphs in Figure 3.8 and define a function between them
that shows the graphs are isomorphic. (A GeoGebra file of Figure 3.8 is available
for your playing pleasure at http://www.toroidalsnark.net/dmwdlinksfiles.html.)
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H Gy G,

Figure 3.16. The triangle H is a subgraph of Gg = K; > 3 but not of Gg. Note that the
smallest cycle in Gg has length 4.

3.7 Graphs: Operations and Uses

Just like sets can have subsets and we can take unions and complements of sets,
we can define similar structures and operations on graphs.

3.7.1 Sets and Graphs Have Some Things in Common

A subgraph H of a graph G is a graph such that V(H) C V(G) and E(H) C E(G).
(That wasn’t so bad, was it? See Figure 3.16 for an example.) While technically
the empty graph (no vertices) is a subgraph of every graph, in practice we ignore
it. For graphs G; and G, (with disjoint vertex sets), the graph union Gy U Gy
is another graph Gz with V(G3) = V(G,)UV(G;) and E(G3) = E(G) UE(G>).
(That was probably not a surprise.) Notice that the union of two connected graphs
will not be a connected graph—essentially, taking the union of two graphs consists
of drawing them close to each other. Each individual connected piece of the union
(or of any graph) is called a component.

Just as we could remove a subset from a set (see page 30), so too we can
remove a subgraph from a graph. The graph G\ e (or G — ¢) is G but with the
edge e removed and e’s vertices left intact. The graph G\ v (or G —v), on the other
hand, is G but with the vertex v and all its incident edges removed. This extends
to a subgraph H of G, so that G\ H (or G — H) removes H and all edges incident
to any vertex in H. Examples of these three removals are given in Figure 3.17.

Figure 3.17. From left to right, K223\ v, K223\ e, and K23\ H. (These refer to the
same v, ¢, and H as labeled in Figure 3.16.)
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Figure 3.18. At left, K27273, and at right, K272’3.

We also have a notion of graph complement. This is not quite analogous to
the notion of set complement: First, G and its complement G have the same set of
vertices. Then, the complement of G is always taken relative to K, in the sense
that overlaying G and G produces K,,. To form G, we remove the edges of G from
K,, so that G has exactly the edges of K, that G itself does not have. Figure 3.18
shows an example. For an interactive example, see http://www.mathcove.net/
petersen/lessons/get-lesson?les=37; there, you draw some vertices/edges and the
graph complement is produced in real time.

3.7.2 How Are Graphs Useful?

Graphs are stand-ins for networks of many kinds: roads, cell-phone towers, friend-
ships, circuitry, neurons, species, etc. For example, the vertices might represent
cities, and the edges might represent roads between them. In such cases there are
often numbers marked on the edges, called weights, that indicate the distance be-
tween the relevant cities when traveling along the given road. Or, vertices may
represent cell-phone towers, with an edge present whenever two towers are able
to communicate with each other. One can find graphs of the internet backbone,
with vertices representing major servers and edges representing physical cables.
Vertices could represent neurons in the brain, with edges representing which ax-
ons talk to which dendrites. Evolutionary biologists use graphs to indicate which
species are evolutionary descendants of which others. Chemists use graphs to en-
code protein interactions. Teams in an informal Ultimate Frisbee tournament can
be represented by vertices, with edges between teams that play each other. The
edges can be directed after the tournament is over to indicate which team won
each game, and from the resulting directed graph one can sometimes deduce who
won the tournament. (In a directed graph, we write an edge as an ordered pair
e = (v1,v2) and draw it as an arrow —.) So far, these applications are simply
of graphs as models for other situations; mathematical theory is used in varying
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5
° '\.7
4
Figure 3.19. A graph to be stored.

amounts depending on the application, and we will see more applications of graph
theory in later chapters (when we know some theory to apply).

As you might expect, graphs are not stored in computers as the pictures we
draw. There are many ways of encoding graphs for computer use, but we will only
indicate three here. First, we can store a graph as a pair of lists, where the first list
is of the vertices and the second is of the edges as pairs of vertices. In this way,
the graph in Figure 3.19 could be stored as

{{1,2,3,4,5,6,7},{{1,3},{3,4},{2,4},{1,4},{1,4},{6,7} }}.

Second, we can store a graph as an adjacency matrix, where each column and row
corresponds to a vertex and each entry is the number of edges between the column
vertex and row vertex. Using the same numbering as in our vertex/edge list, the
graph in Figure 3.19 would have adjacency matrix

00124000
0001O0O0O0
1 001 00O
2110000
00 0O0O0OO0OQO
000O0O0O0°1
000O0O0OT1P0

(For more examples, see http://www.mathcove.net/petersen/lessons/get-lesson?
les=8; as you draw the graph vertex by vertex and edge by edge, this applet pro-
duces the corresponding adjacency matrix.) Finally, we could store a graph as a
list of lists, where each list consists of a vertex and all of its neighbors. In this case,
the graph in Figure 3.19 would be stored as

{{1,3,4,4},{2,4},{3,1,4},{4,1,1,2,3},{5},{6,7},{7,6}}.
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Here are a few more quickies.

1.
2.

Draw P, UCs.

What are K5\ v, K5 \ e, and Ks5? (Note that the symmetry of K5 means that it doesn’t
matter which vertex is chosen to be v or which edge is chosen to be e.)

Choose one of the graphs pictured in this chapter (other than the one in Figure 3.19)
and encode it using vertex/edge lists, as an adjacency matrix, and using vertex/adja-
cency lists.

3.8

Try This! More Graph Problems

These problems are about graph structure and isomorphism. GeoGebra files for
Figures 3.21, 3.22, 3.23, and 3.24 are available for your use at http:/www.
toroidalsnark.net/dmwdlinksfiles.html.

1.

If you stick a vertex in the middle of an (n — 1)-vertex cycle C,—; (where
n— 1 is at least three) and connect it to all vertices on the cycle, you obtain
the wheel graph, denoted W,,. (It has that extra vertex, see.) A few wheels
are shown in Figure 3.20. (Note that W, is also K4 but differently drawn than
in Figure 3.7.) Let n > 4. Find and prove a formula for the number of edges
of the wheel W,.

. Are the two graphs shown in Figure 3.21 isomorphic? If so, exhibit the iso-

morphism. If not, find a property that should be preserved by isomorphism
for which the two graphs differ.

. Let G be a graph with v vertices and e edges. In terms of v and e, how many

edges does G have?

Figure 3.20. Wheels Wy, Ws, and W.
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G B

Figure 3.21. Two potentially isomorphic ~ Figure 3.22. Two potentially nonisomor-
graphs. phic graphs.

4. Prove that Cs = Cs. Can any other cycle graph be isomorphic to its comple-
ment? Justify your answer with example(s) or proof.

5. Are the two graphs shown in Figure 3.22 isomorphic? If so, exhibit the iso-
morphism. If not, find a property that should be preserved by isomorphism
for which the two graphs differ.

6. Draw the seven nonisomorphic subgraphs of K3 and the 17 distinct sub-
graphs of K3.

7. Are the three graphs shown in Figure 3.23 isomorphic? (Are any two of
them isomorphic?) If so, exhibit the isomorphism. If not, find a property
that should be preserved by isomorphism for which the graphs differ.

8. Are the two graphs shown in Figure 3.24 isomorphic? If so, exhibit the iso-
morphism. If not, find a property that should be preserved by isomorphism
for which the two graphs differ.

Figure 3.23. Three unruly graphs.

Figure 3.24. Two pointy graphs.
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Figure 3.25. This 2-edge-colored K5 has no monochromatic triangle.

3.9 Ramseyness

Hey! You! Don’t read any further unless you have played the game in Section 3.3.3
and thought about the associated problems a lot. | mean it!

Hopefully you have discovered by coloring the edges of some complete graphs
that if you start with five dots, you cannot force a win or loss and may have a
draw, but that if you start with six dots, one player can always force the other to
complete a triangle in hir color. Let’s prove it! First, we will exhibit a Ks with a
draw; the colors in Figure 3.25 are black and teal. Now consider a single vertex
(any vertex will do) of K. It has degree 5, so one of the two colors (let’s say teal)
must eventually be used on at least three of those edges. (If only one or two of the
edges are teal, then the other four or three must be black and we could swap colors
globally.) This situation is shown at left in Figure 3.26. Now assume the teal player
makes no teal triangle, as otherwise we have a monochromatic triangle. Then each
of the three pairs of teal edges must eventually be connected by a black edge (see
Figure 3.26). But, ah! Those three black edges form a triangle. So if there is no
teal triangle, there must be a black triangle; therefore, one player will always be
forced to make a monochromatic triangle. (Here is the underlying structure of this
proof: We want to show that A or B is true, where A, B represent player must make
monochromatic triangle. Then if A is true the statement holds, so we prove that if
A is not true, B must be true.)

Figure 3.26. At least three edges from a vertex are teal; then we need to avoid a teal
triangle.
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Instead of thinking of this as a game, we can rephrase the situation: Any Kg that
has edges colored using exactly two colors must have a monochromatic triangle.
However, a 2-edge-colored K5 need not have a monochromatic triangle. Similarly,
neither a 2-edge-colored Ky nor a 2-edge-colored K3 necessarily has a monochro-
matic triangle. Therefore, six is the smallest number 7 such that a 2-edge-colored
K, must have a monochromatic triangle. In shorthand, we say R(3,3) = 6.

What?!? What wackiness is this? It’s Ramsey wackiness! The Ramsey number
R(k,m) is the smallest number n such that a 2-edge-colored K, must have either a
K;. of one color or a K,,, of the other color. In the case of R(3,3), we must have a
K3 in one color or the other, which we’ve already referred to as a monochromatic
triangle. Now read the fourth sentence of this paragraph aloud, twice. It’s a darned
complicated definition.

Relative to the infinitely many possibilities for £ and m, not many Ramsey
numbers are known. (There are upper and lower bounds for many of them.) More-
over, the idea of Ramsey numbers can be extended to using more than two colors
for the edges of Kj,; these are called multicolor Ramsey numbers. They are part of
an area of graph theory research (unsurprisingly) called Ramsey theory, which is
part of a larger area known as extremal graph theory.

Check Yourself

Please do both of these problems.
1. Whatis R(2,2)?

2. Given three particular numbers k,m, N, what are the two ways you could show that
R(k,m) # N?

3.10 Where to Go from Here

Did you find this chapter challenging? Exciting? Overwhelming? Fascinating?
You might feel more mathematically grounded if you reread Section 2 of the stu-
dent preface.

We are going to discuss certain aspects of graph theory in detail in Chapters 10—
13. But there is so much more! Graph theory is a large subdiscipline of mathe-
matics and is, in fact, one of the areas of mathematics in which the most papers are
published. Graphs can be applied anywhere that networks are useful: for example,
one modern research project revealed power relationships between committees of
the US Congress; another tracked genes involved in a particular cancer.
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You can take an undergraduate upper-level graph theory course at some insti-
tutions. Sometimes graph theory is half of the content in a combinatorics course
(Yes, that doesn’t make sense—why not call it Advanced Discrete Mathematics in
that case? But it’s often hard to change a course title), so ask instructors in your
locality about what is offered that will give you more graph theory. Graph the-
ory also plays a big role in computer science courses on networks and algorithms,
and the study of network flows is central in the optimization area of operations
research. Every computer algebra system (such as Maple, Mathematica, or Sage)
has its own way of entering/displaying/manipulating graphs; and, there are many
pieces of specialized graph theory software that have their own ways of storing
graphs. These are interesting both from a mathematical point of view of investi-
gating graphs and from a computer science point of view of understanding storing
and manipulating the structure of a graph.

Should you wish to learn more about graph theory in general, an excellent
place to start is Introduction to Graph Theory (which used to have the better title
Dots and Lines) by Richard J. Trudeau [24]. Another lovely book, though more
advanced, is Introduction to Graph Theory by Gary Chartrand and Ping Zhang [7].
Introduction to Graph Theory by Robin Wilson [25] is also readable. (Do you
notice a theme in these book titles?) Probably the definitive reference on graph
theory is Doug West’s Introduction to Graph Theory.

To learn more about Ramsey theory and other parts of extremal graph theory,
it is necessary to first understand general graph theory; at that point, you may
look for books with titles like Ramsey Theory and Extremal Graph Theory. If you
are interested in similar graph games, check out Chapter 20 in Pearls of Discrete
Mathematics by Martin Erickson.

There are two different directions that you can take with functions. They are
studied throughout higher mathematics in linear algebra, abstract algebra, topol-
ogy, and real analysis courses. The algebraic classes focus on functions that pre-
serve operations (as we introduced here), and the analytic classes focus on contin-
uous functions. Seriously, you can’t go wrong in learning more in both directions!
Because different aspects of functions are emphasized in different contexts, there
is no general source or text to suggest for reading more about functions as a whole.
Within this very text, we will address some function properties on infinite sets in
Chapter 15.

Creditwhere creditis due: Section 3.3.2 was inspired by [3]; Section 3.3.3 was inspired by
Josh Greene and Ari Turner. The exposition of Section 3.12 was inspired by [4]. Finally,
the problems in Section 3.8 were adapted from Richard Trudeau’s Dots and Lines [24].
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3.11 Chapter 3 Definitions

function: We call f: A — B a function
when, given any element a of the set A
as input, the function f outputs a unique
element f(a) =b € B.

map: As a noun, map is a synonym for
function; as a verb, it expresses the action
of a function, as in “f maps a to b.”

well defined: The property of a function
that if a; = ay, then f(al) = f(az).

domain: The set A from which function in-
puts are taken.

target: The set B from which outputs are se-
lected. Also called the target space.

image: The element f(a) is called the im-
age of the element a.

range: All the elements of the target space
that are mapped to by the function; that
is, for f: A — B, the range of f is
Range(f) ={f(a) [a € A}.

gipo: A thing that given input, produces
output, but is not necessarily well de-
fined. (Notice that every function is a
gipo, but not every gipo is a function.)

one-to-one: Whenever f(a;) = f(az),
then a; = a;. Every element of the target
space is mapped to at most once. Also
denoted 1-1.

injective: One-to-one.
into: One-to-one.

onto: For every b € B, there exists some
a € A such that f(a) = b. Every element
of the target space is mapped to at least
once.

surjective: Onto.
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Dijection: A function that is both one-to-
one and onto. Every element of the target
space is mapped to exactly once.

one-to-one correspondence: A bijection.

floor function: The floor function returns
the integer equal to or just less than the
input.

celling function: The ceiling function re-
turns the integer equal to or just greater
than the input.

vertex: A dot, usually drawn as e or e,
that can represent some object in a set of
items.

vertices: Plural of vertex.

edge: A pair of vertices e = {vi,12}
(sometimes abbreviated as vv;) that is
usually represented by a line or curve be-
tween the dots representing v; and v;.

graph: A pair G = (V,E), where V is a
set of vertices and E is a set of pairs of
vertices.

adjacent: Two vertices joined by an edge
are adjacent.

incident: An edge is incident to each of its
endpoint vertices.

neighbor: Any vertex adjacent to a vertex
v is a neighbor of v.

loop: An edge joining a vertex to itself.

multiple edge: More than one edge joining
the same two vertices.

multiplicity: The number of edges in a mul-
tiple edge.

degree: The number of edges that emanate
from a vertex.
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degree sequence: A list of the degrees of
the vertices in increasing order.

walk: A list of vertices alternating with
edges, with both the start and end of the
list vertices (not edges).

path: A walk where no vertices repeat.

cycle: A walk whose only repetition is the
first/last vertex.

length: The number of edges of a path or
cycle.

distance: The length of the shortest path
between two vertices.

connected: A graph in which any two ver-
tices are joined by some walk.

forest: A graph with no cycles.
tree: A connected graph with no cycles.
leaf: A vertex of degree 1.

simple graph: A graph that has no loops or
multiple edges.

complete graph: A graph where every ver-
tex is adjacent to every other vertex.

Dipartite graph: A graph whose vertices
can be separated into two piles, called
parts, with edges between the parts, and
no edges within either part.

complete bipartite graph: A bipartite graph
with all possible edges; that is, if the parts
are V1, V», then every vertex in V| is ad-
jacent to every vertex in V;.

wheel graph: If you stick a vertex in the
middle of an (n — 1)-vertex cycle C,_
(where n — 1 is at least three) and connect
it to all vertices on the cycle, you obtain
the wheel graph, denoted W,,.
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regular graph: A graph where all vertices
have the same degree.

Petersen graph:

The best and most awesome graph, fre-
quently a counterexample, named after
Peter Christian Julius Petersen (1839—
1910), who did more work outside of
graph theory than in it and who was not
the first to use the Petersen graph (appar-
ently Kempe was; see page 427). Don’t
spell it Peterson or Pedersen or Peterson
or Peterson.

isomorphic graphs: Two graphs G,H are
isomorphic if there exists a bijection ¢ :
V(G) — V(H) such that {v|,v,} is an
edge in G if and only if {@(v{),@(v2)}
is an edge in H.

isomorphism: A gipo ¢ : A — B that is well
defined, one-to-one, onto, and preserves
every operation defined on A (that is, if
(a1 x4 a2) = @(ar) xg ¢(az)). In other
words, an isomorphism is an operation-
preserving bijection.

subgraph: A subgraph H of a graph G
is a graph such that V(H) C V(G) and
E(H) C E(G).

graph union: For graphs G and G, (with
disjoint vertex sets), the graph G| U G»
is another graph G3 (not connected) with
V(G3) = V(G1)UV(G,) and E(G3) =
E(G]) UE(Gz).
graph component: An individual
nected piece of a graph.

con-
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graph complement: Let G have n ver- adjacency matrix: A matrix representing a

tices; to form G, we remove the edges graph, where each column and row cor-
of G from K,, so that G has exactly responds to a vertex and each entry is
the edges of K, that G itself does the number of edges between the column
not have. vertex and row vertex.

Ramsey number: The Ramsey number
weights: Numbers marked on the edges (or ~ R(k,m) is the smallest number n such

vertices) of a graph to indicate informa- that a 2-edge-colored K;, must have ei-
tion such as distance or traffic capacity ther a K of one color or a K, of the other
or population. color.

3.12 Bonus: Party Tricks

This is a classic problem: Mei-Ting and Ri Zhao had a dinner party and invited
four couples. Before sitting down at the table set for ten, there were formal intro-
ductions and people who did not know each other shook hands in greeting. After
indicating that everyone should sit, Mei-Ting announced, “I have just noticed that
no two of you shook hands the same number of times.” Dear reader, how many
times did Ri Zhao shake hands?

Pause. Any clue how to solve this problem? Think about it for at least one minute
before proceeding.

Solution. To solve this problem, we will start by modeling the situation as a graph.
Each of the ten dinner guests is a vertex, and two vertices are adjacent if (and only
if) the two dinner guests shook hands.

Pause. What are the possible degrees for the vertices in this graph? Think about
it for at least 30 seconds before proceeding.

Solution. For a given guest, there are nine possible other people with whom to
shake hands. (No one needs to shake hir own hand.) And the guests arrived as
couples, so no one needed to shake hands with hir partner; therefore, the maximum
degree of a vertex is 8. Someone might have known everyone already, so it is also
possible to have the minimum vertex degree of 0. Thus, the nine possibilities are
0,1,2,3,4,5,6,7,8. We know there are nine people who Mei-Ting believes shook
different numbers of hands. So, ignoring Mei-Ting’s vertex, there are nine vertices
with different degrees.

Consider the vertex of degree 8 and call the associated person Eight (and like-
wise with the other vertices). There is only one other person with whom Eight
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did not shake hands, so that person must be hir partner. We also know that the
vertex of degree 8 is not adjacent to the vertex of degree 0, so therefore Zero must
be the only person who did not shake hands with Eight. If we continue our rea-
soning in this fashion, we discover that Seven must be the partner of One because
Seven didn’t shake hands with two others; Zero is one of those two and One shook
hands with Eight, so One didn’t shake hands with Seven and must be Seven’s part-
ner. Keeping on, we see that Six must be partnered with Two, and Five must be
partnered with Three, and Four must be partnered with... hmm... oh, it must be
Mei-Ting. So Four must be Ri Zhao, as we had left Mei-Ting out of it all.

Now Mei-Ting and Ri Zhao have a less formal party. They simply invite some
friends so that there are ten people at their house; some hang out in the house itself
and others chat in the garden. Mei-Ting remarks that each person is friends with
at least five other people at the party.

Short activity:

1. Model this situation as a graph. What do the vertices represent? Fill in
the blank: two vertices are adjacent if and only if

2. What does Mei-Ting’s observation tell you about the degrees of the
vertices in the graph?

3. True or false (and explain): If there is always someone inside and al-
ways someone outside, then someone in the garden has a friend in the
house.

4. Generalize the party to having 2n guests, each of whom is friends with
at least n other guests. Describe your graphical model in this general
party case; if there is always someone inside and always someone out-
side, then is it true that someone in the garden has a friend in the house?
Explain.

3.13 Bonus 2: Counting with the Characteristic Function

The following seemingly silly function is ubiquitous in mathematics. Given a set
S and a subset A, the characteristic function xa : S — {0,1} is defined as

(s) = 1 ifseA,
XA =0 0 ifsgA.
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Pause. Here is a quickie exercise to make sure you understand this definition.
Let S ={0.5,1,1.5,2,2.5,3} and let A = {0.5,2,2.5}; evaluate x4(0.5), xa(1),
XA(I.S), and XA(3)

How can we use the characteristic function to count? Check this out: Consider
the power set of {1,2,...,n} (see page 30), and name it &7,. Also, consider the
set of all functions from {1,2,...,n} to {0, 1} and call that set .7%,,.

Pause. What the heck? The power set is one thing, but the set of functions from
one set to another? Wack. List four different elements of .%,. Then compute |.%,|.
If you have trouble with that last bit, go to Section 3.3.1 and look again at the
problems there.

Now, we are going to do something wackier still. Define a function F : &2, —
Fn by F(A) = xa. This makes sense because F takes a subset as input and returns
a function as output.

Short activity:
1. How does |-%,| compare to |Z2,|?

2. Forget the previous question. Instead, prove that F is a bijection; recall
that this means you have to show that F' is one-to-one and onto.

3. Explain how this gives yet another proof of Theorem 1.5.2.

This is an early example of a combinatorial theme: instead of counting some-
thing directly, exhibit a bijection f and count f(something).

3.14 Bonus Check-Yourself Problems

Solutions to these problems appear starting on page 598. Those solutions that model a
formal write-up (such as one might hand in for homework) are to Problems 4, 6, and 9.

1. Let S = {s1,82,...,8,}. How many

functions are there with domain Z3 and 6 1 a b
target S? Of those functions, how many 5 9 c 7
are one-to-one? How many are onto?

2. Draw all connected 3-regular graphs 4 3 e /
with four vertices.

3. Are the two graphs in Figure 3.27 iso- Figure 3.27. Two potentially isomor-

morphic? Justify your response. phic graphs.

N\S
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Figure 3.28. Some finger-finger graphs: Fi 4, 22, F3 5, and F7 3.

Figure 3.29. Who is who here?

grows n fingers; see Figure 3.28. Con-
jecture and prove formulas for the num-
ber of vertices and the number of edges
of a finger-finger graph.

4. Is the function f : Z — Z defined by 7. What can you say about the number of
f(n) = [sin(n)] a one-to-one function? vertices of a 3-regular graph?
Prove or disprove. 8. The following statement is true: any cy-
] >
5.Is it possible to draw a graph with cle C”. Wzth "= k has comp le.ment G
. . containing a triangle. Determine k and
six vertices of degrees 2, 2, 3, 3, 4, rove the statement
and 4? If so, draw one. If not, explain p i ’
why not. 9. Consider the map g : (N x N)'—> N de-
fined by g((a,b)) = ab. Is this one-to-
6. A finger-finger graph is denoted by F,, , one? Onto? Give proofs.
and has m fingers, from each of which 10, Shown in Figure 3.29 are four infinite

graphs in pairs A,B and C,D. One of
these pairs is isomorphic and the other
nonisomorphic. Which is which? Jus-
tify your response.

3.15 Problems about Graphs and Functions

Some of the graph theory problems may seem at first like busywork rather than problems
that enrich your cognition. However, a lot of gruntwork is necessary in order to develop
good intuition about graphs. It’s easy to be misled into thinking that the apparent simplicity
of graphs indicates that they are straightforward to understand.
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1. Try these three minis:

(a) Draw the union of K4 and Cs.

(b) How many vertices and how many
edges does the Petersen graph have?

(c) Draw W.

2. How many simple 3-regular graphs are
there with five vertices? Prove that you
have found them all.

3. Letf:{2,4,6,8,10} — {1,3,5,7,9} be
an onto function. Prove that f is one-to-
one.

4. Give an example of a graph that is 4-
regular but neither complete nor com-
plete bipartite. (While you’re at it,
give examples of 4-regular complete
and complete bipartite graphs.)

5. Prove that f : W — Z defined by
flk)= L%J (—1)¥ is a bijection.
6. Find all ...

(a) ... cycles that are also complete
graphs.

(b) ... cycles that are also wheels.

(c) ... wheels that are also complete
graphs.

(d) ... cycles that are also paths.

(e) ... paths that are also complete
graphs.

In each case, explain why your list is
complete.

7.Let S = {s1,82,...,8,}. How many
functions are there with domain S and
target Z,? Of those functions, how
many are one-to-one? How many are
onto?

8. Draw all nonisomorphic simple graphs
with four vertices. (There are 11.) Ver-
ify that the handshaking lemma holds
for each graph.

9.

10.

11.

12.

13.

14.

15.

16.
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Do it again for graphs with five vertices.
How many graphs did you find?

Examine Figure 3.11. Either show
that the two graphs are isomorphic
(by giving a bijection between their
vertex labels that preserves adjacency)
or explain why they are not isomor-
phic.  Repeat this process with the
two graphs in Figure 3.12. (Geo-
Gebra files of Figures 3.11 and 3.12
are available for your playing plea-
sure at http://www.toroidalsnark.net/
dmwdlinksfiles.html.)

Consider the Cartesian product A X B,
where A,B are finite nonempty sets,
each with cardinality greater than 1.
There are two functions with domain
A X B, called projections, with map-
ping rules p(a,b) = a and p;(a,b) = b.
What is the target space of p;? Of pp?
Are either of py, p» one-to-one? Onto?
LetA=1{0,1,2,3,4} x{0,1,2},letB=
{n | n is a positive factor of 144}, and
let f: A — B with f(a;,a2) =24 - 3%,
Is f one-to-one? Onto?

Perhaps keeping pigeons in mind, show
that if a simple graph has at least two
vertices, then two of its vertices must
have the same degree.

Draw a graph with degree sequence
(1,1,2,2). Now draw one with de-
gree sequence (1,1,1,1,1,1). Can you
find more graphs with these degree se-
quences?

Think of at least two different proofs
that K, has "<"; D edges.

Consider a cube, and make a graph from
it by assigning a vertex to each corner of

the cube and an edge to each edge of the
cube.
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17.

18.

19.

20.

21.

(a) What are all the possible distances
between two distinct vertices of the
cube?

(b) How many different length-3 paths
go from one corner of the cube to the
opposite corner? Why?

(c) What is the average distance be-
tween any two distinct vertices of
the cube? Explain.

The complete bipartite graph K, , ...
(a) ... has m+n vertices. Prove it.

(b) ... has m-n edges. Prove it.

How many vertices and edges does the
complete tripartite graph K, , , have?
Prove your conjecture.

To what graph is Ks \ K3 isomorphic?
How about Ks \ K3? (Any conjectures?)
The star graph on n vertices has one ver-
tex adjacent to all other vertices (and
no other adjacencies). Conjecture and
prove a formula for the number of edges
of the star graph on n vertices.

Two labeled infinite graphs are shown
in Figure 3.30.

4 0 4 8 12 16
-6 -2 2 6 10 14
-4 -3 0 1 4 5
-5 -2 -1 2 3 6

Figure 3.30. Two possibly isomorphic
infinite graphs.

Show that they are isomorphic by defin-
ing a gipo between them and verifying

22.

23.

24.

25.

26.
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that the gipo is an isomorphism, or show
that they are not isomorphic by finding
a property that holds for one but not the
other. (Note that if you want to show
that the graphs are isomorphic, it will
not be enough to just give a relabeling—
that would only take care of finitely
many vertices. You would need to give
a rule for relabeling and show that this
rule satisfies the properties of an iso-
morphism.)

Notice that many of the previous prob-
lems involve counting. Where did you
use the sum principle? The product
principle?

Some of the previous problems asked
for proofs. What proof techniques did
you use? Contradiction? Direct proof?

Encode K5 as vertex/edge lists, as ver-
tex/adjacency lists, and as an adjacency
matrix. Do the same with Ps. How do
the different storage methods compare
for these two graphs? Does this suggest
any general guidelines to you?

We showed that R(3,3) =6 in Sec-
tion 3.9. Certainly, it would be awe-
some if R(4,4) were easy to guess—
show that R(4,4) = 8. (It turns out that
R(4,4) = 18.) You might find it helpful
to experiment with different 2-colorings
of the edges of various complete graphs
at http://demonstrations.wolfram.com/
GraphsAndTheirComplements/.

Check out the graph G shown in Fig-
ure 3.31:

(a) Draw G\ v4 (a.k.a. G —vy).
(b) Now draw G\ e (a.k.a. G —e).
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27.

28.

29.

30.

31.

32.

33.

V1 V2 V3

V4

Figure 3.31. I'm G!

Consider g : {0,9,8,7,6,5} — {4,3,
2,1}. Is it possible for g to be one-to-
one? Onto?

Draw a connected graph with six ver-

tices such that at least two vertices have

degree 3 and at least one vertex has de-

gree 1.

Delete things!

(a) To what graph is K}, \ v isomorphic?
Explain.

(b) To what graph is C, \ e isomorphic?
Explain.

Let A {2,4,6,8,10,12,14,16,18,

20} and let B={—1,0,1}.

(a) How many functions can be defined
f A — B? How many of those are
one-to-one?

(b) How many functions can be defined
f: B — A? How many of those are
one-to-one?

Consider a function f defined on the set
of finite graphs ¢ by f(G) = |V(G)|.
What is the range of f?

What is the length of the shortest walk
you can take on the Petersen graph?
What is the length of the longest path in
the Petersen graph? Is K3 a subgraph of
the Petersen graph? Explain.

LetX ={1,2,3,4,5} and letY = {1,2,
3,4,5,6}.

34.

35.

36.

37.

38.

39.
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(a) How many one-to-one functions are
there from X to Y'?

(b) How many one-to-one functions f :
Y — X are there?

(c) How many injective functions are
there from X — X?

True or false: any two graphs with the
same degree sequence are isomorphic.
If true, provide proof; if false, provide a
counterexample.

How many edges does a forest with n
trees and v vertices (and v; vertices in
the ith tree) have?

Floors:

(a) Let a function from the real numbers
to the integers be defined by f(x) =
|x]. Is f one-to-one? Is f onto?
Explain why or why not in each
case.

(b) Let f : Z — Z be defined by f(x) =
|x]. Is f one-to-one? Is f onto?
Explain why or why not in each
case.

Ceilings:

(a) Let a function from the real num-
bers to the integers be defined by
¢(x) = [x—2]. Is ¢ one-to-one? Is
¢ onto? Explain why or why not in
each case.

(b) Let ¢ : Z — Z be defined by ¢(x) =
[x+2]. Is ¢ a bijection?

Consider the map f : W — N defined

by f(x) =2x+ 1. Forevery n € N, there

exists some w € W (letw=n—1). Does
this mean that f is onto? Explain.

Consider the zero map z : A — 0, de-

fined by z(a) = 0. Under what condi-

tions is z one-to-one? Onto? A bijec-
tion?
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40. Consider the Cartesian product A x B, (a,bp) and ir(b) = (ap,b). What is the
where A,B are finite nonempty sets, domain of i1? Of i? How about the tar-
each with cardinality greater than 1. get space of i; and ip? Are either of iy, i
There are two functions called in- one-to-one? Onto?

clusions, with mapping rules i(a) =

3.16 Instructor Notes

It is tough for students to absorb all the material in this chapter well over a single week of
class, so you may wish to tailor your emphasis or expectations accordingly.

Assign the students to read Sections 3.1 and 3.2 and do the Check Yourself problems
as preparation for the week. Start the first class of the week by having them work on the
problems in Section 3.3. Collectively, these comprise a full class—so ask the students to
work for a limited amount of time on each subsection, perhaps 10 minutes for Section 3.3.1
(students have a tendency to lollygag here) and 15 minutes for Section 3.3.2. Then, have
students describe their results and take questions over the reading. Be sure to leave 10-15
minutes in class to describe the Section 3.3.3 dot game, have two students play it publicly
at the front of the room, let the students loose to explore, and compile conjectures from
the class.

As preparation for the next class meeting, assign students to think more about the
dot game, read Sections 3.4-3.7, and do the associated Check Yourself problems. They
often have trouble with the categorical notion of isomorphism, so it can be productive
to begin class with a short lecture on isomorphisms in general that specializes to graph
isomorphisms. While asking for questions over the reading, ask the students also what
progress they have made in thinking about the dot game. It is likely that a student will
produce a draw for the five-dot game, and possible that a student will contribute reasoning
for why a win/loss is forced for the six-dot game. Remaining time can be used to work on
problems from Section 3.8. Assign the students to read Section 3.9 as preparation for the
third class.

A great warmup for the third class of the week is to interactively prove that every tree
(with more than one vertex) has a leaf. (Besides, later in the course students will need this
result.) Start by writing this theorem on the board and asking the students what it means.
(If your classroom has a window, some students may puzzledly point outdoors; they need
to recall what trees and leaves are in a graph-theoretic context.) Encourage students to
contribute ideas for the proof and for what proof technique to use. They will often give
the idea that one should walk along the graph until one runs into a leaf but be unable to
formalize this into a proof by contradiction; help them realize that they cannot guarantee
that they will run into a leaf without using the theorem they are trying to prove. Once they
are able to conceptualize that an inability to find a leaf corresponds to walking along some
cycle, they are usually able to close the deal on the proof.
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It is also a good idea to review the proof that a win/loss is forced for the six-dot game
if this did not arise in the previous class. Remaining class time would be used excellently
by students working on and presenting solutions to the problems in Section 3.8. Use of
GeoGebra will speed up their work on the visual problems—the author has GeoGebra files
premade for these exercises, available at http://www.toroidalsnark.net/dmwdlinksfiles.
html.

Finally, be aware that students may find the problems in Section 3.15 significantly
harder than those in Chapters 1 and 2 because they use new terminology in conjunction
with practicing earlier proof techniques. In addition, students are likely to still be pro-
cessing concepts from earlier chapters. They will continue to work with these ideas over
the semester. Some less challenging, but still proof-oriented, problems are presented in
Section TI.2 for the purposes of supplementation.
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Chapter 4 ¥ ¢

Induction

4.1 Introduction and Summary

This proof technique is more complicated than the previous techniques, so it merits
a chapter of its own. But there’s only so much to say about mathematical induction,
and then you just have to practice this proof technique for yourself. The basic idea
is to reduce a theorem to a smaller case of the same theorem, and then to a smaller
case, and so on to a small case you can deal with manually. Example 4.2.4 is
particularly important, first because it shows why one must reduce to a previously
known case (rather than building up from a known case), and second because it is
a result we will use regularly in Chapters 10—13.

Unlike the previous topics addressed in this book, there are no everyday ap-
plications of induction. It instead applies to most of mathematics and computer
sciences—as a proof technique, it arises frequently in each field at all levels.

4.2 Induction

We will begin with an example of a proof by induction using only basic arithmetic,
then describe induction in general, and then give an extended example of a proof
by induction about sets.

Example 4.2.1. Do you believe that if n > 0, then 2" > n? Let’s check to see
whether this statement holds for a few values of n.

When n = 1, we see that 2! =2, and 2 > 1.

When n = 2, we see that 2% = 4, and 4 > 2.

When n = 423, we see that 2423 = 14,134,776,518,227,074,636,666,380,005,
943,348,126,619,871,175,004,951,664,972,849,610,340,958,208 and that is cer-
tainly greater than 423.

Yes, the statement if n > 0, then 2" > n seems to be true. We have checked it
for small values of n, which are known as base cases.

103
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To prove the statement, we will first suppose that when # is less than or equal
to some indeterminate k (but greater than 0), 2" > n. This is called the inductive
hypothesis.

If we can show that this assumption allows us to prove that 257! > k+ 1, then
we will have proved that 2" > n for a/l n > 0. This process is known as the inductive
step. We will complete it as follows.

Consider 2Kt This can be rewritten as 25t = 2.2%. We note that k < k, so
the inductive hypothesis holds and we can use the fact that 2% > k. Multiplying this
inequality by 2, we have 2-2% > 2. k. We can rewrite again so that 2 -k = k +k,
and as long as k > 1, we have k+ k > k+ 1. Stringing this work together, we
now see that when k > 1,251 > k4 1, which is what we wanted to prove. (Well,
except that we wanted k > 0. That’s okay, because we checked the case forn =1
separately.)

Notice what we did in the inductive step: The inductive hypothesis covers val-
ues of the index up to k, so we look at the index-(k + 1) version of the statement.
We manipulate the index-(k + 1) statement so that we have found the index-k state-
ment within it. Then, we apply the base case and the inductive hypothesis to show
that the index-(k + 1) version of the statement is true. (We will often use index
values lower than &, such as k — 1 or k — 2, as well.)

So what is going on with inductive proof? First, we want to prove some state-
ment that has a variable » in it, and that variable takes values in N. That’s pretty
important—induction only works when the statement you’re trying to prove is in-
dexed by the natural numbers. (We’ll see why in a page or two.) Then, a proof by
induction has three parts.

How to do a proof by induction:

¥ Base case: Check to make sure that whatever you want to prove holds
for small natural numbers, like 1, 2, or 3.

¥ Inductive hypothesis: Assume that whatever you want to prove is true,
as long as the variable in the statement is smaller than or equal to &;
here, k is a specific (but unknown) value.

¥ Inductive step: Consider the statement with k + 1 as the variable. Use
your knowledge that the statement is true when the variable is less than
or equal to k in order to show that it’s still true for k+ 1. (That is, use
the base case(s) and inductive hypothesis.)
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Figure 4.1. The left diagrams show (AJUAU---UA,) for n = 2,3, whereas the right
diagrams show A1 NA,N---NA, forn=2,3.

The inductive step shows that given any upper limit on #n, that upper limit can
be increased by one. Thus we can increase the possible values of n repeatedly to
see that our statement is true for all n € N.

We turn now to a statement that uses sets rather than numbers. You have al-
ready proven the following theorem in the special case of just two sets—it is one
of DeMorgan’s laws—and here we extend the law to n sets.

Proof: We will prove the first of DeMorgan’s Laws here, and leave the other as
an exercise (Problem 8 in Section 4.12).

(Base case) We begin by checking n =2 and n = 3, using Figure 4.1. You can see
that the teal-shaded areas on the left are the same as the multiply-hatched areas
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on the right. Unfortunately, Venn diagrams become increasingly difficult to draw
and interpret as the number of sets increases, and there is no reasonable way to use
Venn diagrams for an indeterminate number of sets. We will need to use symbols
in order to generalize.

In symbols, our base cases are (A] UA;) =A| NA; and (A UA;UA3) =AM
Ay NAs.
(Inductive hypothesis) As long as n < k, (Aj UA2U---UA,) =ANAN...NA,.

(Inductive step) Consider (Aj UAy U --- UAgr1). We can also express this as
(AjUA U - UA;y UAg41), and we can add some parentheses to write
((AjUAU---UA;) UAg+1). If we rename the combined set in the new paren-
theses as (A UA,U---UAy) = B, then (A UAy U+ - UAg 1) becomes (BUAg ).
That’s just two sets, so our Venn-diagram-proved base case tells us that (BUA )
= BNAj, 1. Let us resubstitute for B in order to obtain (A UA, U---UA;) NAx .
We can now use the inductive hypothesis on (A} UA, U---UAy) because there are
only k sets involved in that expression. Therefore, (Aj UAyU---UAr) NAgp =
(AiNAyN---NAg) NAgy. Linking all of our statements together, we have that
(AjUALU---UAry1) =A1NAZN - NA N ARy

Because we have shown that (A UA, U---UA,) =A NA;N---NA, forn < k
implies that (Aj UA;U---UAgy ) = AjNAyN---NA; NAr 1, we know that
(AjUAU---UA,) =A1NAyN---NA, for all n (including those larger than k).[]

It’s time for another example.

Example 4.2.3. We have the sets {1},{1,2},{1,2,3},...{1,2,3,...,k},... and so
on. We want to show that the set of the first n natural numbers has 2" subsets. (Yes,
we already know this as a special case of Theorem 1.5.2. But it’s always good to
have more than one proof of a theorem!)

(Base case) The subsets of {1} are {} and {1}. There are two of them, which is 2!
Excellent.

(We’re done, but if you feel insecure, note that the subsets of {1,2} are {},
{1}, {2}, {1,2}, and there are four of them, or 22.)

(Inductive hypothesis) We assume that a set containing the first n counting numbers
has 2" subsets, as long as n < k.

(Inductive step) Examine the set {1,2,...,k+ 1}. We would like to show that it has
2¢+1 subsets. We need to understand how the subsets of {1,2,...,k+ 1} are related
to the subsets of {1,2,...,k}. (If there’s no relationship, we can’t use induction.)
Every subset of {1,2,...,k+ 1} has one of two properties: either (a) k+ 1 is not an
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Figure 4.2. The tree with one vertex (left) and every single tree with two vertices, all one
of them (right).

element or (b) k+ 1 is an element. All the subsets with property (a) are also subsets
of {1,2,...,k}, and so we know there are 2* of them by the inductive hypothesis.
If we take each of the property (a) subsets and stick the element k+ 1 in, we get
all the subsets with property (b). So there are the same number of them, and there
are 2 subsets with property (b). In total, we have 2% + 2% = 2.2k = 2k+1 gybsets,
and we’re done.

Here’s the important example promised in Section 4.1.

Example 4.2.4. We will prove using induction that any tree with n vertices has
n— 1 edges. (Recall that a tree is a connected graph with no cycles. It looks kind
of like a tree in the sense that it branches.)

(Base case) We exhibit every tree with n = 1,2 vertices in Figure 4.2. Notice that a
tree with one vertex has zero edges and that a tree with two vertices has one edge,
in accordance with the desired result.

(Inductive hypothesis) For any n < k, we assume that any tree with n vertices has
n—1 edges.

(Inductive step) Consider some tree, any tree really, with k4 1 vertices. We would
like to show that it has k edges. Close your eyes, stick out your hand, and grab
an edge of the tree; hang the edge over a nail, and you’ll have something like
Figure 4.3. Let’s call the tree T and the chosen edge e so that we can remove it
by considering T \ e. Notice that 7'\ e = S| US,, where S and S, are the two
subtrees shown in Figure 4.3. Also notice that S and S, are trees themselves, and

Figure 4.3. Choosing an edge of a tree separates it into two subtrees.
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each has fewer than k + 1 vertices, so that [V (S})| < kand |V (S2)| < k. Hey! That
means we can apply the inductive hypothesis to S| and S;! Doing so tells us that
|E(S1)| = |V(S1)|— 1 and |E(S>)| = |V (S2)| — 1. Now consider S; US,. By the
sum principle, |V (S1US2)| = [V(S1)|+|V(S2)| = k+ 1. Likewise, |E(S; US>)|
— E(S1)| + |E(S2)| = ([V($)] = )+ (V(S2)| 1) = (k+1) =2 = k— 1. The
relationship between S; U S, and T is that 7' has one more edge... so put it back,
showing that |E(T)| = |[E(S1 US2)|+1=(k—1)+1 = k. Awesome. We’re done.

Often, induction is presented as like climbing a ladder. A base case is like
getting onto the ladder, near the bottom. The inductive hypothesis is like assuming
you can get to the kth rung. Crucially, the inductive step tells you how to climb
from the kth rung to the (k+ 1)st rung. After all, what do you need to know in
order to climb a ladder? You need to know how to get on and how to get from
one rung to the next. That’ll take you as high as you need to go. The fact that you
know how to get from rung k to rung k4 1 means you can insert any values you
like for k and you can get to (let’s say) rung 10 by going rung 1 to rung 2, rung 2
to rung 3, rung 3 to rung 4, rung 4 to rung 5, rung 5 to rung 6, rung 6 to rung 7,
rung 7 to rung 8, rung 8 to rung 9, and rung 9 to rung 10.

There’s only one problem with this analogy. (Okay, there might be more than
one problem. But there’s one big problem.) It only works for simple things, like
Example 4.2.3 above. What happens if there’s more than one way to get from
rung k to rung k + 1? Or worse, suppose there are lots of different interpretations
of the statement to be proved that all are described by the positive integer k? An
example here would be all the internal computer networks that have five hubs
and some number of channels connecting them. There are lots of ways to take a
network with five hubs and create one with six hubs... way too many ways....

The correction to the ladder analogy is to think of the ladder as branching at
every rung. And it doesn’t just branch into two ladder paths, but a lot of ladder
paths. And it happens at every rung, so that there are bunches of rungs at each
level of the ladder. It’s hard to imagine what that would look like, let alone how
one would decide how to climb such a ladder. (A simplified version is shown in
Figure 4.4.) Luckily, there’s a way out of this problem.

When we do proofs by induction, we don’t build up from the & case to the k41
case. What we do in practice is start with the k+ 1 case and find a k case from
which it came. So instead of climbing up from a k-level rung to a (k + 1)-level
rung, we take some (k+ 1)-level rung and look just below it to see the k-level rung
(or a (k— 1)-level rung, etc.). That’s much easier. And then, in order to climb to a
particular spot on our multi-branching ladder, we mark that spot, look downwards
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Figure 4.4. An ordinary ladder (left) and a simplified branching ladder (right).

to see what sequence of rungs leads to it, and use that sequence to climb to our
particular spot. So an induction proof, in ladder terms, looks like this:

(Base case) Make sure that we can get onto the ladder.

(Induction hypothesis) Assume that if we happen to be on a k-level rung, we know
how we got there.

(Induction step) From a (k + 1)-level rung, figure out how to get back to a k-level
(or lower) rung, so we’ll know where we are.

This tells us why induction works for statements indexed by N only, not for
those indexed by Z or other sets. Induction tells us how to climb down and up
a ladder, but we can only climb down to a base case—not to arbitrary negative
values of the index.

Finally, a note on writing: Every mathematician has slightly different pref-
erences about how proofs by induction should be written. As a beginning proof
writer, you should follow the format given here until you can consistently write
correct proofs by induction. Then you can loosen up a bit, make your exposition
more brief, and allow your own voice to come through.

4,2.1 Summation Notation

It can get pretty tiring to write out long sums, so we use compact notation for
them. (We bring it up now because many proofs about sums use induction.) For
example,weturn 1 +1+1+14+1+141+1+1into Z?:l 1. This can be read as,
“Add, from 1 to 9, the number 1.” Of course, the result is 9. It is more common to
involve variables, as with Z;Ll (j—2)=—1+0+1+2 or with 2323(—1)”5 =
I-14+1-1+1.
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Summation notation always has three parts:

1. The summation sign Y.

2. The function to be summed (above, this was 1 in the first example and

(j — 2) in the second example); the function’s variable is indicated in a
subscript to the summation sign (in the examples above, the variable was j).

. The index set, which can be a particular range of numbers (such as 3 to 8) or
an indefinite range of numbers (such as 2 to n) or a set of elements (such as
the vertices of a graph). If the index set is a set of elements, it is indicated in
a subscript of the summation sign; if it is a range of numbers, the smallest
number is indicated in a subscript and the largest number is indicated in a

superscript of the summation sign.

n
The in-a-paragraph compact }j_,, is usually written by hand as Z .
j=m
Here are a few other instances of summation notation.

Example 4.2.5. Let f be a function whose domain includes N. Then
7
Y f() = F)+f(2)+ f3) + f(4) + f(5) + f(6) + f(7).
j=1

The sum of the first n natural numbers, except for 1, is

n
Y i=2+43+4++n
j=2
The sum of the degrees of the vertices of K3 (a triangle) is

24+2+42= Z deg(v).
VGV(K3)

The sum of the squares of the integers is

Y = 436+254+16+9+4+1+0+1+4+9+16+25+36+--
keZ

And, here is a proof by induction using summation notation.

Example 4.2.6. Let us prove that Y}_, 2j = n+n*.
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(Base case) When n = 1, we have 2}:1 2j=2-1land 1 + 12 = 2, so the statement
is true. It’s a little bit weird to compute sums without having any actual addition,
so let’s check for n =2 as well: Z?Zl 2j=2+4=6,and 2+ 2% = 6. That’s better.

(Inductive hypothesis) We assume that when n < k, 2;?:1 2j=n+n’

(Inductive step) Consider Z’J‘ii 2j. (What are we trying to show? Plug k+ 1 in forn
in our inductive hypothesis to see what we seek.) We will separate out the last term
by writing Z’J‘ii 2j= Z’;zl 2j+2(k+1). Now we can use the inductive hypothesis
on Zl;:1 2j and substitute, getting Z/j‘-:l 2j+2(k+1)=k+k*>+2(k+1). Algebra
shows that k + k> 4 2(k+ 1) = k? + 3k +2 = k+ 1 + k> + 2k + 1, which factors to
(k4 1)+ (k+ 1)2, and putting it all together we see that Z’]‘i} 2j=(k+ 1)+ (k+
1)2—the result we desired.

4.2.2 Induction Types and Styles

You may notice that other books make a distinction between plain old induction
and strong induction. It turns out that they are logically equivalent, so we will use
whichever form of induction we please and just call it “induction.”

Another thing: while in this book we do our proofs by induction full out, in
more advanced texts and mathematics papers it is rare that the inductive hypoth-
esis will be explicitly stated and sometimes the base case is not mentioned. It is
expected that the reader can state the inductive hypothesis for hirself. Certainly
the writer has checked appropriate base cases, but it is also expected that the reader
will check base cases for hirself if ze has any doubt.

Check Yourself

These simpler problems will prepare you for the challenges that lie ahead.

1. If the statement you want to prove is made in terms of 7, should your inductive step
be done using n or using k (or some other variable)?
2. Prove by induction that the path graph P, has n — 1 edges.

3. Write 2! +4!46!+ 8!+ 10! in summation notation. (Knowing what 2!,4! 6!, etc.
means is not necessary for completing this problem.)

4. Write ¥5_ 25 out in full.

5. How is Z?:l j? — j related to Z‘}zljz — j? Try writing ):;:1 j? — j in terms of
Z‘}Zl j* — j. More generally, how is 23:19( J) related to Zj»:lq( J)? And even
more generally, how is ):];i} q(j) related to ZIJ‘»ZI q(j)?
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Figure 4.5. Some mysterious dots.

4.3 Try This! Induction

It’s time to practice induction for yourself (and with others). These problems vary
substantially in difficulty—just so you’re warned.

1.

The star graph on n vertices has one vertex adjacent to all other vertices (and
no other edges). Show, using induction, that the star graph on n vertices has
n—1 edges.

This problem is about adding the odd numbers; consider in particular 1 +
34547 +-+(2n—1).

(a) Write the above expression in summation notation.

(b) What does Figure 4.5 have to do with this problem?

(c) Find a formula for the sum you rewrote in part (a).

(d) Now prove by induction that your formula is correct.

Prove that Y,y () deg(v) = 2|E(G)|, using induction. (In case you did not
recognize this expression, it is the handshaking lemmal!)

Show that if a letter requires postage of more than seven cents, one can apply
exact postage using only three-cent and five-cent stamps. (Suggestion: use
induction!)

. Trees are the focus of this problem.

(a) Draw a tree that has nine vertices, and label the vertices.
(b) Redraw the tree so that it is clear that the tree is bipartite.

(c) Mark the bipartitely drawn tree so that it is a tree with eight vertices
connected to a tree with one vertex.

(d) Mark (another copy of) the bipartitely drawn tree so that it is a tree
with five vertices connected to a tree with four vertices.

(e) Show by induction that every tree is bipartite.
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4.4 More Examples
Here are three final examples of induction, two numerical and one geometric.

Example 4.4.1. Let us show that if n > 1, then 3" > 3n.

(Base case) When n = 2, we see that 32 =9, and 9 > 6 =3-2.

(Inductive hypothesis) For any 2 < n <k, 3" > 3n.

(Inductive step) Consider the case n = k+ 1. We may rewrite 3k+1 a9 3. 3%, By
the inductive hypothesis, 3% > 3k, 50 3-3K > 3. 3k. Now, 3-3k = 9% = 3k + 6k =
3k+34 (6k—3) > 3k+3 =3(k+1). We know that 6k —3 > 0 because k > 2.
Combining the above statements, we have 37! > 3(k+ 1) as desired.

Example 4.4.2. We will prove by induction that for n > 2, 2" <21 —2n=1 2

(Base case) Because we are constrained to n > 2, we will examine the base case of
n=2. Weknow 2> =4 and 2°> — 2! —2 =8 —2 -2 = 4; because 4 < 4, all is well
with the base case.

(Inductive hypothesis) For any n < k, 2" < ol _on=1_ o,

(Inductive step) We would like to show that 2Kt! < 2k+2 _2k _ 2 Consider the left-
hand side of the statement. We know that 2! = 2. 2% The inductive hypothesis
applies to that 2, so we have 28! = 2.2k < 2. (2k1 —2k=1 _2). Multiplying
out gives the expression 2t2 — 25 — 4. Now... that’s not far off from what we
want to prove! Check this out—we know that —4 < —4 +2 = —2. Therefore,
R+ < k2 ok 4 < 2k+2 _ 2k _ 2 and we’re done.

The trick used in Example 4.4.2, seen regularly in mathematics, is that ifa < b
then ¢ +a < ¢+ b. For that matter, it is also true that if « < b and d < e, then
a+d<b+e.

Example 4.4.3. Start with a circle and choose any n > 3 points on it. Now join con-
secutive points with line segments to form a polygon with n sides (see Figure 4.6).

Figure 4.6. Forming a polygon inside a circle using n = 8 points on the circle.
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Figure 4.7. An indeterminate number k + 1 of points are chosen on a circle, as indicated
by the dotted lines (left). Consider the polygon formed by & of them (right).

We claim that the sum of the interior angles of this polygon is (n —2) - 180°, no
matter which n points are chosen on the circle. Induction says...

(Base case) Let n = 3. Then the polygon is a triangle, and every triangle has interior
angle sum 180°.

(Inductive hypothesis) A polygon formed by any 3 < n < k points on a circle has
interior angle sum (n—2) - 180°.

(Inductive step) Pick any k -+ 1 points on a circle. We would like to show that the
interior angle sum of the polygon formed by these points is (k—1)-180°. To reduce
to the case of k points so we can use the inductive hypothesis, pretend one of the
k+ 1 chosen points isn’t there and look at the polygon formed by the k other points;
see Figure 4.7. The inductive hypothesis applies to this polygon, so it has interior
angle sum (k —2)-180°. If we glue on the triangle formed by the pretend-it’s-
not-there point and the two points next to it on the circle, then we get our original
polygon. The sum of the interior angles of the original polygon is the sum of the
interior angles of the triangle (180°) plus the sum of the interior angles of the k-
point polygon ((k—2) - 180°), so we have 180° + (k—2)-180° = (k—1)-180° as
desired.

Check Yourself

Doing these exercises will assure that you understand the ideas behind these examples.

1. Use direct proof to show that 2" < 272 45,

2. Show, by induction, that a polygon formed by n arbitrarily chosen points on a circle
has exactly n edges.
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Figure 4.8. A single duck is grey. Well, technically it is a Blue Swedish duck, but Blue
Swedish ducks are slate grey.

4.5 The Best Inducktion Proof Ever

Hopefully you are starting to feel like you are getting the hang of induction. This
proof is for the consideration of advanced induction studiers; it is subtle in its
loveliness.

Theorem 4.5.1. All ducks are grey.

Proof: In order to prove the theorem by inducktion, we must restate it so that it
has an index in the natural numbers. A/l ducks are grey is equivalent to saying A/l
ducks in a set of n ducks are the same color, and that color is grey. We proceed by
inducktion.

(Base case) Certainly it is true that a set with one duck has all ducks of the same
color, and Figure 4.8 shows a grey duck.

(Inducktion hypothesis) Suppose that any set of n ducks is the same color (grey), as
long as n < k.

(Inducktion step) Consider a set of k4 1 ducks. We don’t know what color they are,
or even whether they are all the same color. Choose a duck arbitrarily and set it
in the nearby water so it can swim about. This leaves us with k ducks. Aha! The
inducktive hypothesis applies, so all of them are grey. Using a duck call, retrieve
the swimming duck (of unknown color). Send one of the grey ducks to the water
(in a different direction, so that there is no confusion between ducks.) Now we
have k — 1 grey ducks and one duck of unknown color, but together they are a set
of k ducks and so the inducktive hypothesis holds—so all k of them are grey. Now
recall the swimming grey duck, and see that all K+ 1 ducks are grey. Voila! All
ducks are grey. 0
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Check Yourself

\ Because this is the best inducktion proof ever, it is worth considering carefully.

|

<LE 1. Go through the inducktive step of the proof for the case n = 5 ducks to see how the
subsets of ducks interact.

2. Rewrite this proof for the statement all owls are teal, noting that whereas ducks
swim about, owls fly and perch in trees.

3. Do you believe that all ducks are grey? Many students claim that they have seen
white ducks, but Section 4.5 proves that all ducks are grey. (A “white” duck is
very pale grey.) Remember, a correct proof compels assent—so either you believe
a correct proof or you believe that the given proof is problematic. Try to find an
error in the proof, or justify completely that all ducks are grey.

Do not try looking this up (e.g., on the internet). That would spoil your fun! In-
stead, think through the details of the proof. Does the base case make sense? Is
the inducktive hypothesis correctly stated? How does the inducktive step hold up
under scrutiny?

4.6 Try This! More Problems about Induction

|
ﬂk Just in case you have finished solving the problems in Section 4.3, here are a few
2"-themed problems for you!

1. Compute 2, 2+ 22, 2+2%>+23 and 2+ 2%+ 23 +2* Use your data to
conjecture a simple formula for }7_,2/. Now use induction to prove that
your conjectured formula is correct.

2. Consider a 2" x 2" grid with the upper-right-hand square missing; two are
shown in Figure 4.9.

(a) Can you always tile it with 3-square L-shaped tiles (no gaps and no
overlaps, as shown in Figure 4.10)?

Figure 4.9. Example 22 x 2% and 2° x 23 grids, each with the upper-right corner missing.
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+

Figure 4.10. How to tile a 2' x 2! grid with the upper-right corner missing with a three-
square L-shaped tile.

(b) Ifnot, give a counterexample; if so, give a proof by induction.

3. Prove that 2" < n! for n > 4 by induction. (We write n! as shorthand for
n-(n—1)-(n—2)-----3-2-1.)

4.7 Are They or Aren’t They? Resolving Grey Ducks

Hey! You! Don’t read this unless you have carefully read the proof given in Sec-
tion 4.5. I mean it!

In the face of much clamor, we must regretfully admit that not all ducks are grey. SO What
is the flaw in the proof? Consider a pair of ducks.

¥ If we try to consider the pair of ducks as a base case, we may have two ducks
of the same color. Or we may have two ducks of different colors (see, for
example, the duck heads in Figure 2.1 on page 29). Lesson: make sure to
verify a nontrivial base case (even if you end up not using it in your final

proof).

¥ If we try to consider the pair of ducks as an instance of the inductive step,
we set a duck afloat and are left with a single grey duck; then, we set the
grey duck afloat and consider the remaining duck of an indeterminate color.
And it’s still of indeterminate color because there are no other ducks with
which to use the inductive hypothesis! In set-theoretic terms, the problem
is that when there are fewer than n = 3 ducks, the subsets of size n — 1 do
not intersect. Lesson: make sure that the inductive step is not limited to
certain values of n or k (unless these are restrictions placed on the theorem
or resolved by checking sufficiently many base cases).

Check Yourself

1. Prove that 3% < 2;3. Be sure to use a base case of j = 1.




118 4. Induction

4.8 Where to Go from Here

Y ’know, this would be a great point in the course to go back and reread Section 5
of the student preface, on tips for writing mathematics.

We have given a fairly comprehensive introduction to induction as a proof
technique, but if you are interested, there is more. (There is a/lways more...) You
may want to learn about the seeming differences between strong and weak induc-
tion; many texts describe this, and Richard Hammack’s Book of Proof is a good
source. You may want to try dramatically more complicated induction proofs with
more than one index—this uses double induction. Sadly, no good reference for
double induction seems to be available. It appears that the most comprehensive
source for proofs by induction is the recently published Handbook of Mathemat-
ical Induction: Theory and Applications by David S. Gunderson. At about 700
pages, it must go into more detail than it seems possible to desire.

If you enjoyed tiling the 2" x 2" grid with L-shaped tiles, you will also enjoy
http://www3.amherst.edu/~nstarr/puzzle.html, which has applets that allow you
to tile 8 x 8 and M x N grids with L-shaped tiles.

Induction is used regularly by professional mathematicians and computer sci-
entists in proofs, which is why so many undergraduate courses include induction
as a topic. Of course, the statements used in research papers are much more so-
phisticated than those we use here, and the inductive steps are more subtle. We
will see later (Chapter 8) that induction is intimately related to recursion, which is
a common theme in computer science.

Credit where credit is due: Example 4.4.3 was inspired by [1]. Figure 4.14 was donated
by Tom Hull. In Section 4.12, Problems 36 and 37 were donated by Karl Schaffer, and
Problem 31 was inspired by work of Tom Leighton and Ronitt Rubinfeld.

4.9 Bonus: Small Crooks

The technique presented here is a very slick variant on proof by contradiction.
Sometimes it is called proof by smallest counterexample, but it is also sometimes
called a minimal criminal argument. (Yes, as you desire, Minimal Criminal is a
band name: see http://www.minimal-criminal.com/. One of their songs is called
“Graverobber from Outer Space.” Rarely does one have this sort of satisfaction in
mathematics.)

Here is the idea: You have some proposition that you hope is true, and it is
indexed by N in some way (e.g., the number of vertices of a graph). You attempt
a proof by contradiction by supposing the proposition is false. Therefore, there
is a counterexample. And among all counterexamples, one must have the small-
est index. Check that one out. Try to show that this counterexample implies the
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existence of an even-smaller-index counterexample. But that’s a contradiction—
you started with a counterexample that was smallest. Or, obtain a contradiction by
showing that your smallest counterexample complies with the constraints of your
proposition. So your proposition is true.

We start with a silly example.

Example 4.9.1. We claim that all natural numbers are interesting. Suppose not;
then, there must be a smallest uninteresting natural number k. Ah, but & is inter-
esting because it is the smallest uninteresting natural number! Thus, it is not the
smallest uninteresting natural number. Contradiction.

A more serious example follows.

Example 4.9.2. Let us show that every natural number greater than 1 has a fac-
torization into primes. Suppose not; then, there is some smallest natural number
k > 1 that does not have a factorization into prime numbers. This k must not be
prime, as otherwise it would be its own factorization into primes, and therefore
k = £-m for some smaller natural numbers ¢ and m. Because ¢,m < k, they have
factorizations into prime numbers. Thus ¢-m = k has a factorization into prime
numbers, so k is not the smallest natural number that does not have a factorization
into prime numbers—contradiction.

This proof uses a variant on the minimal criminal technique.

Example 4.9.3. We claim that every tree with at least one edge has at least two
leaves. Given a tree T, look at the set of all paths in a tree and choose a path P of
longest length. We claim that both ends of P are leaves. Suppose not; then, at least
one end of P has degree 2 and so we can extend P to a longer path. This contradicts
the longest-ness of P. (Okay, so maybe this should be called a maximal criminal
argument ....)

Short activity:

1. Can you prove that a tree 7 with |V (T)| vertices has |V(T')| — 1 edges
using the minimal criminal technique?

2. Show that every connected graph has a walk that begins and ends at the
same vertex and crosses every edge twice.

3. Consider a connected graph G where every vertex’s degree is the aver-
age of the degrees of its neighbors. Prove that G must be regular.
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4,10 Bonus 2: An Induction Song

By Induction
Max W. Chase, 2005
(sung to the tune of “Frére Jacques”™)

Take the base case,

Take the base case,

n is one,

n is one,

This is good to start with,
This is good to start with,
We’re not done,

We’re not done.

Now consider,
Now consider,

n less one,

n less one.

If we prove it for n,
If we prove it for n,
Then we’re done,
Then we’re done.

For all n,

For all n,

Now you see,

Now you see,

Our conjecture is true,
Our conjecture is true,
Q.ED,

Q.E.D.

4,11 Bonus Check-Yourself Problems

Seriously, do all of these problems by induction. That’s what they’re here for: induction
practice. Solutions to these problems appear starting on page 600. Those solutions that
model a formal write-up (such as one might hand in for homework) are to Problems 2, 7,
and 8.
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1.
2.
3.

Prove that Y/_; 345 = 5 (11n+5n?).
Prove that n* < 3-8".

Show that every convex polygon can be
decomposed into triangles.

. Show by induction that K, has mn

edges.

. Prove that Y _(j+1)(j—2)

=1(n-3)(n+1)(n+2).

. Prove (2(n!))? < 2% for sufficiently

large values of n.

. Use induction to prove the sum princi-

ple for n finite sets.

8.

10.
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Take a piece of paper and fold it—not
necessarily in half, but definitely with
a single straight crease somewhere in
the paper. Fold the (still folded) paper
again. In fact, fold it n times, wherever
you like. Now unfold it completely.
Prove by induction that you can always
color the paper with two colors (teal and
purple) so that no fold line has the same
color on both sides.

. For what values of n is 5"t2 < 6"?

Prove it.

Prove that any natural number n > 2 can
be written as the product of prime num-
bers.

4,12 Problems That Use Induction

Recall from Section 4.6 thatn! =n-(n—1) -(n—2)- --- -3-2-1.

1.

2.

n—1
Prove that Z 3=13n.
j=0

Prove that 25" > 6" using induction.

n—>5
. Show that Y 4=4(n+1).

=

.Compute 1, 1 +2,1+2+3,and 1 +2+

3+4. Draw these as dot diagrams (a
row of one dot, with a row of two dots
beneath, etc.). Use your data to conjec-
ture a simple formula for 1" ;i. Now
use induction to prove that your conjec-
tured formula is correct.

. Using induction, prove that 10n < n” for

n>11.

. Prove that any set with n elements has

2" subsets, using induction. The proof
in Example 4.2.3 for the subsets of
{1,...,k} may inspire you.

7.

8.

10.

11.

12.

13.

. Show by induction that K, has

3n+1 -1
2

n
Show that Z 3k =
k=0

Prove the other of DeMorgan’s laws
for sets: Let Aj,As,...,A, be n
sets.  Prove that for any n € N,
(AlNAN---NA,) =A UAU---UA,.

n(n—1)
2

edges.

Proxlle that

e

3Y j(j—1)=n(n—1)(n—-2).
Jj=0

Show that ((n + 1)1)* < 2!.4!.
< (2n).

Show using induction that for n € N,
4 1 n

Lo aiT

Prove that n! < n" as long as n > 2.
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14. We know that 1 = 1. It turns out that
24+3+4=1+8and that 5+6+7+
8+9=8+27and that 104+ 11412+
13+ 14415416 = 27+ 64. Does this
generalize? Write out a general form for
the pattern this follows, and then either
give a counterexample or a proof.

15. Which two of the previous problems
give different ways of counting the
same quantity?

16. Use induction to prove the product prin-
ciple for n finite sets.

17. Show that every tree is bipartite using
induction. Why yes, that is one of the
Try This! problems—it’s worth writing
up carefully.

2
18. Prove that ¥ j* = (Z m) .
=1

Jj= m=1

n
19. Prove that Y j- j! = (n+1)! —1.
j=1

20. Show that the sum of the interior angles
of any n-gon (a polygon with n sides)
is w(n—2). Notice that such polygons
may be wildly irregular and even non-
convex.

21. Write the equation 1 +3+6+10+---+
n(n+1) _ n(n+1)(n+2)
2 6

using summation
notation. Prove that the equation is true
for all positive integers n by using in-
duction.

22. Suppose you have a 500-piece jigsaw
puzzle showing the Anec of Catalonia.
To put it together, you must fit the pieces
together. At any point, you either fit
a new piece onto an existing chunk of
puzzle or you fit two chunks together
along a puzzle seam. Prove that no mat-
ter what order the pieces are placed in,

23.

24,

25.

26.

27.

28.

29.

4. Induction

there are exactly 499 piece/chunk fit-
tings to solve the puzzle.

Show that a 2" x 2" grid missing any
square can be tiled with L-shaped tiles,
as in the second problem of Section 4.6.

Draw three overlapping circles. Color
the resulting regions using two colors,
so that no two regions that share a curve
get the same color. (This is known as
2-coloring the regions. Grey and white
are popular colors for experimenters
who use pencil on white paper.) Now
draw two pairs of overlapping circles
and a single circle overlapping none of
the others; 2-color this configuration.
Using the understanding gained from
these experiments, prove that n circles
drawn in the plane can be 2-colored, us-
ing induction.

Challenge: Analyze the proof you gave
for the previous problem. Would it work
for n overlapping squares? Triangles?
What about for spheres in space?

Write the equation (1-3)+4(2-4)+(3-
5)+--+nn+2)= w using
summation notation. Now prove that
the equation is true for all natural num-
bers n > 1 by using induction.

Let’s dig into Problem 22 about the
500-piece jigsaw puzzle. Suppose the
last step in solving the puzzle joined a
chunk of 133 pieces with a chunk of 367
pieces. How many piece/chunk fittings
did each of those two chunks require?
What can you prove about an n-piece
jigsaw puzzle? Do that proof.

Prove the second statement in Exam-

ple 1.4.6, namely that Y/~ i = @

Prove that n(n+ 1)(n+2) is a multiple
of 3 for any natural n.
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30. Prove that n(n + 1)(n+2) is a multiple

31.

of 6 for any natural n.

Think through the following proof: We
will show that any simple graph where
every vertex has degree at least 1 is con-
nected. As a base case, we have two ver-
tices connected by a single edge. Now,
suppose that for n < k, a simple graph
with n vertices, each of which has de-
gree at least 1, is connected. Consider
a simple graph G with k vertices, each
of which has degree at least 1. By the in-
ductive hypothesis, it is connected. Add
a vertex v to G so that we have G-with-v,
which has k+ 1 vertices; in order that
every vertex has degree at least 1, we
also have to add an edge to v. But an
edge in a simple graph must connect two
vertices, so the other end of the edge
must be incident to a vertex of G. Thus,
G-with-v is connected. What’s wrong
with this proof? It can’t be right—
consider the graph in Figure 4.11.

e
"

Figure 4.11. A graph that has all ver-
tices of degree 1 but is not connected.

Figure 4.12. A 6-pin pinwheel graph.

32.

33.

34.

35.
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Conjecture and prove by induction a
formula for the number of edges of an n-
pin pinwheel graph. (A 6-pin pinwheel
graph is pictured in Figure 4.12.)
Conjecture and prove by induction a
formula for the number of edges of an n-
bubble bubblepath graph. (A 4-bubble
bubblepath graph is pictured in Fig-
ure 4.13.) Note that both ends of the
bubblepath are always bubbles.

SaB oS,

Figure 4.13. A 4-bubble bubblepath
graph.

Here is a sketch of a flawed proof: We
will prove by induction that every graph
with n vertices is bipartite. Our base
case is two vertices connected by a sin-
gle edge. For the inductive step, con-
sider a generic (k+ 1)-vertex graph and
remove a vertex. The inductive hypothe-
sis applies to this k-vertex graph, so the
result is bipartite. The deleted vertex is
in the other part from its neighbors, so
when we restore the vertex we see the
original (k + 1)-vertex graph is bipar-
tite. Where is the flaw?

Here is a sketch of a flawed proof: We
will prove by induction that every graph
with n vertices and at least one leaf is
bipartite. Our base case is two ver-
tices connected by a single edge. For
the inductive step, consider a generic
(k4 1)-vertex graph with a leaf and re-
move that leaf. The inductive hypothe-
sis applies to this k-vertex graph, so the
result is bipartite. The deleted vertex is
in the other part from its only neighbor,
so when we restore the vertex we see the
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original (k+ 1)-vertex graph that had at whole bunch of one-stone piles, take the
least one leaf'is bipartite. Where is the product of all the sums you wrote down.
flaw? Let the result be denoted by ps(n). Is
36. Let’s play a pile game! Start with a ps(n) well defined? Ifso,'ﬁ'ndaformula
pile of n small teal stones. Divide this for ps(n) and prove that it is correct. If
into two (nonempty) piles of sizes j and not, ﬁpd two sequences of pile divisions
n— j. Write down the product of the that give different results.
two pile sizes j(n — j). NQW repe?at 38. Draw n straight lines in the plane. Prove
the process: at each step, divide a pile that the resulting regions can be colored
with more than one small teal stone into using two colors, as in Figure 4.14, so
two smaller piles, and write down the that no two regions that share a line seg-
product of the two pile sizes. When all ment get the same color.

that’s left is a whole bunch of one-stone
piles, add all the products you wrote
down. Prove that no matter how the
piles of stones were divided, the sum of
the products is Z;’:_ll i

37. Challenge: Here’s another pile game—
again, start with a pile of n small teal
stones. Again, divide this into two
(nonempty) piles of sizes j and n — j.
This time, write down the sum % + n%
Now repeat the process: at each step, di- 39
vide a pile with more than one small teal
stone into two smaller piles, and write
down the sum of the reciprocals of the 40. Prove by induction that for m > 1,
two pile sizes. When all that’s left is a K \ e has 2m — 1 edges.

Figure 4.14. A 2-coloring of plane re-
gions in teal and white.

. Prove that 8" — 1 is a multiple of 7 for
alln > 1.

4,13 Instructor Notes

I don’t know about your students, but mine always need a couple of class periods to deal
with induction—even when they’ve seen it before in other classes. Assign Sections 4.1
and 4.2 as reading before the first class. The first two examples were chosen because they
use scenarios with which students are familiar (counting, and one of DeMorgan’s laws) and
no new concepts (except, of course, for induction). Then begin with a general review of
the inductive process, take questions over it, and give a simple sample proof by induction
(doing one of the examples from the text is fine). If there is enough time, get students
started on the problems in Section 4.3.

If your students seem to be grasping induction well, leave about ten minutes of class to
introduce your favorite version of the Section 4.5 proof that all ducks are grey. (Otherwise,
leave this until the second class.) After this introduction, solicit student reaction. Here are
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some of the objections students will raise: “But [ have a brown duck!” Response: You can’t
have a brown duck, because all ducks are grey. We just proved it. Objection: “There’s
some problem with the inductive step.” Response: Oh, really? What is it? Students may
claim that “it doesn’t work™ or some such, but what they identify as flaws are usually
aspects of most induction proofs. That’s one reason this is such a great example—it draws
out the doubts students have about the structure of inductive proof. Often students will
ask you to repeat the inductive step for clarity. (If you are running out of time, you can let
them know that a version of this proof is in the book.)

Sometimes a student will notice the flaw in the proof quickly, that when n = 2 every-
thing falls apart and so an additional base case should have been checked. Students can
also correctly claim that the inductive step doesn’t work if we have k4 1 = 2, because
then there’s no intersection between the two sets of k ducks. This is true and is equivalent
to saying that the base case wasn’t good enough.

Then assign Section 4.4 as reinforcing and enhancing reading for the second class. (If
you presented the all ducks are grey proof at the end of the previous class, assign Sec-
tion 4.5 as well.) Start the second class by asking for questions over the reading; then, ei-
ther present your favorite version of the all ducks are grey proof or ask for student thoughts
on it, and try to get the students to dig deeply into the workings of the “proof.” Then have
them work on problems from Section 4.3 in groups; be sure to leave ten or so minutes
at the end of class to have students share their work publicly so everyone is on the same
page.

If at the start of the third class no student has found the flaw in the all ducks are grey
proof, walk the class through the proof again and point out the flaw. There will likely be
a question or two. Use the remaining time to have students continue work on problems
from Section 4.3 and, if there is time, work on problems from Section 4.6. Again, leave
some time at the end of class to discuss the problems students have done and point out
what they have learned from these problems. Assign Section 4.7 as reinforcing reading.

If you would like to foreshadow modular arithmetic while also placing students in
groups for Try This! work, here’s one way to do it: Number your students aloud and ask
them to remember their numbers. With n students, choose a number & so that % is close
to the group size you like best. Then define a = b (mod k) and ask students to work with
their classmates who have equivalent-to-them-mod k& numbers. (This was suggested by
David Cox.)

Proof clinic?  Some instructors have found that their students benefited from devoting
a review session or class period to basic proof writing after completing Chapters 1-4.
Problems that might be useful for such an activity are given in Section T1.2. One way to
conduct a classwide proof clinic is to post statements to be proven around the classroom
and have students work in groups to write and share proofs publicly. (Excellent idea, Dana
Rowland!) While students will still be processing induction, at this point they should be
getting a better handle on other basic proof techniques so that they can be successful in
practicing them in the context of discrete mathematics problems over the remainder of the
term.
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Chapter 5 ¥ ¥ ¥ ¢

Algorithms with Ciphers

5.1 Introduction and Summary

An algorithm is simply a list of instructions for completing a task. Algorithms
form the core of computer science and are used regularly in all kinds of discrete
mathematics. They even function as a proof technique—an algorithm can give a
constructive proof of existence! The primary examples we will use in exploring
algorithms are simple ciphers. Ciphers are ways to encode messages so that they
are not easily read by people other than the intended recipient(s). In particular, we
will investigate the shift cipher and the Vigenére cipher. Shift ciphers can be bro-
ken by hand, and the Vigenéere with not much more work, but they are essentially
the only ciphers that are understandable with the level of mathematics presented in
this chapter. (Another interesting cipher is described in Section 16.10, but you’ll
need to digest most of Chapter 16 to understand it.) All of these ciphers use mod-
ular arithmetic, so our goals in this chapter are to learn some modular arithmetic,
figure out how it is used in the shift and Vigenére ciphers, and understand what
algorithms are used to encipher and decipher messages using these ciphers.

5.2 Algorithms
Before discussing algorithms, we’d better define them.

Definition 5.2.1. An algorithm is a finite list of unambiguous instructions to be
performed on one or several inputs; some instructions may refer to others. If an
algorithm produces an output and ends after executing a finite number of instruc-
tions, then we say that the algorithm rerminates.

One of the best-known mathematical algorithms in the Unites States multiplies
two multidigit integers.

127
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Example 5.2.2. How to multiply two integers:
1. Label the two integers A and B with digits b1b; ... b,,.
2. Multiply A by b, and name the result C,,.

3. Multiply A by b, and write the result C,,_; under C,, but shifted so the
last digit of C,,_; is directly under the second-to-last digit of C,,.

4. Repeat this process until A has been multiplied by b; and the result C; has
been written, shifted to the left, under C,.

5. Add the shifted results together to obtain D.

In Example 5.2.2, the inputs are A and B and the output is D. Because there are
finitely many digits in each of A, B and finitely many instructions in the algorithm,
the algorithm does terminate.

Our definition of algorithm differs from those in many texts; often, authors re-
quire an algorithm to terminate in order to truly be an algorithm. However, given
that one of the most common questions asked about a proposed algorithm is, “Does
that algorithm terminate?”” we are convinced that in practice people consider non-
terminating sets of instructions to be algorithms (just poor ones). Besides, if ter-
mination was required by definition, the answer to this common question would
always be “yes” and no one would need to ask.

The hallmarks of an algorithm are clarity and precision. (Hey, those are hall-
marks of proofs, too! Hmm....) There are lots of lists of instructions one could
make that would not count as algorithms because they do not truly convey what is
to be done.

Example 5.2.3. Consider this laundry nonalgorithm:
1. Put clothes in washer.

2. Turn washer on.

The inputs to the procedure should be clothes, and the desired output is clean
clothes. The biggest problem here is that most washers have lots of settings, and
some machines will not start the wash cycle after simply being turned on. But ad-
ditionally, how many clothes are put in the washer—what if you have more clothes
to wash than will fit? Then you can attempt to put them all in, but the washer may
not turn on. (Notice also that the procedure does not address detergent.)

Here is another problematic example.
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Example 5.2.4. How to (not necessarily) find the roots of a polynomial:
1. Set polynomial equal to zero.
2. Factor polynomial.

3. Read off the roots.

This list of instructions is ambiguous. What if the polynomial does not factor into
linear terms? Then you cannot read the roots from the linear factors, so what do
you do?

CVS corn removers (sublabel: for the removal of corns (yes, really)) have in-
structions for use. In summary, they say to put a salicylic-acid-impregnated sticky
disc on the corn and cover it with a bandage. The penultimate instruction is, “After
48 hours, remove disk.” However, what if you take a shower after 24 hours? Then
the bandage will become wet and likely fall off. Should you replace the bandage?
The instructions are not clear.

Then, there is a significant difference between clarity and precision for human
interpretation and for machine interpretation. Consider this real-life algorithm,
printed on bottles of Suave Naturals Shampoo.

To Use:

1. Massage through wet hair and scalp.
2. Rinse well.

A human knows what “Rinse well” means, but a computer would need a specific
criterion that terminates rinsing (as in, “Rinse until the sulfate sensor reads below
0.001”).

An algorithm is called correct if it does what it should do. The algorithm
given in Example 5.2.2 is correct for multiplication but not correct for addition or
division. There is a difference between an algorithm and its implementation (how
an algorithm is made into executable code)—an algorithm may be correct while
a poor implementation may not be. In practice, it is important to make sure both
algorithms and their implementations are correct for all possible inputs.

Example 5.2.5 (of how to eat and not eat potato chips). Consider the following
algorithm, with input a bag of potato chips.

1. Examine bag contents; if there are no chips, crumple bag and say “Curses!”
Otherwise, proceed to step 2.
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2. Pick up a chip.
3. Put it back in the bag.
4. If you are hungry, return to step 1. Otherwise, seal the bag.

This algorithm does not terminate when the executor starts hungry because no
eating occurs nor does the bag’s chip number change. We will try again.

1. Examine bag contents; if there are no chips, crumple bag and say “Curses!”
Otherwise, proceed to step 2.

2. Pick up a chip.

3. Throw it away.

4. If you are hungry, return to step 1. Otherwise, seal the bag.

This algorithm terminates but does not do what we wish it to do, as (again) no
eating occurs. We can do better.

1. Examine bag contents; if there are no chips, crumple bag and say “Curses!”
Otherwise, proceed to step 2.

2. Pick up a chip.
3. Eatit.
4. If you are hungry, return to step 1. Otherwise, seal the bag.

Ah, yes. This is the expected algorithm for eating potato chips; it terminates
and it is correct. Healthy eaters tend to use the following variant algorithm.

1. Examine bag contents; if there are no kale chips, crumple bag and say
“Cruciferous!” Otherwise, proceed to step 2.

2. Pick up a kale chip.
3. Eatit.

4. If you are hungry, return to step 1. Otherwise, seal the bag.

5.2.1 Conditionals and Loops

A conditional is a statement within an algorithm that places conditions on an in-
struction. Example 5.2.5 uses a conditional in each algorithm. Here are three
common styles of conditional:
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¥ if-then-else, which usually takes the form “if (conditions), then (action set
1), else (action set 2)” and is read/understood as “If (conditions) are met,
then do (action set 1); otherwise, if (conditions) are not met, then do (action
set 2)”;

¥ until, which takes the form “do (action set) until (conditions)” or “until (con-
ditions), (action set)” and is read/understood as “Do (action set) until (con-
ditions) are met and then go to the next instruction”;

¥ while, which takes the form “do (action set) while (conditions)” or “while
(conditions), (action set)” and is read/understood as “Do (action set) while
(conditions) hold, and when (conditions) are no longer met, go to the next
instruction.”

The syntax used for each conditional varies from computer language to computer
language, so we will simply use them English-wise here. Notice that algorithm
conditionals extend the idea of implication (the logical conditional, see page 76)
by giving the additional information of what to do when the if conditions are not
met.

Example 5.2.6. Most medicines are labeled with conditionals as part of their al-
gorithms for usage. They are not stated as conditionals, but that’s what they are.
Here’s a sample dosage table:

for adults ages 12 and over ‘ take 2 tablets
for children ages 6 to 12 ‘ take 1 tablet

This can be written as, “If you are age 12 or over, take 2 tablets; otherwise, if you
are between ages 6 and 12, take 1 tablet; otherwise, seek the advice of a physician.”
In fact, this is a nested conditional, with one if-then-else within another.

Example 5.2.7. This algorithm sorts a single marble using conditionals.

1. Pick up a marble.

2. If it is red, place it in the left-hand pile. If it is green, place it in the
right-hand pile. If it is neither red nor green, discard it.

Notice that the second instruction is one big ol’ nested conditional, of the form if
(red), then (left), else (if (green), then (right), else (if (neither) then (discard))).

That’s a pretty useless algorithm, though. Who wants to sort a single marble?
It would be much better to have an algorithm that sorts a pile of marbles. For this
we need a /oop, which gives an instruction to perform some set of actions more
than once.
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1. first instruction
2. second instruction

3. third instruction

m. if (something), then go to step 3; else, continue.

m+1. another instruction

Figure 5.1. A fake algorithm containing a loop.

Example 5.2.8. This algorithm sorts a bag of marbles using conditionals in a loop.

1. Pick up a marble.

2. If it is red, place it in the left-hand pile. If it is green, place it in the
right-hand pile. If it is neither red nor green, discard it.

3. If marbles remain in the bag, go to step 1.

The third instruction has an implied “else” of being done with the task.

As you can see in Example 5.2.8, a loop earns its name because the instructions
repeat, forming a string of instructions into a loop of instructions (see Figure 5.1).
The process of repeating instructions is known as iteration. There is a danger
inherent in loops: sometimes they go ’round and ’round forever, and this prevents
an algorithm from terminating. So, it is important to consider how a loop can stop
looping. Generally, this is accomplished by including a conditional in the loop
that provides for an exit or by specifying the number of times the loop should be
executed. Frequently, we wish to carry information from one iteration into the next
iteration, such as the number of times a loop has been executed so far or a partial
calculation. The usual way to do this is to set an iterating variable (e.g., k) with an
initial value and then change the value of the variable during an iteration, e.g., by
saying, “replace k with k+ 1.” This means we should think of the variable k as a
container that holds a value; the container is labeled “k,” and when we change the
value of the variable we stick the new value (k + 1) in the container but leave the
label on the container as it was (“k”).

Example 5.2.9. We give three different algorithms that show how iterating vari-
ables are used.
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1. Let k =1 and let value = 0.
2. Replace k with k+ 1.
3. If k = 10, output value; otherwise, go to step 2.

In this algorithm, the computer counts to ten in its head and just responds “0.”

1. Let k =1 and let value = 0.

2. Replace k with £+ 1.

3. Output value and go to step 2.

This is a terrible algorithm. It does not terminate, so the computer counts to

itself indefinitely and responds “000000 ....”

1. Letk=1.

2. Output k.

3. Replace k with k+ 1.

4. If k = 10, output k, and stop; otherwise, go to step 2.

At least this algorithm is slightly more interesting; it counts to ten out loud.

Example 5.2.10 (of an algorithm including conditionals and iteration). Let us sup-
pose that we have a large supply of Jelly Babies but a limited supply of aliens (n
aliens, to be precise).

1. Let alien = 1.
2. Face the alienth alien.

3. Pick up a Jelly Baby. Say, “Would you like a Jelly Baby?” to the alien in
front of you.

4. If the alien responds positively, then hand it the Jelly Baby; otherwise, if
the alien responds negatively, then shrug and eat the Jelly Baby yourself;
otherwise, if the alien is impassive, then shake your head and continue.

5. If alien = n, return to your companions. Otherwise, continue.
6. Replace alien with alien + 1.
7. Go to step 2.

This algorithm includes a nested conditional; step 4 has the form if 4, then B, else
(if C, then D, else (if E, then F)). Note that the innermost if-then does not need
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an “else” because the only possibility left at that point is impassivity. (Well, okay,
there might be some trouble in deciding whether an alien’s response is positive,
negative, or impassive, but those really are the only options.)

This algorithm also includes iteration. Steps 1, 5, and 6 collectively form a
loop, by giving an initial value (step 1), iterating (step 6), and giving a condition
on which we exit the loop (step 5).

The following examples are of practical mathematical interest, Example 5.2.11
because it is used by many computers and Example 5.2.12 because it has spawned
an area of mathematics research.

Example 5.2.11 (of Russian-style multiplication). Believe it or not, this algorithm
multiplies natural numbers! The input numbers are A and B. Recall from Chapter 3
that the floor function |x| returns the greatest integer less than or equal to x.

1. Let Astep = A and let Bstep = B.

2. Start a column by writing 0 at the top.

3. If Astep is odd, then write Bstep in the column; otherwise, continue.
4. Replace Astep with L%J.

5. Replace Bstep with Bstep + Bstep.

6

. If Astep = 1, then write Bstep in the column and go to step 7; otherwise,
go to step 3.

7. Sum the column.

We explore how this algorithm produces the desired result (ordinary multipli-
cation) in Problem 24 of Section 5.11.

Example 5.2.12 (the 3n+ 1 algorithm). Check this algorithm out. The input is some
neN.

1. If n is odd, replace n with 3n 4 1; otherwise, replace n with n/2.
2. If n =1, output n; otherwise, go to step 1.

The Collatz conjecture states that the 3n + 1 algorithm always terminates. How-
ever, as you might guess by the use of the word “conjecture,” the truth of this
statement is yet unknown. (It has been verified for all n < 10'8.) We explore the
behavior of the 3n+ 1 algorithm in the Check Yourself problems at the end of this
section.
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5.2.2 Efficiency

An important issue, but one that we will not discuss in any depth here, is efficiency
of algorithms. (For more detail, see Chapter 17.) In a practical sense, the amount
of time an algorithm takes to run and the resources required to run it depend on the
particular implementation of that algorithm. Thus, in mathematics and theoretical
computer science, the efficiency of an algorithm is determined from its abstract
description rather than from any implementation. For simple algorithms, it can be
intuited whether an algorithm is efficient or inefficient.

Example 5.2.13. Both of these algorithms have as input n € N, and each performs
the same task. Which algorithm is more efficient? The first algorithm ...
1. Letk=1.
2. Let sum =0.
3. Replace the value of sum with sum + k.
4. If k = n, output sum; otherwise, replace the value of k with k+ 1.
5. Go to step 3.
The second algorithm ...
1. Letk=1.
2. Let sum = 0.
3. Replace the value of sum with sum + k.
4

. If k < 2n, replace the value of k with k+ 1 and go to step 3; otherwise,
continue to step 5.

. Let secondsum = 0.
.Letm=n+1.

. Replace the value of secondsum with secondsum + m.

0 9 N W

. If m < 2n, replace the value of m with m+ 1 and go to step 7; otherwise,
continue to step 9.

9. Output sum — secondsum.

Each algorithm computes }.}_, j; the first does so directly, whereas the second

sums the first 2n natural numbers and subtracts Zi’;n +1J- The second algorithm
does additional and unnecessary work, so the first algorithm is more efficient.
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5.2.3 Algorithms and Existence Proofs

Back in Section 1.5 we described existence proofs—proofs that show something
exists—in the context of the generalized pigeonhole principle. These were non-
constructive existence proofs because they showed that items existed while not
producing any examples of the desired items. Algorithms have outputs, and if the
output of an algorithm is an object, then that algorithm functions as a construc-
tive proof that the desired object exists; it gives us instructions for how to find or
construct the object.

Example 5.2.14. We will now prove that there are n* functions from Z, —
{1,...,n}. The following algorithm provides a list of these functions.

l. Letk=¢=m=1.
2. Write (m) f(0) =k, f(1) =/ on a list.

3. If £ > n, then continue; otherwise, replace ¢ with ¢+ 1, replace m with
m+ 1, and go to step 2.

4. If k > n, then stop; otherwise, let £ = 1, replace k with k+ 1, replace m
with m+ 1, and go to step 2.

Notice that the algorithm does not create any maps that are not well defined, so
each item in the generated list is a function. It also exhausts all possibilities for the
image of 0 and for the image of 1, so every function from Z, — {1,...,n} is on
the list. Moreover, because the algorithm has a nested loop in which each variable
(k,¢) ranges from 1 to n, the list contains n” items. This completes the proof.

We will use algorithms to create constructive existence proofs in Chapters 10
and 12.

Check Yourself

There are only three of these, so please do them all.

1. Try performing the 3n+ 1 algorithm given in Example 5.2.12 forn=3,n=4,n=7,
n =28, and n = 13. How many iterations are required for each of these numbers? Do
any of the sequences generated appear within any of the others (and if so, which)?

2. Translate the instruction replace t with t /2 while t is even into plain English.
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3. What does this list of instructions do? Comment on whether it forms an algorithm,
and if so, whether it terminates and/or is correct.

1. Letn=2.

2. Replace n with n+4.

3. If n is even, go to step 2; otherwise, continue.
4. Output n.

5.3 Modular Arithmetic (and Equivalence Relations)

Modular arithmetic is essential for discrete mathematics, as you will soon see.

Definition 5.3.1. Let a,b € Z and n € N. The expression ¢ = b (mod 1) means
that when « is divided by n, it leaves the same remainder as when b is divided by
n. This condition is equivalent to a — b having remainder zero when divided by
n. If (a—b)/n € Z, then we say that n divides (a — b) and write this as n|(a — b).
Similarly, n|(a — b) also means (a — b) = kn for some k € Z. (This last version is
the most useful in writing proofs.) We verbalize a = b (mod n) by saying that a
and b are congruent modulo n or by saying that a is congruent to b modulo n. The
set of different remainders obtainable by dividing integers by 7 is called the set of
integers modulo n.

Notice the distinction between the similar symbols / and |; the former means
“divided by” and indicates an action, whereas the latter means “divides” and gives
a description of an expression. That is, / is used when the result of division is
wanted, and | is used to give information about the expression following it.

Example 5.3.2 (of some modular arithmetic calculations). One of our favorite sets
is Zy = {0,1}. This is the integers modulo 2 (and so we unconsciously use modular
arithmetic all the time in discrete mathematics!). Every even number is congruent
to 0 (mod 2), and every odd number is congruent to 1 (mod 2). For example,
91,305,743,890 = 0 (mod 2), 4,589 = 1 (mod 2), and 547,392 = 0 (mod 2).
In conversation, we might say, “What’s 4,378 (mod 2)?” (pronounced “What’s
4,378 mod 2?77), with the answer, “Oh, it’s zero.”

In our daily lives, we usually compute time modulo 12. For example, if at
10 a.m. a friend says, “See you at 2 p.m.,” you know that’s four hours away because
2—10=-8=4 (mod 12).
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Figure 5.2. Modular arithmetic envisioned as arithmetic on a circle.

You can think of modular arithmetic as regular arithmetic done on a circle with
n marks instead of as done on an infinite number line. Counting and adding are
done clockwise, and subtracting is done by counting counter-clockwise. This is
directly analogous to our usage of analog clocks, as shown in Figure 5.2.

We are able to operate on both sides of the = sign in much (but not quite)
the same way we operate on both sides of an equals sign. For example, we know
that if @ = b then b = a, and if additionally b = c then a = ¢. Similarly, ifa =5
(mod n), then b = a (mod n); and, if a = b (mod n) and b = ¢ (mod n), then
a =c (mod n). (These are called the symmetric and transitive properties, respec-
tively.) Witness the following result.

Theorem 5.3.3. Let a,b,c € Z and n € N. If a = b (mod n), then ac = bc
(mod n).

Proof: Because a = b (mod n), we know that n|(a — b). This means that (a — b)
= nk for some k € Z. We multiply through by ¢ to get (a — b)c = (ac — bc) =
nkc. Renaming kc as ¢, we see that (ac — bc) = ng for some g € Z. Therefore,
n|(ac —bc) and ac = bc (mod n). O

Example 5.3.4 (of modular arithmetic properties exhibited on actual integers).

20 = 12 (mod 8) and also 12 =20 (mod 8). Each of 20 and 12 has a remain-
der of 4 when divided by 8. 20 = 12 (mod 8) and 12 =4 (mod 8), so 20 =
4 (mod 8). 12=4 (mod 8),s03-12=3-4 (mod 8) or 36 =12 (mod 8); both
36 and 12 reduce to 4 (mod 8) as36=4-8+4and 12=8+4. 5=11 (mod 3),
s04-5=4-11 (mod 3),0r20=44 (mod 3) as20=6-3+2and 44 = 14-3+2.
22 =4 (mod 6) because 22 has a remainder of 4 when divided by 6.
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Likewise, 40 =4 (mod 6), and 40 =22 (mod 6), ... and 40 = 745,408 (mod 6)
as well.

Theorem 5.3.3 lets us multiply at will. In contrast, the converse is not true—
division doesn’t always work.

Example 5.3.5. 18 =24 (mod 6), s0 9-2 =12-2 (mod 6). However, 9 # 12
(mod 6) because 9 =3 (mod 6) but 12 =0 (mod 6).

36 =24 (mod 12), but while 4-9 =4-6 (mod 12), notice that 9 # 6 (mod 12).
(For the reader interested in more modular arithmetic, note that 9 =6 (mod 3)...
what might be going on there?)

On the other hand, there are certain conditions under which division is possible.
We will explore this in Problem 19 of Section 5.11.

Congruence modulo 7 is defined on Z; it is a specific example of a general
idea.

Definition 5.3.6. An equivalence relation defined on a set S must satisfy
¥ the symmetric property (if s; ~ 52, then 55 ~ s1),
¥ the reflexive property (s ~ s), and
¥ the transitive property (if s; ~ s5 and s7 ~ s3, then 51 ~ s3).

Here, the symbol ~ acts as the verb “is equivalent to,” just as = represented
“is congruent to.” We noted just before Theorem 5.3.3 that congruence modulo n
is symmetric and transitive; of course @ = a (mod n), so congruence modulo 7 is
also reflexive. Therefore, it is an equivalence relation.

Let us develop this idea further using the most discrete of all sets, Z,, also
known as the integers modulo 2. Because all odd integers are congruent to 1
(mod 2), we can write the odd integers as the set {1+2k | k € Z}. We will refer to
this set as [1]. Similarly, the even integers can be written as {0+ 2k | k € Z} = [0].
The notation [a] means “all the elements equivalent to a using some equivalence
relation,” so in Z, we could also refer to [1] as [3] (though this would be less evoca-
tive). In set notation, [a| = {s € S | s ~ a}, and hopefully when you see [a] you
will know from context which equivalence relation is meant. The sets [a] and [b]
are called equivalence classes.

For example, we could consider the equivalence relation of people who have
the same favorite Doctor. (Who?) Certainly someone has one favorite doctor, and
so is equivalent to hirself (reflexive); if I have the same favorite Doctor as you, then
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you have the same favorite Doctor as me (symmetric); if [ have the same favorite
Doctor as you, and you have the same favorite Doctor as Madame Vastra, then |
have the same favorite Doctor as Madame Vastra (transitive). There are currently
13 Doctors, so 14 equivalence classes (we add one for people who dislike all of
the Doctors). Here is another example.

Example 5.3.7. The integers modulo 4, or Z4, can be represented as follows:

{...,—8,-4,0,4.8,..} ={0+4k | k€ Z} ={z€Z | z=0 (mod 4)}

0= [12].

(0 =7,-3,1,5,9,.. Y= {114k |keZ)={z€Z|z=1 (mod 4)}
— =5

{..,=6,-2,2,6,10,...} ={2+4k | k€Z}={z€Z|z=2 (mod 4)}
~ =[]

{..0,=5,-1,3,7,11,...} ={3+4k | k€Z}={z€Z|z=3 (mod 4)}
~ (= [-9

An equivalence relation splits a set up into distinct chunks. We have seen that
Z = [1] U 0] because every number is odd or even. Additionally, [1] N [0] = 0.
These are the two criteria required for...

Definition 5.3.8. A partition of a set A is a set of subsets Aj,A»,...,A, such that
AjUAU---UA, =Aand A;NA; =0 forall i # j.

Figure 5.3 shows some sets of subsets that are and are not partitions. No-
tice that a set of subsets can fail to be a partition in two different ways: some
subsets may overlap, or the union of the subsets may not be the entire set. In Ex-
ample 5.3.7, the four equivalence classes [0], [1],[2], [3] partition the set Z, as do
the four equivalence classes [12],[5],[18],[—9] and the four equivalence classes
[563560],[867157],[—95814], [459551].

More generally, we have...

Theorem 5.3.9. If'a set S has an equivalence relation ~, then the equivalence
classes of ~ partition S.

Proof: In accordance with the definition, we must show that [ J,cg[s] = S and that
for 51,50 € S, we have [s1] = [s2] xor [s1] N [s2] = 0. First things first: for ev-
ery s € S, we can examine [s], which certainly contains the element s. Thus,
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Figure 5.3. A set (upper left), with two nonpartitions (upper right and lower left) and a
partition (lower right).

S = Usess C Usesls]. Also, [s] only contains elements from S, so J,cg[s] C S.
Therefore, | J,cg[s] = S. Now notice that [s;] = [s2] if and only if 5; ~ s2, because
that is how [s1] and [s»] are defined; they are each composed from elements that
are equivalent under ~. We can conclude that if [s1] # [s2], then 51 ¢ s5. In this
case, let’s look at [s1] M [s2]. We hope it has no elements. But, suppose it does
have some element s3. (Notice: proof by contradiction coming up!) Then s3 € [s1]
and s3 € [s2], 80 53 ~ 51 and s3 ~ s,. By the symmetric property of equivalence
relations, we also know s ~ s3, and that allows us to apply the transitive property
of equivalence relations to see that s; ~ s5. Hey! That contradicts our assumption
that 51 ¢ sp! Therefore, [s;] N [s2] = 0 and we are done. O

We can do arithmetic on equivalence classes modulo # in exactly the way we
can do arithmetic on integers modulo n.

Example 5.3.10. Suppose a =b (mod n) and ¢ =d (mod n). By substituting ap-
propriately in each expression, a+c¢=b+c=b+d (mod n). We could restate
the situation: Suppose [a] = [b] and [c] = [d]. Then itis true that [a+c] = [b+¢]| =
[b+d]. A more concrete version of this same example is that 2 =5 (mod 3) and
11=8 (mod 3),502+11=5+11=5+8=1 (mod 3). We could also say that
modulo 3, 2] = [5] and [11] = [8],s0 2+ 11] =[5+ 11] =[5+ 8] =[1].

What’s interesting about the arithmetic shown in Example 5.3.10 is that equiv-
alence classes are sets, but in this context they act like numbers. It turns out that
[a] + [b] = [a+ b] and also that [a] - [b] = [ab]. The proofs of these facts require
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mathematical sophistication of a level beyond this text. For more mathematics of
this sort, please investigate your nearest abstract algebra course. Most of the time
in this text, we will work using = (mod n) notation rather than the [a] notation of
equivalence classes in modular arithmetic.

Check Yourself
These problems take very little time. So do them!

1. True or false:
(a) 2=10 (mod 12).
(b) 2=—10 (mod 12).
(¢) 22=10 (mod 12).
(d) —2=10 (mod 12).
What is the set [2] if we are working modulo 3?
Show that = is an equivalence relation.
Is {1,2},{2,3},{3,4},{4,5,6} a partition of {1,2,3,4,5,6}?
Create a partition of {1,4,2,7,9,14,89,246}.
Challenge: We know that = has the property that if a = b, then ac = bc; Theo-
rem 5.3.3 says that this property also holds for = (mod n). Think of another prop-

erty that holds for = in ordinary arithmetic, and test to see whether that property
holds for = (mod n).

AN

5.4 Cryptography: Some Ciphers

The field of cryptography is concerned with making communication secure from
anyone other than the sender and the recipient. We will study some elementary
methods of encryption (the process of taking messages and converting them to
forms that are not directly readable) and decryption (converting the received text
to readable messages) that use modular arithmetic. These substitution ciphers en-
crypt via letter-by-letter substitutions. We refer to a readable message as plaintext,
a message encrypted with a known cipher as ciphertext, and a communication we
cannot read as wacktext. (Say it three or four times: wacktext, wacktext, wacktext,
wacktext.)

To use modular arithmetic in encryption/decryption, we first need to convert
messages into numbers. For the moment, we will ignore case (capital vs. small
letters) and punctuation. The simplest way to do the conversion is as follows.
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Letter a| b | c|d|e | f|lg]l|h i j |k I | m
Number 1123 5/6 789101112
Letter o | p | gq s t u | v | wi| x|y Z

Number | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25

Using this translation, “duck’ becomes 3 20 2 10.

Now, you might think it would be simpler to convert a to 1, b to 2, and so on
to z becoming 26. However, that is problematic for use with modular arithmetic,
so it turns out to be less simple. (We will see why shortly.)

5.4.1 Shift Ciphers

A shift cipher encrypts by shifting each number by some fixed amount. The classi-
cal example (literally!) of a shift cipher is the Caesar cipher; it uses shift 1. (Well,
rumor has it that Augustus Caesar used a shift of 1. Apparently Julius Caesar
preferred a shift of 3, again according to internet rumor.)

Example 5.4.1 (of Caesar ciphers and ducks). The message duck converts to 3 20
2 10. We shift each number by 1, obtaining (3+1) (204+1) (2+1) (10+1), or
421 3 11. This converts to the encrypted message evdl. Now, suppose we receive
the message ifo. To decrypt this, we first convert it to 8 5 14; then, we shift each
number by —1, obtaining (8 —1) (5—1) (14—1), or 74 13. This, in turn, converts
to hen.

Now we will see why modular arithmetic is necessary by considering the mes-
sage zebra; it converts to 25 4 1 17 0. This then encrypts to 26 5 2 18 1. Wait
a minute! How do we convert this back to letters? We have nothing in our table
that corresponds to the number 26... so we must do our shifting modulo 26. In
other words, we compute (2541 (mod 26)) (441 (mod 26)) (1+1 (mod 26))
(1741 (mod 26)) (0+1 (mod 26)) so that our ciphertextis 052 18 1, or afcsb.

Similarly, on receipt of the ciphertext tobaaz, we convert to 19 14 1 0 0 25 and
then shift by —1 (mod 26) as follows: (19 —1 (mod 26)) (14 — 1 (mod 26))
(I =1 (mod 26)) (0—1 (mod 26)) (0—1 (mod 26)) (25— 1 (mod 26)) be-
comes 18 13 0 —1 —1 24. Uh-oh. We have no letter that corresponds to —1.
However, because the underlying set is Z,g, we know that every integer is in an
equivalence class that can be represented by a number from 0 to 25. We note that
—1=25 (mod 26), and now our message is 18 13 0 25 25 24, or snazzy.

Example 5.4.1 shows why the use of modular arithmetic prohibits converting
ato 1, b to 2, and so on; in order to have 26 letters, we need to operate in Z;g by
computing modulo 26, and one of those numbers is certainly 0.
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A different example of a shift cipher is ROT/3, popularized with the advent
of Usenet (this is a pre-World Wide Web system, kiddos). It was beloved for
sending encrypted punchlines to jokes, and the favored cipher because encryption
and decryption are the same operation: add 13 (mod 26). (Notice that —13 = 13
(mod 26).)

Example 5.4.2 (of ROT13 in use). Question: Why did the duck cross the road? An-
swer: Gb yrng ure ghpxyvatf gb gur Choyvp Tneqra.

First we convert the ciphertext to numerals, to wit: 6 1 24 17 13 16 20 17 4
167152324210195616201727142421151913416170. Then we
decrypt by adding 13 (mod 26) to each letter. Here are the first few: 6+ 13 =19
(mod 26);14 13 =14 (mod 26);24+ 13 =37 =11 (mod 26);17+13=30=
4 (mod 26). (Conveniently, this also corresponds to simply switching numerical
rows in the number/letter conversion table.) In full, the decrypted text is 19 14 11
40374173202101181361819141974152011182601734 13.

You are invited to convert this to appropriate letters in order to read the riddle’s
answer.

Shift ciphers are not very secure because a frequency analysis (determining
which letters are used most frequently) allows a person who has intercepted the
ciphertext to guess that it is a shift cipher and by how many positions the text is
shifted.

5.4.2 The Vigenere Cipher

Slightly more secure is the Vigenere cipher. Instead of shifting each letter by a
fixed amount, the Vigenére cipher shifts each letter by an amount determined by
alignment with a key word.

Example 5.4.3. We will encrypt the message cake is delicious. As usual, we first
convert the message to numbers: 20104 8 18 34 11 82 8 1420 18.

Let the key word be duck, or 3 20 2 10. We repeat the key word over the
length of the message, so that the first letter of the message will be shifted by 3,
the second letter shifted by 20, the third letter shifted by 2, the fourth letter shifted
by 10, the fifth letter shifted by 3, the sixth letter shifted by 20, and so forth and so
on. Writing the key in a row below the plaintext message, we have

2 0 10 4 8 18 3 4 11 &8 2 8 14 20 18
320 2 10 3 20 2 10 3 20 2 10 3 20 2
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Now, we add modulo 26 to obtain
5 20 12 14 11 12 5 14 14 2 4 18 17 14 20,

or fumo Im foocesrou.

Now, suppose we have received the message cyev kj xayx vir voq, and we know
that the key word is quack. We first convert to numbers and lay out the key word
as we did before...

2 24 4 21 10 9 23 0 24 23 21 & 17 21 14 16
16 20 0 2 10 16 20 0 2 10 16 20 0O 2 10 16

... but this time we subtract the repeated key word from the message, working
number by number and modulo 26. This gives us

12 4 4 19 0 19 3 0 22 13 5 14 17 19 4 0,

and you can convert this to letters to see the secret message.

While the repeated use of a key word is what most people mean when referring
to a Vigenere cipher, it is not exactly what Blaise de Vigenere (1523—1596) himself
proposed. What Vigenére did was start encrypting with a single copy of a key
word, and then, instead of repeating the key word, he started using the letters of
the plaintext itself, or of the ciphertext as it was generated from the key word (and
then from itself). This sounds as though it would produce undecryptable ciphertext
(i.e., wacktext), but not so: one can decrypt as many letters as are in the key word,
and thereby obtain the next “key” letters to use in the decryption.

Example 5.4.4. This time, we will encrypt the message cake is delicious, again
using the key word duck, but using the original version of the Vigenére cipher.
Example 5.4.3 gives the conversion of the message and key word to numbers:

2 0 10 4 8 18 3 4 11 8 2 8 14 20 18
320 2 10 2 O 10 4 8 18 3 4 11 8 2

Notice that the second row of numbers begins with the converted duck and is
followed by the text of the message. We then add modulo 26 to obtain

5 20 12 14 10 18 13 8 19 0O 5 12 25 2 20,

or fumo ks nitafmzcu.
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Decrypting is slightly more complicated in this instance. Suppose we have
been sent the message watk ygawums vxiznt beddgg bus lal vl and that we know
the key word is egg. We will just decrypt the first three words, and we will start
by converting them to numbers:

22 0 19 10 24 6 0 22 20 12 18 21 23 8 25 13 19

Now, we write egg (as 4 6 6) underneath the first three numbers because it is
the key word. But that’s all we can do—the remainder of the “key word” has to
come from the message itself.

22 0 19 10 24 6 0 22 20 12 18 21 23 8 25 13 19
4 6 6

We subtract the key word numbers from the message, modulo 26, to obtain

22 0 19 10 24 6 0 22 20 12 18 21 23 8 25 13 19
4 6 6
18 20 13

Hmm... 18 20 13 is sun. In any case, we write our three plaintext numbers under
the next three ciphertext numbers:

22 0 19 10 24 6 0 22 20 12 18 21 23 8 25 13 19
4 6 6 18 20 13
18 20 13

Then we subtract modulo 26 to obtain three more plaintext numbers,

22 0 19 10 24 6 0 22 20 12 18 21 23 8 25 13 19
4 6 6 18 20 13
18 20 13 18 4 19

which convert to setz. Hmm. We continue in this fashion, writing our new plaintext
numbers underneath the next ciphertext numbers

22 0 19 10 24 6 O 22 20 12 18 21 23 8 25 13 19
4 6 6 18 20 13 18 4 19
18 20 13 18 4 19

and subtracting modulo 26 to obtain more plaintext numbers.
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22 0 19 10 24 6 0 22 20 12 18 21 23 8 25 13 19
4 6 6 18 20 13 18 4 19
18 20 13 18 4 19 8 18 1

We leave the remainder of the translation to you.

Back in the days when people wrote messages by hand (when was that? Oh,
that still happened in the 1980s, but here we’re talking about the 1550s), a shift
table was devised to make manual Vigenere encryption/decryption faster. The top
row of this shift table is the usual alphabet, as is the left column. The second row
and column are shifted-by-one copies of the alphabet, beginning with B and end-
ing with A. The third row and column are shifted-by-two copies of the alphabet,
beginning with C and ending with B. The remainder of the shift table is filled in
the same fashion. This way, when encrypting manually one can choose a plain-
text letter from the top row and a key word letter from the left column; the letter
underneath the plaintext letter and in the row selected by the key word letter is the
ciphertext letter. To decrypt manually, one would find the row corresponding to
the key word letter and find the ciphertext letter in that row; then, one would zip
upwards to find the corresponding plaintext letter in the top row.

5.4.3 Decryption and the Real World

Substitution ciphers are only the tip of the iceberg when it comes to encryption, and
amessage encrypted using a substitution cipher can easily be read by someone who
intercepts it. It is easy to obfuscate by breaking a message into blocks of uniform
length and leaving the ciphertext in numerical form. Also, using an alphabet of a
length other than 26 (by allowing some punctuation or paying attention to case)
makes decryption more difficult. And in reality there is an additional layer of
security beyond any individual cipher—there are so many encryption methods that
only an expert can recognize which type has been used on a given message. Still,
no method described here is a match for an even mildly experienced computer
hacker.

The sciences of creating and cracking encryption schemes are incredibly im-
portant in commerce, finance, and national security. As a result, there are aca-
demic, governmental, and industrial research jobs specifically tasked with the
hardware, software, and theory of cryptography. On the creation side, unbreak-
able encryption is needed for banks to communicate internally and externally so
that account transactions cannot be altered or fabricated, and for businesses to
accept credit card information over the internet without leaving customers vulner-
able to identity theft (a common method for this is described in Section 16.10), and
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for governments to communicate with intelligence personnel (spies!) in the field.
The flip side of that last need is the desire of governments to crack encryption
schemes used by terrorists so that their nefarious plans can be uncovered. During
times of war, it has been (and is, and will be) crucial to intercept and understand
enemy communications about troop movements and bombing targets. The twin
necessities of inventing and breaking new methods of encryption will always be
in tension.

Check Yourself

Do a representative sampling of these problems to be sure you understand how to use the
various ciphers presented in this section.

1. Encrypt the message lemon drops using a Caesar cipher.

2. Decrypt the message pvaanzba ohaf using ROT13.

3. Encrypt the message quilt blocks using a shift cipher with shift 7.

4. Decrypt the message bdpja Ixxtrnb, which was encrypted using a shift of 9.

5. Encrypt the message lions tigers and bears oh my using a Vigenere cipher and key
word zoo.

6. Decrypt the message wwrfw aiw wowl, which was encrypted with a standard Vi-
genere cipher using key word ears.

5.5 Try This! Encryptoequivalent Modulalgorithmic
Problems

Please have fun with these problems.

1. Consider the symbols ab...xyzAB...XYZ.

(a) Let o ~ B if the symbols o and 3 represent the same letter. Is ~; an
equivalence relation? If so, what are the equivalence classes?

(b) Let o ~; B if the symbols & and 3 are the same case (upper or lower).
Is ~; an equivalence relation? If so, what are the equivalence classes?

(c) Now assigna+0,b+—1,...,z— 25, A— 26, ..., Z — 51. Notice
this converts our symbols to elements of Zs;. If we apply ~, what
are the corresponding equivalence classes in Zs;? What happens if we
instead apply ~»?

(d) Challenge: Examine the equivalence classes of Zs, under each of ~
and ~,. Do the classes themselves correspond to other familiar sets?
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2. Before proceeding, review the formal definition of congruence modulo 7.

(a) Prove (using the definition of congruence mod ) thatifa=» (mod n)
and c =d (mod n), then ac = bd (mod n).

(b) Prove thatifa =b (mod n), then a* = b* (mod n).
(c) 1s92%7 =67 (mod 43)? Explain.

3. Describe three different algorithms you use in everyday life. Write them as
lists of instructions in human-readable form. What changes would need to
be made for these instructions to be specific enough for a machine to follow?

4. Create a plaintext message and encrypt it using a shift cipher. Copy the
ciphertext onto a separate piece of paper and note the amount of the shift
you used. Trade ciphertexts with a partner and decrypt the ciphertext you
receive.

5. Write an algorithm for encrypting with the Caesar cipher that is precise
enough for a computer to follow.

6. Create a plaintext message and encrypt it using a Vigenere cipher, either
the standard sort or Vigenére’s original cipher. Copy the ciphertext onto a
separate piece of paper and note the key word you used. Trade ciphertexts
with a partner—but do not disclose which variety of Vigenére cipher you
used—and decrypt the ciphertext you receive. Try to figure out whether
your partner used original or standard Vigenére. How might you decide?

5.6 Where to Go from Here

The study of algorithms leads more deeply into computer science and also more
deeply into mathematics. We will use algorithms in Chapter 8 to solve certain
recurrence relations, and in the context of graph theory in Chapters 10 and 12. In
computer science, there are entire courses on algorithm design and implementation
and how to determine the efficiency of algorithms. The analysis of algorithms is
highly mathematical, so we address it in Chapter 17.

The Collatz conjecture (Example 5.2.12) is one of the easiest-to-state open
problems in mathematics. It has generated a lot of research. For a summary of the
history, current state of knowledge, and related generalizations of the Collatz con-
jecture, see http://mathworld.wolfram.com/CollatzProblem.html. For information
on how the Collatz conjecture has been verified for all n < 10'8 (and perhaps larger
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n by the time this textbook is printed!), check out the website “Computational Ver-
ification of the 3x+1 Conjecture” at http://sweet.ua.pt/tos/3x+1.html.

Modular arithmetic is but the beginning of a branch of mathematics called
elementary number theory, which is a subbranch of number theory (of course). If
you want to learn some number theory, read Chapter 16; if you want to learn even
more number theory, consult the references given there.

To automate encryption/decryption for shift ciphers, use http://www.dcode.
fr/shift-cipher, and to automate encryption/decryption for the standard Vigenére
cipher, use http://www.dcode.fr/vigenere-cipher.

The original work in which Blaise De Vigenere suggested the ciphers that bear
his name is Traicté des chiffres from 1586. An interesting analysis of this work is
contained in “Blaise De Vigenére and the ‘Chiffre Carre,”” by Charles J. Mendel-
sohn in the Proceedings of the American Philosophical Society, Vol. 82, No. 2
(1940).

You will need to learn a large chunk of number theory in order to study practical
cryptography. A start on this is given in Chapter 16. In Section 16.10 we give an
introduction to the RSA algorithm for encryption, which is used widely on secure
websites.

It is worth noting that cryptography research includes designing algorithms,
implementing algorithms in software, and designing hardware with specific cryp-
tographic functions. This means that there are many directions in which a study
of cryptography can proceed—there are both mathematics courses and computer
science courses in cryptography, as well as graduate programs and industrial work-
shops.

The concept of equivalence classes can be seen in the context of abstract al-
gebra, where it leads to the idea of quotient objects. To learn more about abstract
algebra and quotients, see Visual Group Theory by Nathan Carter, as well as Con-
temporary Abstract Algebra by Joe Gallian.

Credit where credit is due: Some of the commentary on algorithms in this chapter was
inspired by [1] and [5]. Example 5.4.2 was inspired by [19]. Section 5.9 was inspired
by [4]. The Doctors on page 139 are those from the long-running television show Doctor
Who. My colleagues at the Centre for Textiles and Conflict Studies provided inspiration
for Bonus Check-Yourself Problems 2 and 4. Bonus Check-Yourself Problem 10 includes
a quote from Jane Austen. Bonus Check-Yourself Problem 1 was suggested by Tom Hull.
In Section 5.11, Problem 2 refers to the Cake Wrecks blog (see www.cakewrecks.com) and
Problem 15 refers to the SuperFriends cartoon from the 1980s (in which the Wonder Twins
took shapes of an animal and water, respectively). Regarding Problem 40 in Section 5.11,
Susan is a resident of Sesame Street, and the message is, of course, a line from that excellent
show’s theme song.
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5.7 Chapter 5 Definitions

algorithm: A finite list of unambiguous in-
structions to be performed on one or sev-
eral inputs; some instructions may refer
to others.

terminate: An algorithm terminates when it
produces an output and ends after execut-
ing a finite number of instructions.

correct algorithm: An algorithm that does
what it should do.

conditional: A statement within an algo-
rithm that places conditions on an in-
struction.

if-then-else: A conditional that usually
takes the form “if (conditions), then (ac-
tion set 1), else (action set 2)” and is
read/understood as “If (conditions) are
met, then do (action set 1); otherwise, if
(conditions) are not met, then do (action
set 2).”

until: A conditional that takes the form
“do (action set) until (conditions)” or
“until (conditions), (action set)” and is
read/understood as “Do (action set) un-
til (conditions) are met and then go to the
next instruction.”

while: A conditional that takes the form
“do (action set) while (conditions)” or
“while (conditions), (action set)” and is
read/understood as “Do (action set) while
(conditions) hold, and when (conditions)
are no longer met, go to the next instruc-
tion.”

loop: An instruction to perform some set
of actions more than once. (The instruc-
tions repeat, forming a string of instruc-
tions into a loop of instructions.)
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iteration: The process of repeating instruc-
tions.

cruciferous: An adjective used to describe
vegetables from the family Cruciferae
(a.k.a. Brassicaceae). The many crucif-
erous vegetables include kale, cabbage,
broccoli, arugula, turnips, and wasabi.

existence proof: A proof that shows that
something exists.

constructive proof: A proof that produces
an example of a desired object.

divides: Short for “divides evenly.”

congruent modulo n: Two integers a and b
are congruent modulo n when (a —b) =
kn for some k € Z.

integers modulo n: The set of different re-
mainders obtainable by dividing integers
by n.

symmetric property: This holds if when
s1 ~ s, then sy ~ s; for all s1,5, € S.

reflexive property: This holds if s ~ s for
all s € S.

transitive property: This holds if when
s1 ~ sp and s, ~ s3, then s; ~ s3 for all
S1,82,83 € S.

equivalence relation: An operation ~ de-
fined on a set S that satisfies the symmet-
ric property, the reflexive property, and
the transitive property.

equivalence class: All the elements equiv-
alent to a using some equivalence rela-
tion, i.e., [a] = {s €S| s ~a}.
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partition: A set of subsets Aj,A»,...,A, of
a set A such that Ay UA,U---UA, = A
and A;NA; =0 forall i # j.

encryption: The process of taking mes-
sages and converting them to forms that
are not directly readable.

decryption: The process of converting re-
ceived text to readable messages.

substitution cipher: A cipher that encrypts
via letter-by-letter substitutions.
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Caesar cipher:
by 1.

A shift cipher that shifts

ROT13: A shift cipher that shifts by 13 (and
therefore encryption and decryption both
proceed by adding 13 (mod 26)).

key word: A set of letters that provides the
information needed to decrypt a cipher.

Vigenere cipher: A cipher that shifts each
letter by an amount determined by align-

ment with a key word. Named after
Blaise de Vigenere (1523-1596), who
was a diplomat. In modern standard us-
age, a Vigenere uses the key word re-
peatedly to decrypt an entire message;
originally, Vigenere himself used just one
copy of the key word and then used the
plaintext (or ciphertext) as it was gen-
erated for subsequent decryption (or en-

cryption).

plaintext: A readable message.

ciphertext: A message encrypted with a
known cipher.

wacktext: A communication we cannot
read.

shift cipher: A cipher that encrypts by
shifting each number by some fixed
amount.

5.8 Bonus: Algorithms for Searching Graphs

Suppose we need to look at every vertex in a graph. There are tons of reasons
(mathematical, computer scientific, etc.) why we might want to do this, but here is
one practical example: You maintain a website with many pages. Each page links
to some of the other pages and also has some external links. Once each year, you
need to check every link to make sure none of them are broken. Now, you could
think of the link structure as a graph, where every hyperlink represents a vertex and
two hypertext-vertices are adjacent if clicking on one leads to a page containing
the other. (This is a directed graph, though one can always hit the back button
to travel to a prior vertex.) An external hyperlink is considered to be a vertex of
degree 1 as it does not point to any page on your website. What you need is an
algorithm that visits every vertex in the graph, so that you can automate the link
checking. In this section, we will give you two algorithms that will do the job.
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How to search a connected graph, depth-first:
1. Examine the first vertex of the graph that you come across.
2. Mark the vertex as seen.

3. If this vertex has a neighbor that has not yet been seen, examine the
unseen neighbor and go to step 2; otherwise, continue.

4. If the current vertex is also the first vertex examined, then be done;
otherwise, return to the previous vertex and go to step 3.

In our example of checking all the links on a website, this is equivalent to
clicking on the first link you see until you reach a page on which the first link has
been clicked, and then clicking on the next link on the page. When there are no
links left to click on the current page, you hit the back button until you get to a page
with an unclicked link. If you are back at the starting page and all links have been
clicked, then you’ve clicked all possible links. This assumes, of course, that every
page on the website is linked from some other page on the website so that each
graph vertex is reachable. (Both algorithms need to be modified for nonconnected
graphs or general digraphs; the vertices must be labeled and ordered to assure that
all are reached.)

How to search a connected graph, breadth-first:
. Examine the first vertex of the graph that you come across.
. Mark the vertex as seen.

. Examine all unseen neighbors of the vertex and mark them as seen.

A W N =

. For each of the neighbors considered in the previous step, execute
step 3.

5. If no unseen neighbors were identified, be done; otherwise, go to
step 4.

This is equivalent to checking each link on the first page, then following the
first internal link on the page and checking all the links on the page you reach,
then returning to the first page, following the second internal link on the page and
checking all the links on the page you reach, etc. This process checks all the links
that are one click away from the first page. Next, it checks all the links that are
two clicks away from the first page, then all the links that are three clicks away
from the first page, and so on.
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Figure 5.4. A breadth-first search (across the top row) and a depth-first search (across the
lower row) are both performed on a particular graph, starting with the upper-left vertex.

Let us contrast depth-first and breadth-first searches by seeing how they pro-
ceed on a particular graph; this is shown in Figure 5.4. For another example, see
http://demonstrations.wolfram.com/GraphSearchingBreadthFirstAndDepthFirst/
where you can use a slider to control how many steps of the search have been done.

Practice. Redraw the graph in Figure 5.4 twice. Choose a different starting
vertex than the upper-left vertex, and perform a depth-first and a breadth-first
search using the new starting vertex. Now, draw a completely new graph,
never before seen by you, and perform a depth-first and a breadth-first search
on that graph.

5.9 Bonus 2: Pigeons and Divisibility

First, here’s a statement of the generalized pigeonhole principle in terms of par-
titions (see Definition 5.3.8): Suppose a set S has more than pg elements. If we
partition S into p parts, then at least one of the parts has more than ¢ elements.

Now... holy cow. Look at the sequence 4,44,444 4444 44444 444444
4444444 44444444 . ... Do you believe that one of the first 63 elements of this
sequence is divisible by 63?

Well, if not, too bad. We’re going to prove that it’s true, using proof by con-
tradiction and the pigeonhole principle.

Suppose not. That is, suppose that none of the first 63 elements of 4,44,444,
4444 44444 444444 4444444 44444444 | is divisible by 63. Take those 63
elements and find their remainders after division by 63. Cast in the language
of modular arithmetic, compute 4 (mod 63),44 (mod 63),444 (mod 63),4444
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(mod 63), etc. These will be numbers in the 1 to 62 range. None of them will
be 0 because none of the sequence elements are divisible by 63. Now, there are
63 remainders and 62 numbers, so at least two of them have to be the same by the
pigeonhole principle.

What? What’s that you’re saying? You don’t know how that helps? Right.
Hang on a minute. First, notice that you just proved a lemma.

Lemma 5.9.1. At least two of the first 63 elements of 4,44,444, 4444 44444
444444 4444444 44444444 . .. have the same remainder on division by 63.

Hey, don’t knock it—even if that didn’t help prove the statement that one of
the first 63 elements of 4,44,444, 4444 44444 444444 AA44444 A4444444 is
equivalent to 0 (mod 63), it would be pretty cool.

But anyway. Go back to that remainder list. Use it to find two sequence ele-
ments that have the same remainder r after division by 63. Call them a; and a,.
Now, a; =63p+randay =63g+r. Soa; —a, =63p+r—(63¢g+r)=63(p—q),
and that means that a; —a, =0 (mod 63).

I know what you’re thinking—this still doesn’t help, because yeah, we have
a number divisible by 63, but it’s not one of the elements of the sequence! Ele-
ments a; and a, are both strings of 4s (though they have different lengths), and so
la; — ay| is a bunch of 4s followed by a bunch of 0s. Still not helpful, but we’re
almost there. Notice that if you chop off all of the Os, you get a bunch of 4s—
and it’s fewer than sixty-three 4s, because the longer of @ and a; is no more than
63 digits in length. That means the remaining bunch of 4s is one of the first 63
elements of 4,44,444 4444 44444 444444 4444444 44444444 . ... Now for the
denouement: 63 has no factors in common with 10, so because integer factoriza-
tion is unique, a; — ay is divisible by 63 and also by 10, and therefore chopping
off the ending Os leaves a number that is divisible by 63. Ha! We’re done.

(There’s a related problem, on which numbers divide numbers like 111, 1111,
11111, etc., that you may enjoy exploring at http://demonstrations.wolfram.com/
ThePigeonholePrincipleRepunits/.)

Pause. What was special about the digit 4 and the number 63 in the proof given
above? Think on this for at least 30 seconds. Your goal is to see how this proof,
and therefore the lemma and theorem, can be generalized. Spend at least two
minutes contemplating how to generalize this mathematical situation—and book-
mark/close the book if your eyes are likely to wander further.

What would a generalization of our original statement look like? We would
consider the sequence k, kk, kkk, kkkk, kkkkk,kkkkkk, ... 6 and desire to show that
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one of the first m elements is divisible by m. In order to generalize our statement,
we need to determine what restrictions our proof placed on k and m. So let’s go
through the proof step by step and see what we find.

We first proved the lemma that at least two of the first m elements of k, kk, kkk,
kkkk, kkkkk,kkkkkk, ... have the same remainder on division by m. There are at
most m — 1 different values of k (mod m),kk (mod m),... among the first m re-
mainders. Thus, by the pigeonhole principle, two of these remainders must be the
same. What are the crucial parts of this argument? Well, m has to be larger than
m— 1 in order to apply the pigeonhole principle, and m > m — 1 is always true no
matter what m is. The value of k is irrelevant here—in fact, it doesn’t matter what
bunch of m numbers we pick. This means we have in fact now shown that at least
two of the first m elements of any integer sequence have the same remainder on
division by m.

The next step is to produce a number that is 0 (mod m). We do this by finding
two sequence elements that have the same remainder r after division by m. If
we call them a; = mp + r and a, = mq + r, we find that a; —ay = m(p — q) so
that a; —a; =0 (mod m). This time, k doesn’t even get a mention, and the rest is
arithmetic, so we still have no restriction on m. (At this point, you might reasonably
wonder whether we will end up with any restrictions at all. Keep reading to find
out!)

We then observed that |a; — az| is a bunch of ks followed by a bunch of 0s.
Aha! This does at least restrict us to a sequence of the form k, kk, kkk, kkkk, kkkkk,
kkkkkk, ..., as otherwise we have no idea what the digits of |a; — az| will be. Then
we note that the bunch of ks is one of the first m elements of our sequence. This
is true because the length of |a; — az| is less than m, which is true because each of
a; and a, has length no more than m. No restrictions here. But the denouement
gives a restriction: m has to have no common factors with 10 so that chopping off
all those Os leaves a number divisible by m.

Now, there have been no restrictions on k so far. But let’s look a tiny bit closer.
We were sort of assuming that k was a digit, meaning that 1 < k < 9. But does
that have to be true? For example, what if k = 0? Well, we get a silly statement
and silly result. (You may decide for yourself whether we should allow k = 0 or
not.) And what if k£ > 9? The only place in the proof that k comes into play is in
showing that (bunch of ks) — (other bunch of ks) = ks followed by 0s. And that’s
true no matter how many digits k has.

Conclusion: For any m € N divisible by neither 2 nor 5, and any k € N, at least
one of the first m elements of the sequence k, kk, kkk, kkkk, kkkkk, kkkkkk, ..., is
divisible by m.
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Related problem. Consider a prime p other than 2 or 5. Show that if you consider
p,p>,p°,..., one of these must have last digit 1. In fact, one must have last digits
01; why? And in fact, one must have last digits 000000000000000001; why?

5.10 Bonus Check-Yourself Problems

Solutions to these problems appear starting on page 603. Those solutions that model a
formal write-up (such as one might hand in for homework) are to Problems 3 and 6.

1.

Find the smallest nonnegative integer
x that satisfies the equation 3(x+7) =
4(9—x)+1 (mod 5).

. Encrypt this message from a supportive

shark using a shift-by-10 cipher: YOU
ARE SUPER GREAT AND FACES
ARE HIGH IN PROTEIN

. Prove, using only the definition of

congruence modulo n, that if a = b
(mod n), thena+c=b+c¢ (mod n).

. While you are distraught over your

latest discrete math exam, a passerby
shoves a scrap of paper into your hand
that reads xvghdibhvivozz 21. You sus-
pect that this could be a shift cipher.
What does the message say?

. Here is an algorithm:

1. Getapot, acover, a stove, and
an egg.

2. Put the egg in the pot.

. Fill the pot with enough water
to cover the egg.

. Turn a burner to high heat.

. Set the pot on the burner.

Put on a hat.

. Wait until the water boils.

. Wait for 3 minutes.

. Remove the pot from the heat
and add a cover.

(8]

10. Wait for 10 minutes.

11. Crack the shell of the egg.

12. Drain the water, replace with
cold water, and let stand for 3
minutes.

13. Put away the egg.

What are the inputs? What are the out-
puts? Does the algorithm terminate?
What does the algorithm do? Are there
any problems with this algorithm?

. Let a ~ b exactly when ab? is even. Is

~ an equivalence relation?

7. Write an algorithm that lists the first 10

10.

negative multiples of 9.

. Encrypt the foam shark visor is intended

only for children using the original Vi-
genere cipher with key word pickles.

. Let ~ be defined so that a ~ b exactly

when b —a > 2. Is this an equiva-
lence relation? If'so, list the equivalence
classes. If not, which of the three prop-
erties (reflexive, symmetric, transitive)
does not hold?

Decrypt xx ut e keyrp nvavximtsfl ixoeg-
wwpbggn using a Vigenére cipher and
the key word pemberley. Is this an orig-
inal or a standard Vigeneére cipher?

e oy
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SANITARY
CHEESE
PRESERVER

REMOVE REMOVE
LID LID
DAILY DAILY

KEEP CHEESE IN FOIL, PARCHMENT, OR

WAXED PAPER. PUT PLAIN WATER IN
BOTTOM. CHANGE TWICE WEEKLY.
MAYTAG DAIRY FARMS
NEWTON IOWA

Figure 5.5. A sanitary cheese preserver (left) and the inscription on its lid (right).

and Ciphers

1. Consider the inscription shown in Fig-
ure 5.5. What are these instructions de-
signed to do? Are they an algorithm?

2. Encrypt the message naked mohawk

baby carrot jockeys using a shift cipher
with shift 24.

3. Finish decrypting the message given in

Example 5.4.4.

4. Let ~ be defined so that a ~ b exactly

when a - b is divisible by 3. Is this
an equivalence relation? If so, list the
equivalence classes. If not, which of the
three properties (reflexive, symmetric,
transitive) does not hold?

5. List the equivalence classes of Z, in

both equivalence-class notation and set
notation, and verify that they parti-
tion Z.

6.

7.

Problems about Algorithms, Modular Arithmetic,

Prove that a = b (mod n) if and only if
n|(a — b); that is, check that the condi-
tion given in Definition 5.3.1 is correct.

These instructions were found on an ac-
tual chopstick wrapper:

1. Tuck under thumb and hold
firmly.

2. Add second chopstick, hold it
as you hold a pencil.

3. Hold first chopstick in origi-
nal position, move the second
one up and down, now you
can pick up anything.

What are the inputs for this algorithm?
Is the algorithm correct? Comment on
the algorithm’s clarity.

. Decrypt the message fgenjxpno fv rt-

nffrz fvug, which was encrypted using
ROT13.
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9.

10.

I1.

12.

13.

14.

15.

16.
17.

Prove, using only the definition of
congruence modulo n, that if a = b
(mod n) and b =c¢ (mod n),thena =c
(mod n).

What does this list of instructions do?
Comment on whether it is an algorithm
and whether it terminates.

1. Letn=3.
2. Replace n with n+4.
3. If n is even, go to step 2.

Decrypt the message kqfnjzykwj qpmljd
uki xaegd aaf dua, which was encrypted
using the original Vigeneére cipher with
key word fish.

The input for this algorithm is n € N.
What does the algorithm do?

. Letk=1.

. Let result = 1.

. Replace result with k - result.

. If k < n, replace k with k+ 1
and go to step 3.

AW N —

5. Output result.

What kind of proof is used in proving
Theorem 5.3.3?

Let ~ be defined so that a ~ b exactly
when a + b is even. Is this an equiva-
lence relation? If'so, list the equivalence
classes. If not, which of the three prop-
erties (reflexive, symmetric, transitive)
does not hold?

Encrypt the message iron bars procras-
tinate rhymes with twin powers activate
using the standard Vigenére cipher with
key word silly.

Is [2] = [123] modulo 6? Explain.
Write an algorithm that counts to 18 by
twos.

18.

19.

20.

21.

22.

23.
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Prove, using only the definition of

congruence modulo n, that if a = b

(mod n) and ¢ =d (mod n), then a +

¢=b+d (mod n).

Our goal in this problem is to determine

when the converse of Theorem 5.3.3

holds and when it does not, namely,

when does ac = be (mod n) imply that

a=b (mod n)?

(a) Let us recall our counterexample:
18 = 24 (mod 6), but 9 # 12
(mod 6). In fact, 18 =24 =0
(mod 6). Find another example in
whichac =bc=0 (mod n) and a #
b (mod n). (Try not to have n = 6.)

(b) In your example, was n even? If so,

find another example in which n is
odd.

(c) Make a conjecture: under what con-
ditions does the converse of Theo-
rem 5.3.3 hold?

(d) Challenge: Perhaps there is some-
thing special about zero... or per-
haps not. Use the definition of
congruence modulo n to figure out
whether there are a,b,c,n such
that ac = bc (mod n) and ac # 0
(mod n) and a Z b (mod n).

Is set containment C an equivalence re-
lation?

Decrypt the message g kiv pih kpmmbhjc-
zomz, which was encrypted using a ci-
pher that shifted by eight letters.

Decrypt the message dtrn utzaknr dbbv
utzaknr T Ibt’b zoam po gabbd hvlwoec,
which was encrypted using a Vigenére
cipher with key word lady. Which type
of Vigenere cipher was used?

The company Charmed, I'm Sure
makes bracelets. Each bracelet has four
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24.

25.

charms, Apple, Banana, Cherry, and
Fig (or {A,B,C,F} for short). The way
these bracelets are made is by sending a
line of charms into a machine, where
they get attached to circular chains.
There are 24 different orders in which
a set of 4 charms might get fed into the
machine. (Why?) Once the bracelets
are complete, some of these 24 orders
look the same. If we consider the equiv-
alence relation b; ~ b, when bracelets
by and b, look the same, how does this
partition the set of 24 charm orderings?

Challenge: Understand the algorithm
for Russian multiplication given in Ex-
ample 5.2.11.

(a) Execute the algorithm using A = 12
and B=1.

(b) Now choose two different values
for A,B and execute the algorithm
again.

(c) When do you write down Bstep and
when not?

(d) When you sum the column, what
multiple of B (how many copies of
B) do you obtain?

(e) Does this have anything to do with
binary numbers?

(f) How exactly does this algorithm
give the same result as usual multi-
plication?

Challenge: Write actual code in an ac-
tual programming language that...

(a) ... encrypts a message using a shift
cipher of 12 letters.

(b) ... decrypts a message encrypted us-
ing a shift cipher of 6 letters.

(c) ... encrypts a message using the
original Vigenére cipher.

26.

27.

28.

29.

5. Algorithms with Ciphers

(d) ... decrypts a message using the
standard Vigenere cipher.

Let ~ be defined so that a ~ b exactly
when a? = b?. Is this an equivalence re-
lation? If so, describe the equivalence
classes. If not, which of the three prop-
erties (reflexive, symmetric, transitive)
does not hold?

Is {3k + 1 (mod 15) | k € Z} U
{5k—2 (mod 15) | k € Z} U {6k +2
(mod 15) | k € Z} a partition of Z;s?
Why or why not?

Create a partition of Z, and three non-
partitions of Zp,, two that violate ex-
actly one of the conditions to be a par-
tition and one that violates both condi-
tions.

Fill in these addition and multiplication
tables modulo 5:

+ 10 1 2 3 4

AW~ O

AW —= O X

30. (a) Find the smallest nonnegative num-

ber x such that x = 107 (mod 7).

(b) Compute the smallest x such thatx =
483 (mod 9).

(c) Calculate the smallest positive value
of 848 (mod 9).
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31.

32.

33.

34.

35.

5.12

(d)Is10=7 (mod 3)?
(¢) What about 49... is it
(mod 22)?

17

Encrypt the message grackles are shiny
and like shiny things using the Caesar
cipher.

The input for this algorithm is n € N.
What does the algorithm do?

. Letk=0.
. Let result = 1.
. Replace result with k - result.

. If k < n, replace k with k+ 1
and go to step 3.

Y S

5. Output result.

Let ~ be defined so that a ~ b exactly
when a + 2b is even. Is this an equiva-
lence relation? If so, list the equivalence
classes. If not, which of the three prop-
erties (reflexive, symmetric, transitive)
does not hold?

Decrypt the message ctzt dhp gkt qvym
pediyk dhp jvohibs, which was en-
crypted using the standard Vigenére ci-
pher with key word kale.

Consider the following, printed on
boxes of Opti-Free RepleniSH.

Directions for care of your lenses:
To clean, recondition, disinfect and re-
move protein from your contact lenses:

Instructor Notes

36.

37.

38.

39.

40.
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1. Thoroughly rinse each side
of the lens (5 seconds) with
OPTI-FREE®  RepleniSH®
Multi-Purpose  Disinfecting
Solution.

2. Fill your lens case with fresh
OPTI-FREE®  RepleniSH®
Multi-Purpose  Disinfecting
Solution.

3. Store lenses in the closed lens
case overnight or at least 6
hours. After soaking, lenses
are ready to wear.

What are the inputs for this algorithm?
Does the algorithm terminate?

Write an algorithm that sums the first n
squares.

Is 9 =3 (mod 6)? What about 389 =
87 (mod 92)?

Encrypt the message it was a dark and
stormy night using the original Vigenére
cipher with key word weather.

What is the smallest number greater
than n thatis = 1 (mod n)? For a num-
ber k between 1 and n, what is the small-
est number larger than k but also = &
(mod n)?

Encrypt the message can you tell me
how to get to Sesame Street twice, once
using the standard Vigeneére cipher and
once using the original Vigenére cipher,
both with key word susan.

The material in this chapter is intentionally light so as to make room in a semester schedule
for review and the giving of an exam. So, the class-time plan here is for about one-and-
one-half classes. The fact that many students have more of a passing familiarity with



162 5. Algorithms with Ciphers

algorithms and with modular arithmetic than with other topics in a discrete mathematics
course is helpful.

Assign the students to read Sections 5.1-5.4 in preparation for the week and to do
some of the Check Yourself problems. Twenty pages of reading seems like a lot, but it’s
very fast and students find most of it to be easy; in particular, they will zip right through
the algorithm and cipher material. Really! You probably don’t believe this, but it is true
(and verified by people other than the author). Usually students do not feel that modular
arithmetic presents any difficulty, but they do need some supervised practice with it, and
equivalence relations/classes can present a challenge.

Begin by having the students open to Section 5.5. It works well to introduce the first
problem to the students in the form of a tiny interactive lecture and then alternate between
having them work in pairs and conducting a large group discussion. Similarly, the second
problem can be introduced via interactive lecture and segue into work in pairs or groups.
It also presents a good opportunity to ask for questions over the reading. To add a bit of
dramatic flair to the first problem’s introduction, show a video (http://www.youtube.com/
watch?v=qTvhKZHAP8U) of Big Bird singing the “Abcdefghi...” song.

Problem 5 in Section 5.5 can be profitably introduced via interactive lecture as well
because it allows a discussion of how modular arithmetic is used algorithmically in these
substitution ciphers. If you want to use actual code or code-like pseudocode, python syntax
is a good choice because students pick it up very quickly. If you plan to cover Chapter 17
later, you’ll want to assign Problem 24 in Section 5.11 now.

Section 5.5 is probably too much for a single class period; a good warmup for a second
class period is asking the class to describe the Vigenere cipher to you. This can easily
transition into the remaining problems in the activity.

An excellent way to break students into groups for work in this chapter is to count them
off from 1 to n (assuming you have n students), choose a k ~ 7, and tell them to collect
into groups where all members have numbers congruent mod k. Then ask them to decide
whether their group forms an equivalence class (or not). This gives students practice with
modular arithmetic and equivalence classes while also allowing a bit of controlled chaos
into the classroom.


http://www.youtube.com/watch?v=qTvhKZHAP8U
http://www.youtube.com/watch?v=qTvhKZHAP8U
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TI.1  Summary of Theme | Proof Techniques

Template for a direct proof:

1. Restate the theorem as if (conditions) are true, then (conclusion) is true.
2. On a scratch sheet, write assume or suppose (conditions) are true.

3. Take some notes on what it means for (conditions) to be true. See where
they lead.

4. Attempt to argue in the direction of (conclusion) is true.
5. Repeat attempts until you are successful.
6. Write up the results on a clean sheet, as follows.

¥ Theorem: (State theorem here.)
¥ Proof: Suppose (conditions) are true.

¥ (Explain your reasoning in a logically airtight manner, so that no
reader could question your statements.)

¥ Therefore, (conclusion) is true. (Draw a box or checkmark or
write Q.E.D. to indicate that you’re done.)

How to apply the pigeonhole principle:
1. Figure out what represents the pigeons.

2. Figure out what represents the pigeonholes.

3. Figure out how pigeons correspond to holes.

163
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Template for a proof that A C B:
¥ Let a be any element of A.
¥ (Reasoning, statements.)

¥ Therefore, a € B, and so A C B.

Double-Inclusion. To show that A = B, show first that A C B and then show
that B C A.

Biconditionals (<=-s):

(a) First, write (=) to indicate you’ll prove that P implies Q (and then
do so).

(b) Then, write (<) to indicate you’ll prove that Q implies P (and then
do so).

Be sure to start a new paragraph for each implication.

Template for proving the contrapositive:
1. State the theorem as if (conditions) are true, then (conclusion) is true.

2. Restate the theorem in the equivalent form if —(conclusion) is true, then
—(conditions) is true.

3. On a scratch sheet, write assume or suppose —(conclusion) is true.

4. Take some notes on what it means for —(conclusion) to be true. See
where they lead.

5. Attempt to argue in the direction of —(conditions) is true.

6. Repeat attempts until you are successful.
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7.

Write up the results on a clean sheet, as follows:

¥ Theorem: (State theorem here.)
¥ Proof: Suppose —(conclusion) is true.

¥ (Explain your reasoning in a logically airtight manner, so that no
reader could question your statements.)

¥ Therefore, —(conditions) is true, so our original theorem holds
and we are done.

Template for a proof by contradiction:
1.
2.

. Try to simplify the statement of =(conclusion) and see what this might

. Attempt to derive a contradiction of some kind—to one or more of (con-

. Repeat attempts until you are successful.

. Write up the results on a clean sheet, as follows:

Restate the theorem as if (conditions) are true, then (conclusion) is true.

On a scratch sheet, write suppose not. Then write out (conditions) and
the negation of (conclusion).

mean.

ditions) or to a commonly known mathematical truth.

¥ Theorem: (State theorem here.)

¥ Proof: Suppose not. That is, suppose (conditions) are true but
(conclusion) is false.

¥ (Translate this to a simpler statement if applicable. Derive a con-
tradiction.)

¥ Contradiction!

¥ Therefore, (conclusion) is true. (Draw a box or checkmark or
write Q.E.D. to indicate that you’re done.)
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How to do a proof by induction:

¥ Base case: Check to make sure that whatever you want to prove holds
for small natural numbers, like 1, 2, and 3.

¥ Inductive hypothesis: Assume that whatever you want to prove is true,
as long as the variable in the statement is smaller than or equal to &;
here, k is a specific (but unknown) value.

¥ Inductive step: Consider the statement with k + 1 as the variable. Use
your knowledge that the statement is true when the variable is less than
or equal to k in order to show that it’s still true for k4 1. (That is, use
the base case(s) and inductive hypothesis.)

TI.2 Potential Practice Proof Problems

Here is a panoply of plain practice proof problems. Many of those pertaining to
set theory were provided by David Cox.

i T1.2.1  Problems Pertaining to Chapter 1
\}7 1. Prove that the sum of an odd number and an even number is odd.
2. Prove, or find a counterexample: for k any integer and n any odd number,

kn 1s odd.

3. Prove that for finite sets A,B,C, the number of elements of A x B x C is
|Al-|B[-|C].

4. Prove, or find a counterexample: if m is odd, then 4m — 3 is odd.
5. Prove that if n + 6 is even, then n is even.
6. Prove that the binary representation of an even number ends in 0.

7. Prove that if a is even and b is odd, then ab + 1 is odd.

i T1.2.2 Problems Pertaining to Chapter 2
| \}7 8. Prove that A C B if and only if AUB = B.

9. Let A,B,C be sets; show that if A C B, then ANC C BNC.
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10.
I1.
12.
13.
14.
15.
16.

17.
18.

19.

Show that for sets A, B, if AUB C ANB, then A = B.

Prove that A C B implies that A x C C B x C.

For sets A, B,C, show that A x (BNC) = (A X B)N(A xC).
Prove that if m?> — 2m is even, then m is even.

Show that (A\B)N(B\A) =0.

Show that if z € Z and 7 | z, then z € {—1,0, 1}.

Consider the proposition if n is even, then n> + n is even.

(a) Prove it.
(b) State the converse.

(c) Ifthe converse is true, prove it; if it is false, give a counterexample.
Using element notation, prove that if ANB = A, then AUB = U.

Prove, using contradiction or the contrapositive, that if the average age of
four children is ten years old, then at least one child is at least ten years old.

Prove that if a natural number n is even, then n+ 2 is even...

(a) ... using a direct proof.
(b) ... by proving the contrapositive.

(¢) ... using proof by contradiction.

T1.2.3 Problems Pertaining to Chapter 3

20.
21.
22.

23.
24.
25.

Prove that Ky is isomorphic to Wj. @;SG

Prove that f : Z — Z defined by f(z) = z+ 3 is a well-defined bijection.

Prove that f : Z x Z — Z x Z defined by f((a,b)) = (—b,a) is a well-defined
bijection.

Prove that there is no graph with degree sequence (1,1,2,3,4,4,5,7).
Prove that the cycle graph C,, has n edges.

Is it possible for a simple graph with 6 vertices to have 42 edges? Explain.
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26

27

Theme | Supplement

. Let f: Nx N — N, with f(a,b) = a® + b>. Decide (with proof) whether f
is one-to-one, onto, both, or neither.

. Let f: Nx N — N, with f(a,b) = a+ b. Decide (with proof) whether f is
one-to-one, onto, both, or neither.

T1.2.4 Problems Pertaining to Chapter 4

28

29

30

31

32

. Prove, in two different ways, that whenn > 1, 2n > n+ 1.

n
. Prove that

(2j43) =n*+4n.
j=1

213 +3n%+3n

3/241) =
(3j=+1) 2

n
. Prove that
j=1
. Prove that 12" > 3" for all n € N.
/! 2 n

. Show that forn € N, - - = .
v " ;(z—i—l)(z—l—2) n+2

T1.2.5 Problems Pertaining to Chapter 5

33

34.

35.
36.

37.

38.

. Let ~ be an equivalence relation on a set S. Using the definition of equiva-
lence class (see page 139), prove that [a] = [b] if and only if a ~ b.

Prove that if a = b (mod n) and ¢ = d (mod n), then ac = bd (mod n)
without applying the definition of congruence modn.

Prove that 3|x <= 3|x°.

Let ~ be defined so that a ~ b exactly when a+ b is odd. For each of the three
equivalence relation properties (reflexive, symmetric, transitive), prove that
the property holds or demonstrate why the property does not hold. Is this an
equivalence relation? If so, list the equivalence classes.

Let ~ be defined so that a ~ b exactly when |a| = |b|. s this an equiva-
lence relation? If so, list the equivalence classes. If not, which of the three
properties (reflexive, symmetric, transitive) does not hold?

Let ~ be defined so that a ~ b exactly when a < b+ 2. Is this an equiva-
lence relation? If so, list the equivalence classes. If not, which of the three
properties (reflexive, symmetric, transitive) does not hold?
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TI.3 Problems on the Theme of the Basics

These problems could be used for studying for (or writing!) in-class or take-home
exams, or just for more enrichment. They are not given in any particular order. In
fact, they have been intentionally mixed up so that they are not in chapter order, so
that the solver cannot use the ordering of the problems as a clue in solving them.

5. Let n be an integer. Is it always true that
the difference between two consecutive
cubes is never even? Explain.

1. In a 1922 arsenic poisoning, at least 20 6. Give a counterexample to each of
of the > 50 victims worked in a 12-story the following statements... unless you
building. Prove that at least two of the think the statement is true, in which case
victims worked on the same floor. give a one-line justification.

2. Determine whether the graphs in Fig- (a) If n*> =4, then n® = 8.
ure TI.1 are isomorphic: exhibit an iso- (b) If sin(x) = 0, then cos(x) = 1.
morphism or find a property for which (¢) If cos(x) = 0, then sin(x) = 1.
the two graphs differ. (A GeoGebra (d) If x3 = x, then x% = 1.
file for Figure TI.1 is aval_lable for 7. Find |Zs x Zs|.
your use at http://www.toroidalsnark.
net/dmwdlinksfiles.html.) 8. Challenge: Cast your memory all the

' way back to Example 1.5.5. How far
does that example generalize? Consider
the statement given any length-k list of
m-digit numbers, two subsets have the
same sum. Find constraints on k,m for

Fi 1. T . b this statement to be true.
igure TI.1. .
3 WO suspicious graphs 9. Write the converse of if a graph G has
n )20+ 1) 30 vef”tzces, then G is not blue.
3. Prove that ) j* = ——6 - 10.Consider a function on the real num-
J=1 bers defined by f(1) =gand f(a+b) =
4. Find the smallest number of vertices f(a)- f(b) for all real numbers a, b.
needed to draw a graph with (a) Prove by induction that f(n) = ¢"
¥ an edge with multiplicity 3, foralln N
¢ . (b) Show that if ¢ # 0, then f(0) = 1.
at least two edges crossing, 11. Prove that a connected simple graph
¥ at least three vertices that are all with ten vertices must have two vertices
adjacent to each other, and of the same degree.
¥ a vertex with five neighbors. 12. For which n is K4 a subgraph of K,,? Ex-
plain.
Now draw that graph. 13. How many possible passwords have

6—-12 characters, where the characters
must be alphanumeric but case does not
matter?


http://www.toroidalsnark.net/dmwdlinksfiles.html
http://www.toroidalsnark.net/dmwdlinksfiles.html
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Figure TI.2. An arbitrary heptagon with two different decompositions into triangles and a
graph associated to one of them.

14.

15.

16.

17.

18.

Challenge: Try to figure out what the
Cartesian product of two graphs should
be, without looking it up. If you do
eventually search for information on
graph products, please forgive the math-
ematical community for using such ter-
rible and inconsistent notation. (The au-
thor has been unable to excuse it.)

Show that any 11 numbers selected
from {3,...,30} must include two that
have a common divisor (other than 1).

Show that forn € N,
u 3 n

;(i+2)(i+3) T nt3

Give three examples of functions f :
7. — 7., where one is one-to-one but not
onto, the second is onto but not one-to-
one, and the third is neither one-to-one
nor onto.

Consider any convex polygon with at
least four sides and decompose it into
triangles by connecting vertices. (Do
not let chords cross or create new ver-
tices.) See Figure TIL.2 for an example
of this process.

(a) Show that no matter how you de-
compose the polygon into triangles,
at least two of the triangles have
two sides (each) in common with the
original polygon.

(b) For any decomposition of a con-
vex polygon into triangles, create a
graph as follows. Place a vertex in
each triangle and join two vertices
when their two surrounding trian-
gles share an edge.

(1) What kind of graph is this?
(You may justify your answer.)

(i1) Does every graph of this type
arise from some convex poly-
gon? Explain.

(iii)) What aspect of the graph cor-
responds to a triangle that has
two edges in common with the
original polygon?

(iv) What theorem about graphs did
you prove in the previous part
of this problem?

19. Prove or give a counterexample: Every

multiple of 6 that is > 12 is the sum of
two consecutive primes. (For example,
30=13+17.)

20. Show that for a ﬁxed r € N and any

n
N, = )
ne Z z—|—r—1 Yi+r) n+r

21. Consider a,b € Z and leta~bifa=b

(mod 3) or if a = b (mod 5). Is this
an equivalence relation? Explain which
properties of equivalence relations hold
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and which don’t. If this is an equiva-
lence relation, then list the equivalence
classes.

22. Suppose all of G’s vertices have degree
3. Prove that G can be decomposed into
copies of Kj 3 (ak.a. claws), with ver-
tices of different copies possibly over-
lapping, if and only if G is bipartite.

23. You get on an elevator. There are nine
people already in the elevator, and six
floor-indicator buttons are lit. What
is a reasonable conclusion and why?
(Strange but true: If instead there are six
people already in the elevator, and nine
floor-indicator buttons are lit, what is a
reasonable conclusion and why?)

24. Write each of the following statements
using formal logic notation.

(a) For every integer n, 2n # 9.

(b) There exists a triangle T that is equi-
lateral and has perimeter 10.

(c¢) Every circle has an integer diameter
or an integer area.

(d) Every two natural numbers have an
integer between them.

25. How many different programs to do a
single task can you write if there are
six available algorithms for the task and
each has been coded in four different
ways?

26. Give examples of sets A,B such that
|A| =8, |B| =6,and |[A\ B| =5.

27. Prove that ¥ 2j -3 =(n—1)*—1.

j=1

28. Show that if you choose k integers ar-
bitrarily, then at least two of them will
have the same remainder on division by
k — 1. (What principle did you use in
solving this problem?)

29.

30.

31.

32.

33.

34.

35.
36.
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Let b represent the statement the cat
likes to eat broccoli, let p represent the
statement the cat likes to play, and let s
represent the statement the cat likes to
sleep. Write each of the following sen-
tences using formal logic notation.

(a) The cat likes to eat broccoli but does
not like to play.

(b) The cat likes to sleep and eat broc-
coli, or ze likes to play.

(c) The cat does not like to eat broccoli,
but ze likes to play or to sleep.

Encrypt the text rubber baby buggy
bumpers using a shift-by-15 cipher.

n
Prove that ) 2/ =2""1 -2,
j=1

Decrypt the message O lkfz me hkaj atd
sy negrz ot tne jatck frour, which was
encrypted using a Vigenére cipher with
key word gaga. Which type of Vigenére
cipher was used?
What does this list of instructions do?
Comment on whether it is an algorithm
and whether it terminates.

1. Letn=2.

2. Replace n with n+ 3.

3. If n is even, go to step 1; oth-

erwise, go to step 2.
4. Output n.

Let C = {d,e,{d,e},f}. List the ele-
ments in each of the following sets (or
write 0 if appropriate). Be careful with
your notation.

(a) C\{d,e}.

(b) C\{{d,e}}.

Ittw etaiz mbmit (8).

A tap-dancing duck makes sequences of

sounds with its feet. You count the num-
ber of taps between pauses. Show that if
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37.

38.

39.

40.

41.

you listen long enough, say, for ten tap
sequences, then two of the numbers of
taps have the same value mod 9.
How many natural numbers k& < 100
have the property k =3 (mod 7)?
Let ¢ represent the statement Amali is
tall, let d represent the statement Amali
is dark, and let b represent the state-
ment Amali is beautiful. Write an En-
glish sentence equivalent to each of the
following formal-logic expressions.

(@) (tvVdVb)AN—(t NdN\D).

(b) ~t A—d.

() dA—(tA—d).

(d) (tAnd)V (-t Ad).

For the Cartesian product Z x Z = 72,

let (a,b) ~ (¢,d) ifa—c=b—d. Is ~

an equivalence relation?

Prove that if A C B, then B C A. Do this

once using Venn diagrams and once us-

ing element notation.

Let A ={-2,-1,0,1,2} and let B =

{q,1,s,1}.

(a) How many functions f : A — B can
be defined? Explain.

(b) How many one-to-one functions f :
A — B can be defined? Explain.

(c) Suppose that f(0) = r,f(1) = g,
f(2) =¢t. How many functions f :
A — B satisfy these conditions?

(d) Suppose again that f(0) = r,
f(1)=gq, f(2) =t. How many onto
functions f : A — B satisfy the con-
ditions?

42.

43.

44,

45.

46.

47.

48.

49.

50.

Theme | Supplement

Let A= {2k | ke Z}, B={3k+1 |
ke€Z},andC={6k+5| k€ Z}. Show
that {A, B,C} is not a partition of Z.
Prove thatifA C B, thenAU(B\A) = B.
Use element notation in your proof.

Encipher graph theory is the bomb us-
ing a Vigenere cipher with key word bat.

Which one of the following statements
is true (and why)?

(a) =3 =21 (mod 12).

(b) =3=15 (mod 12).

Let f: Nx N — N, with f(a,b)
2¢.3% Decide (with proof) whether f
is one-to-one, onto, both, or neither.
Prove that if a = b (mod n) and ¢ =d
(mod n), thena—c=b—d (mod n).
The distance between vertices x and y of
a graph G, denoted d(x,y), is the length
of the shortest path joining x and y. If
x,y,z are vertices of G, is it always true
that d(x,y) +d(y,z) > d(x,z)? Give a
proof or a counterexample.

The coop next door contains a flock of
chickens and a few ducks. Each duck is
basically either brown, white, or grey.
Every chicken in the flock is red xor
black. How many different color pairs
of birds are there if one is a duck and the
other is a chicken? Explain very briefly.

Draw Venn diagrams representing the
sets (A\B)U(B\C), (A\B)U(BNC),
(AUC)\ (A\B), (AUC)\ (ANB), and
(AUB)\ (B\C). Do any two (or more)
of these represent the same set?

Credit where credit is due: Problem 18 was donated by David Cox. The message in
Problem 30 is a traditional tongue twister. For more on the situation of Problem 1, see The
Poisoner’s Handbook by Deborah Blum.
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Chapter 6 ¥ ¥

Binomial Coefficients and
Pascal’s Triangle

6.1 Introduction and Summary

This is the start of our four-chapter-long focus on combinatorics, and it is jam-
packed with (related-to-each-other) ideas! Combinatorics is the science of count-
ing. We will begin by considering the number of ways to choose some objects
from a larger pile of objects. This will lead us to investigate the links between
choosing objects, Pascal’s triangle, and powers of (x+y). (At first glance, these
don’t seem to have anything to do with each other... surprise!) We will also see
how these ideas tie in to the factorial function (n!) and how factorials relate to ar-
ranging objects in different orders. As before, every exploration is followed by
reinforcing material in a subsequent section.

This chapter also introduces two counting techniques, both of which were fore-
shadowed in earlier chapters. Careful overcounting is exactly what it sounds like—
we overcount carefully so that we can compensate appropriately and determine an
exact count. Combinatorial proof'is the process of counting the same thing two dif-
ferent ways, where one of the ways represents the amount we desire to calculate
(but can’t yet) and the other way is something we already know how to calculate.
Collaborating on challenging problems will help you practice these techniques, so
such problems are provided.

The bonus sections will be of particular interest to those who like algorithms—
and to those who like playing games. Go look at them (after you’ve worked
through Sections 6.2—-6.5)!

6.2 You Have a Choice

Let us look back to Problem 5 in Section 1.2: Some people heading to a party stop
by an ice-cream store to buy quarts of ice cream. The store has five flavors of

175



176 6. Binomial Coefficients and Pascal’s Triangle

ice cream. How many orders of three quarts could they make? What if the three
flavors have to be different? What if no one will agree to order squirrel ice cream?

You may not remember how you solved this problem (it was a while ago!),
so here is one way to approach the first question. The three quarts could be
all the same flavor; there are five different ways that could happen. Or, two of
the quarts might be one flavor, and one might be a different flavor; in this case,
we need to know how many ways there are to choose two out of the five fla-
vors. If we number the flavors 1,2,3,4,5, then the different possible flavor pairs
are (1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5): there are ten
of them. (We do need to count each one twice because ordering one quart of
squirrel ice cream and two quarts of licorice ice cream is different from order-
ing one quart of licorice ice cream and two quarts of squirrel ice cream.) The
remaining possibility is that the three flavors could be different from each other;
here we need to know how many ways there are to choose three out of the five
flavors. The possible flavor triples are (1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),
(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5): there are ten of them. So, in total, there
are 5+ 10-2 4 10 = 35 possible three-quart orders.

Surely there is a faster way to know how many choices there are than to list
them each time. Indeed, we will learn two different ways to determine this number
(but in a later section; keep your eyes out). And, there must be a shorter way to
say, “the number of ways there are to choose two out of the five flavors” than to
use all those words. Indeed, there is; read on to the next paragraph.

Definition 6.2.1. The symbol (Z) is pronounced “n choose k,” will be referred to
as a choice number, and means the number of ways one can choose k things from
a pile of n different things. The order in which the k things are chosen does not
matter. Expressions using choice numbers are said to be written using c/oice no-
tation.

For nonexample, the number of ways of choosing two teal balls from a pile of
three teal balls is just one, if the balls are truly identical. On the other hand, for
example, if the three teal balls are different somehow (perhaps because they are
numbered), then there are three different ways to choose two of them. (Borifying
this by placing it in a set-theoretical context, (’Z) is also the number of k-element
subsets of an n-element set.)

For now, let us imagine that we have a bag of n sugar-numbers. These are
wrapped maple sugar candies in the shapes of numbers (see Figure 6.1), and each
sugar-number in our bag is different. Our model for choice is that you reach into
the bag and grab a handful of sugar-numbers. (Public Service Apology: we’re
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Figure 6.1. The sugar-number 2.

sorry if this has made you crave maple sugar candy.) If there are n sugar-numbers
in the bag, and you grab a handful of k sugar-numbers, then there are (Z) ways for
that grab to occur. Borific side note: there is a one-to-one correspondence between
a handful of k sugar-numbers and the k-element subset of {1,...,n} with those k
numbers in it.

We will now derive an important relation that can be expressed using choice
notation. Moreover, we will derive this relation using combinatorial proof, a char-
acteristic approach to solving combinatorics problems by counting some quantity
in two different ways. Section 6.8 provides more on combinatorial proof.

Start with a bag of n sugar-numbers, numbered 1 through n. Consider the set
H of all possible handfuls of k sugar-numbers. Each of them either (a) contains the
sugar-number n xor (b) does not contain the sugar-number n. Call the first set N
and call the second set D (for “Does not contain n”). Now, H = NUD. We know
that |[H| = (}), and we are about to find ways to determine |N| and [D|. Then we
will have two ways to express |H|, one as () and one as |[N|+ |D|. (Notice that
we can use the sum principle here because N and D are disjoint.)

First, think about N. Every handful of k sugar-numbers in N contains the sugar-
number n. If we take the n out of a handful, we have a corresponding handful of
k— 1 sugar-numbers. Because there can’t be an n in there, the handful might as well
have been taken from a bag with the first n — 1 sugar-numbers in it. Thus, we have
a one-to-one correspondence between N and the set of all possible handfuls of k— 1
sugar-numbers drawn from a bag of n — 1 sugar-numbers. (See Figure 6.2 for a
visualization.) Call that latter set M (for “k Minus one”). We know how to express
|M| in other terms—it’s (Zj) And, because of the one-to-one correspondence,
we know that [M| = |N|.

Now, think about D. Every handful of k sugar-numbers in D does not contain
the sugar-number n. So, those k sugar-numbers might as well have been taken from
a bag with only the first n — 1 sugar-numbers in it. Thus, we have a one-to-one
correspondence between D and the set of all possible handfuls of k sugar-numbers
drawn from a bag of n — 1 sugar-numbers. Call that latter set ¥ (for “Yuck, can’t
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Fisure 6.2. An element of N in correspondence with one of M.

think of a name”). Again, we know how to express |Y | in other terms—it’s (”;]).
And again, our one-to-one correspondence tells us that |Y| = |D|.

Denouement. Putting this all together, we have that (}) = |H| = [N|+|D| =
M|+ Y| = (Zj) + (";1) This fact, that (}) = (Zj) + (";1), is the most
basic of choice notation identities. Notice that it re-expresses (Z) in similar
notation but with smaller numbers (or indices); this type of equation is called
a recursion and will be the focus of Chapter 8.

Check Yourself

B\

Do all of these problems—they’re worth it.

1. Write the solutions to the questions that begin this section in choice notation.

2. Compute (3) using the basic choice notation identity (and a little bit of exhaustive
listing).

3. Compute (g) using the basic choice notation identity and the previous problem.

6.3 Try This! Investigate a Triangle
I\
<L>7 Our investigations begin by switching gears away from choice notation. Maybe
sometime in your past you’ve seen this creature:
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1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1

It’s created by starting out with the 1 at the top, and then in each successive
row, each entry is the sum of the two numbers diagonally left and diagonally right
above it. (Those 1s on the edges? They’re created by adding the numbers 1 and 0,
with O represented above by “ ”.)

1. Write out the next two or three rows of this triangular array, to verify that
you understand it.

2. Do yousee any connection between the triangular array above and the choice
notation identity () = (Z:% )+ (";1)? (If so, what is the connection?) Is
there a way to connect numbers n and k to the triangular array? (If so, what
is it?)

3. Use the choice notation identity (}) = ({_]) + (",') to figure out how many
different Sushi Samplers (three kinds of rolls) can be ordered from a 12-roll
sushi menu (salmon skin, avocado, california, yellowtail/scallion, dragon,
futo maki, alaska, kanpyo, eel/avocado, shrimp tempura, spicy tuna, cu-
cumber). Or, use the triangular array to determine how many different
quadruple-chunk cookie recipes can be made from the eight common inclu-
sions milk chocolate chunk, white chocolate chunk, dried cranberry, peanut
butter chip, raisin, butterscotch chip, macadamia nut, and dark chocolate
chunk. And why not switch? Use the identity to count cookie recipes and
use the array to count Sushi Samplers. (How different are these methods?)

4. You have probably noticed some left-right symmetry in the triangular array.
(If not, go notice it now.) Using choice notation, express this symmetry for
a particular pair of entries in the triangular array. Pick three more symmetric
pairs and use choice notation to express their symmetry. Can you now ex-
press the symmetry of the entire array using choice notation? Please attempt
to do so. Using sugar-numbers, prove that this symmetry makes sense. (By
the way, this is another example of combinatorial proof.)
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5. Let n be odd. What is the relationship between the number of subsets of
{1,2,...,n} of odd size and the number of subsets of {1,2,...,n} of even
size? The previous problem may be of assistance.

6. How does the total number of subsets of 