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Preface for Instructors and Other
Teachers

1 About This Book

Discrete Mathematics with Ducks is intended for a sophomore-level audience (in-
cluding some first-year students) to support a gentle course so that students who
find mathematics and proofs and abstraction challenging can still succeed. How-
ever, I am mindful that classes including weaker students almost always contain
stronger students as well, and so I include more challenging problems with every
topic and activity. Additionally, I am mindful that different institutions and dif-
ferent faculty members at those institutions have different ideas about what pace
and amount of material is appropriate for a lower-level class. For this reason, I
have included Bonus sections for those instructors who wish to have faster pacing.
The Bonus sections can be used as fodder for take-home exams or projects as well
as for students who just want to know more about a topic outside of class. The
material in the text is not new; my contributions are a curation of curriculum, a
tone of text, and a philosophy of pedagogy.

The guiding pedagogical principle behind the organization of Discrete Math-
ematics with Ducks is that students can discover many ideas, concepts, theorems,
and proofs for themselves with a bit of guidance. Where I see an engaging way
for them to do this, I have written Try This! sections that are sets of problems
that allow students to construct fundamental parts of the material. However, I also
believe that students are likely to miss a detail here or there in their work and,
more importantly, that as beginning mathematicians they need reinforcement for
their newfound learning. For this reason, I follow sets of discovery problems with
sections that explain the relevant material and give both examples and details. I
outline some ways instructors might capitalize on this organization of the material

xvii
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in Section 2; instructors who want to gain experience in discovery-based teaching
will particularly want to read Section 2.2.

The guiding pedagogical principle behind the style and tone of this text is pretty
silly. I mean that literally: I believe that students are more likely to absorb math-
ematics that is presented in a goofy way. Bizarre situations help students separate
the abstraction of underlying mathematics from the presentation of a problem and
thus give students practice in recognizing the mathematical essence of problems
they find in other contexts. Students who are enjoying the weirdness of problem
presentations are also focusing on the mathematics. It’s easier to remember a zany
concept setup than to recall a straightforward statement. And there’s no reason to
be serious when there’s an opportunity to have fun!

There is also a hidden agenda in my structuring of this material. (I guess it
won’t be hidden anymore after you read this paragraph.) I think it is hard to learn
mathematical techniques without a surrounding context. Attempting to do so is
sort of like opening a toolbox and simply holding up each tool, describing its func-
tion, and then passing the tools around the audience. Without a carpentry project,
it is difficult to build a reliable mental library of situations in which each tool is
useful. So, in this text I use discrete mathematics as the context via which proof is
introduced. Similarly, tools such as set theory, logic, and functions are compan-
ions to the basic combinatorics and graph theory that are introduced at the start of
the text.

Discrete mathematics is a growing area of mathematics that is used throughout
industry, so I think a discrete mathematics text should function as an introduction
to and survey of the field and its myriad possibilities. Faculty who specialize in dis-
crete mathematics are housed in mathematics, applied mathematics, or computer
science (depending on the institution, and they may show up in multiple depart-
ments as well). They do combinatorics, graph theory, geometry, and optimization.
In this text, I have attempted to balance combinatorics and graph theory topics that
lead naturally to use in computer science with those that lead naturally to mathe-
matics investigations. This is so that students will have a taste of the many flavors
discrete mathematics has and thus of the paths discrete mathematics can take. As
part of this flavor tasting, I have tried to introduce optimization topics where pos-
sible. Hopefully, this diverse introduction to the field will excite students into
desiring further study of discrete mathematics.

The ACM (Association for Computing Machinery) Special Interest Group on
Computer Science Education (SIGCSE) guidelines suggest curricula for computer-
science-focused and mathematics-focused discrete mathematics courses. Discrete
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Mathematics with Ducks gives overviews of the topics and techniques listed by
SIGCSE and then reinforces them throughout the course by applying them to dis-
crete mathematics topics and problems. The content and approach of the text com-
ply with the SIGCSE guidelines in this way.

I made some decisions about the inclusion and exclusion of content and ter-
minology that are potentially controversial and so should be disclosed (or at least
mentioned) here. There are certain terms (including predicate and combinations)
that I avoided using because they only arise in mathematical subspecialties or
teaching contexts and are not used throughout mathematics or even mathemat-
ics courses. I deliberately separated the treatment of recursion from the treatment
of induction so that students would have time to internalize the idea of induction
before linking it to recurrences. It’s easy for beginning students to get bogged
down in the study of formal logic, so I minimized its treatment here. Finally, in
this second edition I have chosen to use gender-neutral pronouns, with ze as the
third-person singular, hir as the corresponding possessive, andMx. as an honorific;
I avoid the singular “they” as it is often confusing (and thus imprecise!) in writing.
(Historical figures and personal acquaintances of the author are referred to by their
publicly disclosed genders.)

The chapters on probability, cardinality, and number theory are included be-
cause many instructors want or need to teach that material as part of a discrete
mathematics course (and because they are beautiful mathematics), but they are not
central to discrete mathematics as a subfield and so I have placed them outside of
the themes around which the book is organized. Similarly, an introduction to com-
putational complexity has been included by popular demand for big-O notation.
For probability, I chose to emphasize expected value and downplay the techniques
of counting/proportions because, on one hand, expected value is central to discrete
probability and, on another hand, students have already learned and used counting
techniques elsewhere in the book. Cardinality is treated via a play, to avoid the
potential dryness of a formal treatment. For number theory, I selected a sampler
that would show different flavors of number theory—and hopefully whet students’
appetites, as I think every mathematics student should study number theory for an
entire semester. Still, the chapter includes almost enough background to justify the
workings of the RSA algorithm (only one bit of it is black-boxed). Computational
complexity is introduced via a sequence of abstractions from measuring algorith-
mic efficiency and performance, so that big-O (and Θ and Ω) notation arises as
formal ways of describing algorithm complexity estimates.



xx Preface for Instructors and Other Teachers

2 How to Use This Book

First things first: please don’t interpret anything written in this section as prescrip-
tive. I’m not attempting to tell you how to use the book (despite the title of this
section), but instead, inviting you to think about what will work best for you and
offering suggestions that you may take seriously or toss aside at your whim. Dif-
ferent classroom techniques are effective for different instructors, and in this you
must find your own way.

Second things second: each chapter is designed to take one week of class time
and contains a mixture of discovery activities, expository text, in-class exercises,
and homework problems. At the end of each expository section, there are elemen-
tary exercises labeled as Check Yourself problems and signaled by the marginal
pencil-toting duck shown here (as are all sections of problems students should at-
tempt); these are placed at the ends of sections rather than inside the section to
prompt students to review soon after reading a section. Additionally, almost every
chapter contains bonus material for enrichment or fast-paced classes, and all chap-
ters contain guides to further study. The chapters are organized into three themes
(background, combinatorics, and graph theory), with four additional chapters (on
probability, cardinality, number theory, and computational complexity). The first
chapter introduces both combinatorics and proof, and the third chapter introduces
graph theory, so there is thematic foreshadowing within the first theme. All chap-
ters after the first five assume knowledge of the first five chapters. (A detailed
disclosure of dependencies appears in Section 3.)

My advice for how to deal with the ebb and flow of course pacing is to strictly
adhere to a one-chapter-per-week schedule (choose topics for your syllabus ac-
cordingly!), and in this way achieve breadth rather than depth in student acqui-
sition of the material. It may be tempting (especially for the first few chapters!)
to have students work through the entirety of the activities in a chapter and to re-
view the reading and… but in this way, one can get dragged down into belaboring
material. Instead, leave some material for student study. In fact, while there are
three classes’ worth of material presented in each chapter, they are underpinned
by only two substantial classes’ worth of activities. Students’ pacing will not be
uniform; if your class gets behind your intended schedule, no harm will be done if
you skimp on some chapters by reducing the work to two days.

On the topic of course mechanics, I assign daily readings (specified in each
chapter’s Instructor Notes section) and elementary practice problems (under the
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Check Yourself label). I also assign homework each week, taken from the Prob-
lems section of the previous week’s material. The purpose of this timing is to allow
concepts some time to sink in and to prompt students to review. For a course of
this level, I give both in-class and take-home exams. In-class exams are composed
mostly of computational or simple problems (like Check Yourself exercises), but
with a few end-of-chapter-level problems thrown in as well. My take-home exams
often involve end-of-chapter-level problems and sets of problems from Bonus sec-
tions. I have included a selection of additional problems at the end of each of the
central themes from which you may draw exam and review problems.

Discrete Mathematics with Ducks is written to be ideal for instructors who
like active learning. If you have no experience with active learning techniques
but would like to try some, then read on, for I’ll give a short introduction below.
However, if you don’t give a flying figwhistle for that frippery-frappery, this book
can work for you too. There are lots and lots of problems for a lecturer to use as
examples (particularly in the Try This! sections) and homework assignments. All
instructors should be aware that many sections throughout the text begin with Hey!
You! warnings (indicated by the marginal stop-sign-holding duck shown here) that
caution students not to read portions of the text before working on the relevant
in-class activities. Make sure to tell your students whether or not to honor the
don’t-read-ahead edicts.

At the end of each chapter, I have included a section entitled Instructor Notes.
This gives a breakdown of how I would (and how you might) conduct two to three
classes on the chapter material. If you have other ideas on how to use the chapter,
try them! And if they work well, please do share them with me. For those who like
to partition course material among groups of students who present topics, the Try
This! sections can function as projects. If you prefer that individual students make
presentations, then you may wish to steer weaker students away from material in
chapters where Try This! sections come before informational sections.

All links mentioned in the text, as well as GeoGebra files mentioned in the text,
are available electronically at http://www.toroidalsnark.net/dmwdlinksfiles.html.

2.1 A Start on Discovery-Based Learning

My personal implementation of discovery-based learning in the classroom rests on
having students collaborate in small groups to do mathematics. In order to have
enough class time for group work, I require that students attempt to read relevant
material in advance. For this book, I have taken special care to make the reading as

http://www.toroidalsnark.net/dmwdlinksfiles.html
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elementary as possible so that students are able to read it and learn from it. (Let’s
hope I have succeeded in this endeavor.)

I am regularly asked how I get students to read a textbook. The pat answer is
that I assign students to read the book, and expect students to read the book, and
then they do so. However, others tell me that they also assign and expect reading
but that students do not do it. Observers of my classes tell me that the difference is
that I truly hold students responsible for reading the book. I do not repeat material
in class that they could have learned by reading. At most, I give a review or an
interactive example or exercise at the start of class. I recommend that if you lecture
over book material, do so briefly. Howmuch time is spent on lecture-like activities
depends on you; I spend less than 15 minutes per class on lecture-like activities.

When instructors step away from lecturing and turn over some control of the
class to students, they often feel as though they are not covering asmuchmaterial as
they would be covering if they lectured. Coverage is mainly an illusion whether or
not we lecture; however we structure our classes, and whatever material we believe
we transmit to students, we have no actual control over what material enters or is
synthesized within students’ minds. The main shift is in our perspective.

Most of the Try This! sets of in-class exercises will likely take longer than a
single class period to complete. This is intentional; my expectation is that the stu-
dents will not collectively finish all of the problems. I have tried to include enough
problems, and some difficult problems, so that strong/advanced/speedy students
will have things to think about while other students soldier on. Additionally, hav-
ing more problems means that students have some choice in what they work on.
For the most part, Try This! problems do not need to be done sequentially.

It takes a while to gauge in advance how long it will take your students to work
a problem. With many subjects and texts, an instructor will allocate additional
class time to incomplete in-class activities, or will lecture on remaining problems.
For this text, I recommend a different approach. If it takes your students an hour
to do three problems, then I advise you to accept that the students will only expe-
rience discovery for those three problems. Just continue with the course; after a
class period’s worth of experimentation, students can read about the material in the
reinforcing sections. (Everything important is contained in the reading.) Because
this is a survey course, it is more important that students gain exposure to a variety
of concepts than that they fully master many of them.

Finally, nowadays many students have experience with collaborative learning
from high school. In-class group work may seem less foreign to them than it does
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to you. Here are some practical tips on how to conduct group work. As with all
advice I give, use that which works for you and discard that which rings false.

2.2 Details of Conducting Group Work

Begin by breaking students into groups. I suggest having three to five students
per group. There are many ways to allocate students to groups; one is to count
the students off by ⌈number of students/number of students per group⌉. Clump-
ing students by first letter of first name, or first letter of last name, or month of
birthday will work as well. Have students move so that all group members can see
each others’ faces and share papers and books. For the first few instances of group
work, ask students to start by introducing themselves to each other.

Try to achieve a different partition in each class meeting for the first few weeks
so that students get to know each other and experience a variety of each others’
learning styles, strengths, and weaknesses. After the first couple of class meetings,
you will be able to simply give a command (“Get into groups!” or “Clump up!”)
and the students will automatically rearrange themselves physically in preparation
for the activity.

Once students have been partitioned, have them turn to the appropriate page
of the text and tell them to work on the problems together. Walk slowly through
the classroom, circulating among the groups. For the first few minutes, just listen.
If they are collectively silent for more than two minutes—time this or count it out,
because it feels like a long time to the instructor, and it sometimes takes students a
while to digest the problem statements—then remind the class that they should be
talking to each other. The sound level in the classroom usually rises quite quickly
after such a reminder.

For the bulk of the collaborative learning time, move from group to group.
When visiting a group, listen to see what they are saying to each other; look to see
what they are writing down. If they are making errors, step in to gently correct
them. (If this is your first experience doing group work, you may find that the
students understand far less than they seemed to when you lectured. The difference
is, I suspect, not in the students’ level of understanding, but in your awareness
of the students’ level of understanding. There is little chance when lecturing to
interrogate the students’ understanding, but a great chance to do so when involved
in group work; now is your opportunity to directly intervene in your students’
learning process.) If one student seems separated from the rest of the group, remind
the rest of the group to include that student. (How you do this will depend on your
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personality. I often make melodramatic statements like “Poor X! Ze is all alone
in the wilderness over here….”) If students seem to be working independently,
encourage them to collaborate by trying to get a conversation going. For me, it
works well to squat, so I’m physically on their level, and ask what they’re thinking
about. If the students seem to be stuck, ask them to tell you where they’re stuck
and what’s getting in their way. Then give a small hint and promise you’ll be back
with more if that doesn’t unstick them quickly. Then, move on to the next group.

At some point in this process, students or groups will start raising their hands
to ask you questions. It’s a good idea to outline a circuit of the class in your mind
so that you can systematically visit every group in turn. Going to see a group who
have raised hands can throw this off, so make sure to do something like reversing
direction or returning to your previous place in the circuit. Otherwise, you may
discover that you have lost track of the progress of a group or two.

Another dynamic you may encounter is that some students will be social in-
stead of academic (do discourage this, unless they’re taking a one-minute break
from otherwise hard work), and some students may work on other material (for
your class or for other classes) during this time. Everyone has a different philos-
ophy on how to deal with this. Personally, I am not offended if students work on
other material; they have busy lives. If a student is doing well in class, I allow
hir to work on whatever ze wants to, as long as ze is not distracting hir group or
slowing them down.

Some students are sharper than others, and with discrete mathematics in par-
ticular, there can be groups where some students struggle while others quietly do
twice the number of problems one expects. I allow this as long as the stronger
students give hints to the weaker students, and I try to make sure the stronger stu-
dents don’t run out of problems to do. I have readied the text for this eventuality
by building extra problems into the Try This! activities, but you may wish to also
prepare a list of end-of-chapter problems that are suitable add-ons or extensions
just in case you have some extra-fast students.

Especially when groups work at different rates, or when some groups are com-
posed of students of divergent abilities, it is difficult to know when to declare the
activity done. I find it useful to set an approximate deadline by which time I think
it will be appropriate to move on. Still, it regularly happens that students are work-
ing productively at that time, and then you must decide whether to let the students
continue or cut off the activity. I recommend erring in the direction of cutting stu-
dents’ work short rather than allowing it to drag on; over time, you will develop a
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sense from “reading” the groups as to when it is best to have them keep working
and when not.

In order to help students achieve closure on a set of problems, and so that
you can set their work in a larger context, devote some time at the end of class to
large-group discussion. Announce that they should stop working in groups (my
cue is usually some variant on “Let’s talk!”) and ask them to summarize work
on a particular problem or collection of problems. (Sometimes I survey them as to
which problems they have completed before requesting this summary.) In practice,
this can mean that each group gives a presentation at the board, or it can mean that
a few students speak from their seats, or some combination of the two. Once
students are used to this practice, I can use a cue such as, “Tell me about what you
did,” and students will know what to do. At the start of a term, I ask, “How did
you approach problem X and what result did you get?” or “How does the proof
for number Y go?” and students will volunteer responses. If I saw a group taking
a notable approach when circulating among the students, I may say, “Z and W
are going to brief us on their work on problem N.” Because everyone has thought
about the problems, the summaries are usually quick and elicit many nods.

Encourage different groups to describe their work on different problems in or-
der to spread around the practice of mathematical speech. I think it is effective
to reflect students’ speech back to them in slightly more formal (and completely
mathematically correct) language so that they understand the correctness of their
conclusions and can improve their communication of mathematics over time. Such
reflection can be followed by stating or reminding students what the point of the
problem was and (briefly!) how it relates to the larger study in which you are
communally engaged. Now, this sounds quite involved, but should only take ten
minutes or so—perhaps not all problems are discussed, but only those for which
different groups took different approaches, or perhaps very few details are men-
tioned.

When you first try this type of group work, it’s common to feel either distant or
over-involved. By distant, I mean that you might feel shy about intervening with
groups, or feel as though you’re just walking around and listening and not doing
anything. By over-involved, I mean that you end up spending lots of time with
each group, essentially walking the group through the exercise, and not visiting
every group as a result. And you might find that you’re not sure what to say when
you hear students being stuck in ways you didn’t expect, or making errors you
weren’t aware students could make, etc. That’s okay. This type of classroom
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activity takes lots of practice. My personal foibles are (1) I tend to get absorbed
in going from group to group and listening and helping and answering questions
and then suddenly there isn’t enough time to discuss the problems as a large group
(drat!), and (2) if I’m tired, I tend to float instead of listening carefully, or instead
allow students to get off topic.

3 Chapter (and Bonus-Section) Sequencing and
Dependencies

Roughly speaking, Chapters 1–5 are needed for most of the rest of the book, and
within the Combinatorics and Graph Theory themes, the chapters are mildly se-
quentially ordered. More conceptually, Chapter 1 includes an introduction to proof
and all other chapters use proof; Chapter 2 includes set notation, logical thinking,
and proof by contradiction, all of which are used in the remainder of the text.

Some instructors who use material from Chapters 14–17 place it after the
Theme I–Theme IIImaterial, and others place the additionalmaterial mid-semester,
for example between Themes I and II or between Themes II and III.

The following chapter dependency list is given by direct use of content.

Chapter 2 needs: Chapter 1
Chapter 3 needs: Chapter 1, Chapter 2
Chapter 4 needs: Chapter 1, Chapter 2, Chapter 3
Chapter 5 needs: nothing (Bonus needs Chapter 3)
Chapter 6 needs: Chapter 1, Chapter 3, Chapter 4 (Bonus needs Chapter 5)
Chapter 7 needs: Chapter 1, Chapter 3, Chapter 6 (Bonus needs Chapter 5)
Chapter 8 needs: Chapter 1, Chapter 4, Chapter 5, Chapter 6
Chapter 9 needs: Chapter 4, Chapter 6, Chapter 8 (Bonus needs Chapter 1,

Chapter 3, Chapter 5)
Chapter 10 needs: Chapter 1, Chapter 3, Chapter 5, Chapter 6 (Bonus needs

Chapter 7 Bonus)
Chapter 11 needs: Chapter 3, Chapter 4, Chapter 6, Chapter 10
Chapter 12 needs: Chapter 3, Chapter 5, Chapter 10 (Bonus 3 needs Chapter 7)
Chapter 13 needs: Chapter 3, Chapter 4, Chapter 5, Chapter 10, Chapter 11
Chapter 14 needs: Chapter 1, Chapter 3, Chapter 7 (Bonus needs Chapter 6)
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Figure 1. In this chapter dependency chart, Bonus sections are designated by “B.”

Chapter 15 needs: Chapter 1, Chapter 2, Chapter 3, Chapter 5
Chapter 16 needs: Chapter 1, Chapter 2, Chapter 3, Chapter 4, Chapter 5
Chapter 17 needs: Chapter 5, Chapter 8

Indirect chapter dependency information is given graphically in Figure 1.
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Preface for Students and Other
Learners

1 About This Book (and about Learning Mathematics)

In my experience, it is difficult to learn mathematical techniques without a sur-
rounding context. Attempting to do so is like attending a seminar wherein the
presenter opens a toolbox, holds up each tool and describes its function, and then
passes the tools around the audience. Without a carpentry project, it is difficult to
build a reliable mental library of situations in which each tool is useful. So, in this
text I use discrete mathematics as the context via which you learn about proving
mathematical statements.

I believe that you can discover many interesting mathematical ideas, and even
theorems and proofs, with a bit of guidance. In that vein, I have written Try This!
sections that are sets of problems that allow you (usually collaboratively) to con-
struct fundamental parts of the material. However, I also know that everyone
misses a detail here or there and, more importantly, that as beginning mathemati-
cians you will want to verify that your discoveries are correct! For this reason, I
follow sets of discovery problems with sections that explain related material and
give both examples and details.

The style and tone of this text is, let’s face it, pretty silly. I mean that literally: I
believe that you are more likely to absorb mathematics that is presented in a goofy
way. Completely strange and unrealistic problem setups help you to separate the
abstraction of the underlying mathematics from the presentation of a problem, and
thereby give you practice in recognizing the mathematical essence of problems
you may find in other contexts. I think that if you are laughing about a problem
presentation, it aids you in focusing on the mathematics. It’s easier to remember
a weird introduction to a concept than to recall a straightforward statement. And
there’s no reason to be serious when there’s an opportunity to have fun!

xxix
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The only way to truly learn mathematics is by doing it and practicing it, not
by observing it. It’s just like any other skill: If you want to learn how to dance,
you watch someone do and explain some steps, and then you practice those steps.
To become really good, you usually have to engage in auxiliary activities, such
as stretching or weightlifting (note that these are also practice). If you want to
learn how to write, you write every day and try different forms of writing and ask
for feedback on your work. You may also study grammar or read examples of
excellent writing. That’s general commentary, but now you need to know how to
proceed with discrete mathematics.

2 How to Use This Book

This book is designed to help you learn discrete mathematics through a mix of
discovery-based activities and themore traditional read-text-and-then-do-problems
technique. You may be wondering how I chose which topics would be initiated via
discovery-based activities and which would be introduced via text; here is the an-
swer. Whenever I knew of a way that students could come upon ideas reasonably
quickly themselves, I wrote problems and activities that would direct you along
that way. Topics for which my experience has been that students will not readily
reinvent the relevant ideas have gotten the I’ll-just-tell-you-about-it treatment.

You may also be wondering, Why did I decide to write the book in this way?
When people discover ideas for themselves, they tend to retain those ideas longer
and to understand them more deeply than if someone else revealed the ideas. So
where possible, I have provided discovery activities. At the same time, it’s easy to
miss part of a relevant idea when you’re thinking about it on your own. Therefore,
I’ve also written about the ideas that you should discover for yourself. Please,
dear reader, do not read this text until you’ve worked through the discovery ac-
tivities! The sections that might spoil your fun begin with a Hey! You! alert and
are accompanied by the stop-sign-holding duck shown here. (By the way, the dis-
covery activities are titled Try This! and are accompanied by a pencil-toting duck,
also shown here, and the same duck signifies other activities and sets of problems
throughout the text.)

Maybe you want to know more about what discovery activities are before you
do them. Some of them are intended to have you create good definitions. (Defi-
nitions are written the way they are because they’re useful for talking about ideas
or proving theorems. It’s easy to make bad definitions—too vague, too restrictive,
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insufficiently relevant—if you’re not careful.) Some are designed to help you con-
struct a theorem and proof at the same time. Some are structured so you will work
with many examples, become familiar with the topic, and generate intuition.

You might be used to solving problems that are direct applications of previous
text, as, for example, in an algebra class where a new type of factoring is introduced
and then 30 problems are given that use this type of factoring. That will only
sometimes be the case here, and there will only be a few such problems at a time.
In this text, problems are of the following kinds:

direct applications of the text (should only take a minute or so);

indirect applications of the text, where it will not be instantly clear how to
apply the text;

creative thinking, where the ideas in the text will be useful but not in a spe-
cific way;

extension problems, where you’ll be trying to extend the ideas in the text to
other situations;

discovery problems, where you won’t have text to rely on and just need to
solve the problems by thinking.

Please don’t be intimidated by these problems. You can do it! And lots of guidance
is given; maybe you won’t even notice how creative and critical your thinking is.

Warning: some problems take a long time to solve. By “a long time,” I mean
“more than an hour.” There are some other problems that takemaybe aminute or so
to solve. You can probably recognize these because they aremarked as problems to
check your reading comprehension. But feel good about yourself if you can solve
any end-of-chapter problem in under tenminutes. (Thismeans that you should start
your homework earlier than the night before it’s due. A bonus to starting early is
that you can be more efficient—spreading out the time you work on homework
will allow your brain to percolate and soak and produce clearer thinking.)

It’s good practice to write up solutions to problems. At first, you should write
out solutions to everything. This will be a huge pain, but well worth it because
in this way you will gain the skills needed to write difficult solutions when you
encounter them later. As your expertise increases, you can start writing solutions
only to not-immediate-to-solve problems. If you get really good, you can just write
up difficult problems!
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One way to do this course would be to have a notebook in which you record
your work on the Check Yourself problems and on the Try This! problems, for later
reference. Essentially, this would create a solutions manual for the book as you go
but also would contain things that didn’t work, etc. (Maybe you could lightly X
out those pages).

By the way, all links and GeoGebra files mentioned in the text are available
electronically at http://www.toroidalsnark.net/dmwdlinksfiles.html. A final note:
this textbook uses gender-neutral pronouns, with ze as the third-person singular
and hir as the corresponding possessive, and Mx. as an honorific. (We do not use
“they” in the singular as it can be confusing in writing.) Exceptions are made for
historical figures and people of the author’s personal acquaintance whose gender
identification is public.

2.1 How to Use This Book in a Class

If you are using this book in conjunction with a multi-student course, then certainly
you should use it as your instructor advises. In the absence of advice, refer to
Section 2.2 and substitute “classmate” for “buddy who is also self-studying.”

2.2 How to Use This Book for Self-Study

If you are using this book for self-study, just read it cover to cover and follow
the instructions given in the text. There are sections to read before working on
Try This! problems, and these end with Check Yourself problems. You probably
could have answered these questions immediately after reading about the corre-
sponding concepts, but a page or so later you may need to review a definition or
idea. That’s why they’ve been placed later—to help you reinforce what you’ve
just read. There are also sections for which there is no pre-trying-problems read-
ing but where the problems are designed to help you discover ideas. These are
also labeled Try This! If you can’t solve the Try This! problems after an hour or
two, it’s time to read the corresponding text and then Try This! again. It’s best
to have a buddy—you might find one through The Art of Problem Solving (see
http://www.artofproblemsolving.com)—who is also self-studying and with whom
you can discuss your ideas. Working with a buddy is effective for Try This! prob-
lems, and there are some Check-Yourself Challenges in the book that ask you to
generate your own examples; a buddy can help you determine whether your exam-
ples fit the criteria you desire. Then, of course, there are end-of-chapter problems.
These are not marked with difficulty levels because what’s easy for one person is

http://www.toroidalsnark.net/dmwdlinksfiles.html
http://www.artofproblemsolving.com
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difficult for another (and vice versa). However, there are some problems marked
as Challenges (beware).

3 Tips for Reading Mathematics

Generally mathematics is much more difficult to read than fiction (this is probably
not too surprising) or many kinds of nonfiction such as history books or instruction
manuals (maybe not surprising in practice but perhaps surprising in theory). The
reason is thatmathematics is conventionallywritten in as concise away as possible,
both in the sense that symbols substitute for somewords or phrases and in the sense
that verbosity is avoided.

Hopefully these difficulties have been reduced by the friendly manner in which
this text is written. However, the author is keenly aware that first, it is rarely
possible to sufficiently reduce reading difficulties, and second, she has probably
failed to achieve her ideals. So, here are some tips to help you through.

Reading a sentence or paragraph or chapter multiple times is quite helpful.
Here, “multiple” should be interpreted as some number in the three to seven
range, especially if you don’t think you understood every detail the first time
through.

If you feel like you just don’t “get” some idea after reading supporting text a
few times, go read some other source. Then come back to this one. Exposure
to multiple perspectives helps you synthesize ideas.

Do not skip words (… unless you are intentionally skimming). Every word
in a math book is important and there for a reason. If you are having trou-
ble understanding a sentence (or paragraph or problem) try reading aloud,
even if (especially if) you feel silly. It does help. One of the most common
causes of stuckness when solving a problem is having not read the problem
statement carefully enough.

It’s useful to have some scratch paper and a writing implement nearby when
reading. That way you can do calculations, attempt problems fully (not in
your head), record questions and ideas that occur to you, try examples, note
a definition or two that you keep having to look up, etc.
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Oh, speaking of attempting problems, don’t try to do problems in your head.
I’m serious about this: I know you think that you should be able to, but
almost no one can. And there’s no reason you should—our brains are made
for thinking, not memory, so use the paper as your recording device and free
up your brain for thinking.

Don’t believe any of the mathematical claims made in a book or paper with-
out verifying them. For yourself. Yes, really. You can do it! On the other
hand, don’t let this bog you down; sometimes you just need to read the next
sentence or two in order to clear things up. (This happens to the author all
the time.) Don’t get more than a paragraph or so ahead of that point where
you last understood what was going on, unless you’re completely stuck on
that paragraph. In that case, mark it as something you need to go back to,
and proceed in the hopes that life will improve.

Be active, not passive, while reading. That means that you should try to
answer any questions raised in the text and try to solve any problems posed,
and definitely don’t trust the author’s claims. Yes, that last repeats a point
made in the previous bullet point. That’s because it’s super-important.

Ask yourself questions. (Do you sense a theme? Good.) For example, what
are the main points of the section/chapter you just read? Can you generate
your own examples of the newest definitions? What are some situations to
which a recently stated theorem will apply? If there seem to be extraneous
words, read again—why are they there? (Remember that mathematicians
rarely use excess words.) Is a new concept similar to a concept you already
understood? If so, how?

After a first read-through, read nonlinearly. That is, flip forwards or back-
wards to follow your own train of thought. Perhaps you will need to review
an earlier concept or look up the meaning of a symbol, and in the process
you generate a new question that sends you to yet another page. That’s fine.
Use your scratch paper to note your original goal so you don’t forget it while
following interesting mental tangents.

Read only for 20 minutes at a time (unless you lose track of time and keep
going because you’re having a great time). Then take a 5-minute break to let
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your brain absorb and process behind the scenes, and start reading carefully
again.

4 Problem-Solving Prompts

Questions to ask yourself when you’re stuck:

Do I truly understand what the problem is asking? Maybe I need to read it
aloud or look up some of the terms.

Am I using the constraints introduced in the statement of the problem? They’re
probably there for a reason. Related question: am I using the criteria given
in definitions of terms used in the problem?

Is there a super-easy or even trivial example I can work through? This often
helps to make sure you understand the setup of the problem. Try using 0 or
1 or n = 0 or n = 1.

Is there a diagram I could draw? That might help.

Can I break this down into a set of smaller or simpler problems?

Is this problem related to any theorems I know? Or does it look similar to
any examples I’ve seen?

Am I sure that all the statements I’ve written down are correct (both in terms
of reasoning and of symbolic manipulation)?

Is the statement of the problem correct or true? Maybe I should be looking
for a counterexample.

(Faculty readers will recognize this section as inspired by George Polya’sHow
to Solve It.)

5 Tips for Writing Mathematics

So. About writing things up. There is not a single correct way to write, and as
you write mathematics you will develop a mathematical writing voice of your
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own. Your first goal is always to communicate mathematics to a reader. Pre-
sumably that reader does not have identical comprehension of the particular math-
ematics to yours, or ze wouldn’t need to read your write-up! This is particularly
true with peers who are stuck on problems and seek your help. But you prob-
ably often have a second goal, namely, to communicate your understanding of
mathematics. Many students who are being graded on problems or proofs mis-
takenly believe (or temporarily fool themselves into thinking) that the idea is to
indicate an answer or a basic reason that a theorem is true and that the instruc-
tor/teacher/grader/professor will see this as a verification of task completion. Not
so. The instructor/teacher/grader/professor wants to verify that you (a) have un-
derstood the mathematical material, (b) have been able to solve this related prob-
lem, and (c) can clearly communicate your understanding. Trust me—no one who
chose to use this textbook would have any lower standard.

While we’re talking about this, let me point out that writing mathematics well
requires a lot of practice. Try not to get miffed if you’re asked to rewrite something.
It’s not necessarily a problem with your understanding (although it might be) but
instead with clarity (i.e., a lack thereof) in your communication. Just take a deep
breath and remember that if a reader didn’t understand something you wrote in
your proof, then your communication has not been sufficient to convey that point.
(Okay, now you’re thinking, So, when I don’t understand something in this book, I
can blame the author because she didn’t communicate clearly! As a mathematical
beginner, it’s more likely that you’re not used to reading mathematics than that the
mathematical writing is unclear. See the Tips for Reading Mathematics given in
Section 3. But also, the author is human and sometimes does write unclearly no
matter how many times she revises. She’s sorry in advance if her writing happens
to be incompatible with your brain at some point in this book.)

Some of the following tips may only make sense to you after you have be-
gun writing proofs, and others will only sink in after you have practiced writing
mathematics for a while, so you may wish to revisit this section regularly.

Make sure to define new terms and symbols as you introduce them and qual-
ify them appropriately. For example, just because you use p doesn’t mean
everyone will know it’s a prime.

Structure a solution as you would a paper (except your solution will hope-
fully not be as long). The introduction usually consists of a restatement of
the problem, the body consists of a discussion and solution of the problem,
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and the concluding statement either places the solution in context or verifies
that your argument has proved what you set out to prove.

End every statement with a period. A mathematical expression is part of a
sentence; a statement has a verb and therefore is a sentence and therefore
should end in a period.

Try not to have too many symbols appear in a row; insert words between
them. For example, “2+3 = 5 2+3+10 = 5+10 = 15” would make more
sense as “We know that 2+ 3 = 5 and can add 10 to each side to obtain
2+3+10 = 5+10 = 15.”

Try not to begin a sentence with mathematical notation. If you have ended
a previous sentence with notation, then it will be confusing. Plus, the capi-
talization can be worrisome; for example, when beginning a sentence with
a it seems one should write A, except that A is a different beast.

Never use a pronoun without an antecedent. No one will know what you’re
talking/writing about. For example, don’t write (or even say) “It’s 5.”What’s
5? If we had been faced with 10− x = 5, it would not be clear whether you
meant “10− x is 5” or “x = 5”.

Check to see that your written solution addresses the original question or
proves the original statement. (This is related to making sure your solution
contains a concluding statement.)

Be careful not to write the way you work. This has two meanings: one is
that one’s exposition can always be improved. The other is that often one
works backwards when solving a problem or finding the path to a proof.
But don’t write that way! Often such text begins with (statement) =? (other
statement) and proceeds to change each side of the proposed equation until
a definite equality results. It ends up reading, “If statement S is true, then
(fill in some steps here), so 1 = 1 and we are done.” But of course, 1 = 1
whether or not S is true, so it does not need a proof to accompany it.

Read over your solution or proof after you’re done. You might notice a flaw
in your reasoning, or find that you need to add justification for a statement,
or that you could say something in a way shorter or much clearer way.
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Chapter 1

Counting and Proofs

1.1 Introduction and Summary

Our introduction to discrete mathematics will begin with some problems. You
shouldmake a significant effort to solve these problems before proceeding further—
it will help if you can meet with others to work collaboratively, but you can also
solve them on your own (it’ll just take longer). Working these problems will al-
low you to discover some basic principles (the sum and product and pigeonhole
principles) of counting.

The problems are followed by some reinforcing text that will make sure you
acquire all the needed details. Please do not read it until after you have worked
through the problems! It might spoil your fun.

After that, things go downhill. (Just kidding.) One of the themes in this text-
book is learning how to prove things, and we’ll start by discussing proof and coun-
terexample right after the reinforcing text about the sum and product principles.
Finally, we will tell you everything you desire to know about the pigeonhole prin-
ciple.

1.2 Try This! Let’s Count

Even though you have no experience with discrete mathematics yet, just jump in
here—these problems do not require any prior knowledge and are great to discuss
with classmates. Do not be alarmed if you do not finish the entire set within a
single class period.

1. At WEBS, America’s Yarn Store, there are two aisle displays of sale yarns,
six aisle displays of closeout yarns in the back warehouse, one aisle display
of Grandpa’s Garage Sale yarns in the back warehouse, and one display
shelving unit of über-clearance $2/ball yarns in the retail area. To howmany
display areas can you go in WEBS to buy yarn that is not full price?

3



4 1. Counting and Proofs

2. A group of friends goes out for single-scoop ice-cream cones. There are
sugar cones, cake cones, and waffle cones. But there are only five flavors
of ice cream left (peppermint, hoarhound, chocolate malt, gingerbread, and
squirrel). How many cone/ice cream combinations can be ordered?

3. At this ice-cream store, ice-cream scoops are stored right in the ice-cream
containers between uses. At least how many ice-cream scoops must be in
use if two of them have to be stored in the same flavor ice-cream container?

4. A server at the Luminous Nose restaurant goes to this same ice-cream store
but decides to get a triple-decker cone. The stacking of scoops on the cone is
important: a cone with peppermint atop two scoops of squirrel tastes differ-
ent than a cone with two scoops of squirrel atop a scoop of peppermint, so an
order of peppermint-squirrel-squirrel is different from an order of squirrel-
squirrel-peppermint. How many possible triple-decker ice-cream orders are
there?

5. Some people heading to a party stop by the ice-cream store to buy quarts of
ice cream. How many orders of three quarts could they make? What if the
three flavors have to be different? What if no one will agree to order squirrel
ice cream?

6. Four teams are attending a local Ultimate Frisbee meet. If each team plays
each other team exactly once, how many games are played?

7. Some of the Ultimate Frisbee players decide to form temporary teams in
an arbitrary way. They put royal blue and lime green armbands into a bag,
and each player closes hir eyes and grabs an armband to see which tempo-
rary team ze’ll be on. How many armbands need to be grabbed in order
to ensure that one of the teams has at least two players? How many arm-
bands need to be grabbed in order to assure that one of the teams has at least
seven players?

8. Some Ultimate Frisbee meet attendees saunter over to the Healthy Snack
Box Machine, where they each choose one of five kinds of fruit, one of
three herbal teas, and one of six flavors of wrap sandwich to get packed in
a box. How many possible snack boxes are there?

9. Let’s generalize Problem 6 to a regional Ultimate Frisbee tournament where
there are n teams attending. Teams are assigned numbers (1 through n) when
they register. As before, each team will play each other exactly once.
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(a) How many games does Team 1 play?
(b) How many games does Team 2 play? Wait, that counts the Team 1

versus Team 2 game twice. How many not-yet-counted games does
Team 2 play?

(c) Keep going. How many “new” (uncounted) games does Team i play?
(d) How many games are played in total?

10. Let’s also generalize Problems 2 and 3 to a more reasonable ice-cream store.
There are still three kinds of cones (the usual), but now there are k flavors
of ice cream.

(a) How many different single-scoop ice-cream cones can be ordered?
(b) How many ice-cream scoops must be in use if two of them have to be

stored in the same flavor ice-cream container?

11. Terminology alert: We write finite sets as lists of their members (also called
elements). For example, {2,3,5,7} is an excellent set. So is {1,4}. These
sets are disjoint because they have no members in common. On the other
hand, {1,2} is not disjoint from either {2,3,5,7} or {1,4}. The union of
two sets A,B (or many sets A,B, . . . ,N) is a set containing all members of
A and of B (and of C, . . . ,N). The union of the three sets listed so far is
{1,2,3,4,5,7}.

(a) How many elements are in the union of two disjoint finite sets?
(b) How many members does a union of finitely many disjoint finite sets

have?
(c) Are the previous two questions related to any of the previous prob-

lems?
(d) How many members does the union of n disjoint sets, each with m

elements, have?

12. Another terminology alert: We call the notation (a,b) an ordered pair and
(a,b,c) an ordered triple (and yes, we call (a,b, . . . ,n) an ordered n-tuple).
Generally, the first member of the pair (or triple, etc.) is from some set A,
and the second member of the pair (or triple, etc.) is from some set B, etc.
If A has m elements and B has k elements, how many ordered pairs can be
formed from A and B? Is this related to any of the previous problems?
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1.3 The Sum and Product Principles

Hey! You! Don’t read this unless you have worked through the problems in Sec-
tion 1.2. I mean it!

There are two principles that underlie most of the problems you worked in Sec-
tion 1.2. Here they are, stated formally.

Oh, wait, we need to define one piece of notation first. The number of elements
in a set A is denoted by |A|.

The sum principle. The number of elements in a finite number of disjoint
finite sets A,B, . . . ,N is the sum of their sizes |A|+ |B|+ · · ·+ |N|.

You might think of this visually as in Figure 1.1.
Problem 1, about WEBS, used the sum principle directly. Problems 6 and 9,

about counting the number of games played in an Ultimate Frisbee tournament,
used the sum principle by subdividing a set into smaller disjoint sets.

Here is another example.
Example 1.3.1. An employer offers ten days of paid vacation, three paid sick days,
and four paid personal days per year. How many days can one not work and still
get paid? The sets V of vacation days, S of sick days, and P of personal days are
disjoint, so by the sum principle the total number is |V |+ |S|+ |P|= 10+3+4 = 17.

We will eventually get around to figuring out what to do if our sets aren’t
disjoint, but you’ll have to wait for Chapter 7 for that. (There will be lots of other
interesting things to think about in the meantime!)

Figure 1.1. The number of elements in the union of these three disjoint sets is 8+ 5+ 2
= 15.
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Figure 1.2. There are 18 elements total in three six-element sets, or in six three-element
sets.

Wait, in order to continue, we need a second piece of notation! Ordered n-
tuples (a,b, . . . ,n) aremembers of the set denotedA×B×·· ·×N, called theCarte-
sian product of the sets A,B, . . . ,N.

The product principle. The number of elements in the Cartesian product
of a finite number of finite sets A×B× ·· ·×N is the product of their sizes
|A| · |B| · · · · · |N|.

You might think of this visually as in Figure 1.2, where we might consider
|A|= 6 and |B|= 3. The same Cartesian product can be grouped as |B| copies of
A, or as |A| copies of B.

The product principle can also be formulated as making a collection of deci-
sions or as putting choices in slots. For example, counting the number of ways
to decide first which of r rooms to enter and then which of the c chairs to sit in
and then which of p pencils to pull out of a case uses the product principle to see
that there are r · c · p ways. Similarly, making license plates that start with three
numbers and end in BAT uses the product principle to see that any ten digits can
be placed into each of the three number slots for a total of 1,000 license plates.

Problems 2, 4, and 8, about counting single-scoop and triple-decker ice-cream
orders and Healthy Snack Boxes orders, used the product principle. The subprob-
lem of Problem 11 that asked for the number of elements in the union of n disjoint
sets, each with size m, could be solved using the sum principle by adding m to
itself n times. Or, notice that adding m to itself n times is exactly what it means
to multiply n ·m (geometrically, make an n×m grid of elements), and solve the
problem using the product principle.

Notice that we apply both the sum and product principles by letting sets stand
in for something else—for example, the flavors of ice cream can be represented
by the elements of a five-element set I (for ice cream), as can the types of cone by
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the elements of a three-element set C (for cone). This is a specific case of a more
general counting technique of using stand-ins. For example, instead of counting
pets in a shelter, one could count paws and divide by four. (It might be a good idea
to check that each pet retains all four paws, as otherwise, modifications will need
to be made to the total.) Sometimes we will let one set stand in for another set in
our attempts to count. This will work as long as we know how the sizes of the sets
in question are related to each other.

Here is another example that uses the product principle.
Example 1.3.2. The Restaurant Quatre-Étoile offers prix fixe meals only. (That
means you pay a fixed amount and get a k-course meal, where k usually varies
between three and five. It’s pronounced “pree fix.”) Their menu allows a choice
of appetizers, a choice of main dishes, and a choice of desserts. We could view
the menu as three sets: A has members Escargot Sampler, Quichelets, Puff Pastry
Plantain Purses, and French Fries; M has members Veal Medallions with Infant
Carrots, Foie Gras Falafel with Fig Fondue, Caviar-Crusted Croutons with Con-
sommé, Zucchini Stuffed with Okra andMushrooms, and Filet Mignon with Hard-
BoiledOnions; and,D hasmembers Ice Creamwith Chocolate-CoveredGrasshop-
pers underMint Sauce, and Eight-Layer Orange-Glazed PoundCakewith Ganache
Filling. The product principle says that the number of different meals that could
be ordered is |A| · |M| · |D|= 4 ·5 ·2 = 40.

Hey, can we use the sum and product principles together in one problem? Yes,
it does happen.
Example 1.3.3. A debit-card company, DCC Corp., decides that in order to in-
crease security, it will allow three-digit and five-digit personal identification num-
bers (PINs) in addition to the usual four-digit PINs. Informally, we notice that
there are ten choices for each digit, so there are 103 possible three-digit PINs, 104

possible four-digit PINs, and 105 possible five-digit PINs, for a total of 111,000
possible PINs for DCC customers. In terms of sets, we let T be the set of pos-
sible three-digit PINs, F be the set of possible four-digit PINs, and V be the set
of possible five-digit PINs, so that by the sum principle the total number of pos-
sible PINs is |T |+ |F |+ |V |. But we don’t know the sizes of T , F, and V . Here
is where the product principle comes in: T is secretly the Cartesian product of
three sets T1,T2,T3, each corresponding to one of the digits of a three-digit PIN.
So |T | = |T1 × T2 × T3| = |T1| · |T2| · |T3|. We know that |T1| = |T2| = |T3| = 10.
Likewise, F is the Cartesian product of four ten-element sets and V is the Carte-
sian product of five ten-element sets. Combining these observations, we obtain
|T |+ |F |+ |V | = (|T1| · |T2| · |T3|)+ (|F1| · |F2| · |F3| · |F4|)+ (|V1| · |V2| · |V3| · |V4| ·
|V5|) = 103 +104 +105 = 111,000.
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Both the sum and product principles are only stated for finite sets and for finite
numbers of sets. If you are interested in learning a little bit about infinite sets, look
at Chapter 15.

You might notice at this point that we haven’t said anything about ordering
quarts of ice cream (as in Problem 5). Ha! This problem involves more advanced
counting ideas, and we will address their governing principles in Chapters 6 and 7.

Check Yourself

1. Gelly Roll pens come in 6 solid colors of fine point and 11 of medium point, 10
moonlight colors, 10 shadow colors, 12 stardust colors, and 14 metallic colors.
(Not kidding.) How many different Gelly Roll pens are there?

2. When redeeming a prize coupon, you may choose one of six charms and either one
of three carabiners or one of two bracelets. Howmany different prize choices could
you make?

3. Challenge: Invent your own problem that uses both the sum principle and the prod-
uct principle.

1.4 Preliminaries on Proofs and Disproofs

In order to begin our study of careful reasoning and how to communicate our
thoughts, we have to know the meanings of the words most commonly used in
the reading and writing of mathematics.

Definition 1.4.1 (a clump of ’em). A definition is a precise statement of the mean-
ing of a term. (Think dictionary, but better.) A conjecture is a statement proposed
to be true and made on the basis of intuition and/or evidence from examples. (You
already made some conjectures when you worked the problems in Section 1.2, and
you’ll make many more before this book is through.) A theorem is a statement that
can be demonstrated to be true. A proposition is… well, some people use it as a
smallish theorem, and others use it as a theorem offered (proposed) to the reader.
A lemma is a small theorem, usually stated and proven in the process of proving a
regular-size theorem. A corollary is a statement whose truth follows directly (or
almost directly) from a related theorem. A proof is a justification of the truth of a
statement using reasoning so rigorous that the argument compels assent.

Notice that definitions are precise; they are precise not only so that one can
distinguish between similar concepts but also because they are used as references
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for rigorous reasoning. Definitions are not arbitrary (even though they often seem
that way). Instead, a definition comes about because someone needs it either to
shorten communication or to help justify an idea. (Do you think that our definition
of “definition” fulfills the criteria to be a definition?) Often a definition lists criteria
that must be checked in order for the definition to be fulfilled; be on the watch for
such criteria, as they are the key to using a definition as part of a proof.

Here are a few examples of definitions—you may already be familiar with
these ideas.

Definition 1.4.2. An integer n > 1 is prime if the only positive divisors of n are n
and 1.

By this definition, 3 is prime because 3 ·1 = 1 ·3 = 3, and there is no different
possible factorization into positive integers.

Definition 1.4.3. A number is even if it is evenly divisible by 2. Equivalently, a
number m is even if m = 2k for some integer k. A number m is odd if m = 2k+1
for some integer k.

The number 64 is even because 64 = 2 ·32. However, the number 3 is not even
because 3 = 2 · 3

2 and
3
2 is not an integer, but 3 = 2 ·1+1 so the number 3 is odd.

Definition 1.4.4. A binary number is a number expressed using only the digits 0
and 1, with counting proceeding as 1,10,11,100,101,110, . . . and with places rep-
resenting powers of two, increasing to the left and decreasing to the right.

Thus, the number 64 is not binary because it uses digits other than 0 and 1,
but 101 and 101011.101 can be binary numbers or decimal numbers. The binary
number 101 represents 22 + 0+ 20 = 5 in decimal notation, and the binary num-
ber 101011.101 represents 25 +0+23 +0+21 +20 +2−1 +0+2−3 = 43.625 in
decimal notation. (Remember that 2−1 = 1

2 and 2−3 = 1
8 .)

Example 1.4.5. Let’s look at the numbers 5, 28, and 10. Because 5 ·1 = 1 ·5 = 5
and there are no other integer factorizations of 5, it is prime. It is also odd because
5 = 2 · 2+ 1. On the other hand, 28 = 14 · 2 is even, and not prime; it is also not
binary because it uses digits other than 0 and 1. We can rewrite 28 = 16+ 8+ 4
= 24 +23 +22, so its binary representation is 11100. The number 10 could be the
decimal number 10 or the binary number 10 representing the decimal number 2
(which, by the way, is both even and prime).
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You probably made some conjectures when you were working through the
problems in Section 1.2. The creation of conjectures is a most important process
in mathematics, so we will be concerned with it throughout this text. It is part of
what makes mathematics an art rather than a collection of facts or rules. When
you encounter a new problem or concept, you should generate and explore some
examples. This in turn will help you generate ideas, and then you can notice pat-
terns and say what you think is true (and that’s a conjecture!). Practice this process
often. Start now by examining these data:

24 = 5+19 = 7+17 = 11+13.

8 = 3+5.

38 = 19+19 = 7+31.

What property do the numbers on the left-hand sides of the equations have
in common?

What property do the numbers on the right-hand sides of the equations have
in common?

Come up with three more examples that fit this pattern.

Do you think the pattern always holds?

What is your conjecture? (We will revisit this later.)

One of the skills you must learn as a mathematician is making conjectures, and
another is determining whether your conjectures—and those conjectures others
share with you—are true. In that vein, you will often be asked to prove statements
that are true, but sometimes you will be asked to prove statements that are false.
(It is not possible to successfully prove a false statement.)

Here are some examples of theorems.

Example 1.4.6 (of theorems). Three. Yes, three theorems are here.

Every natural number greater than 1 has a unique factorization into prime
numbers.

Suppose n teams play in a tournament. Then for each team to play each
other team exactly once, there need to be (n−1)+(n−2)+ · · ·+1 games,
which is equal to n(n−1)/2 games.
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If a natural number is expressed in both binary and decimal forms, the binary
number will have at least as many digits as its decimal equivalent.

You proved the first part of the second theorem above, and you may prove the
accompanying formula in Chapter 4. A proof must be convincing in the logical
sense, but it need not explain why a theorem is true or provide insight as to why
the theorem is true. Those are both devoutly to be wished, of course. A proof
must compel assent and, in order to do so, must communicate ideas to the reader
or listener. Does this mean that a proof must be intelligible to anyone who reads
or listens? In some sense, yes—if someone doesn’t believe your proof, then it is
inadequate. But the reader/listener must make a reasonable effort to understand,
by translating symbols and checking definitions of unfamiliar terms.

Our next example requires a new bit of notation: a ∈ A means that a is an
element of the set A.

Example 1.4.7 (of a proof). Let us prove a special case of the product principle.
We would like to show that for finite sets A and B, the number of elements in
A×B is |A| · |B|. First note that by definition, the elements of A×B are ordered
pairs (ai,b j), where ai ∈ A and b j ∈ B. For each element ai ∈ A, there are |B|
pairs (ai,⋆) because there are |B| different ways to put an element of B in the ⋆
slot. Now, there are |A| elements of A, so the total number of pairs is (number of
elements of A) · (number of pairs formable with one element of A) = |A| · |B|. We
have reached the desired conclusion, so we are done!

The simplest proof technique is direct proof. Here is how to do it.

Template for a direct proof:

1. Restate the theorem in the form if (conditions) are true, then (conclu-
sion) is true. Most, but not all, theorems can be restated this way. (For
example, some are secretly (conditions) are true if and only if (conclu-
sions) are true, a structure you will learn about in Section 2.3.1.)

2. On a scratch sheet, write assume (conditions) are true or suppose (con-
ditions) are true.

3. Take some notes on what it means for (conditions) to be true. See where
they lead.

4. Attempt to argue in the direction of (conclusion) is true.
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5. Repeat attempts until you are successful.

6. Write up the results on a clean sheet, as follows.

Theorem: (State theorem here.)
Proof: Suppose (conditions) are true.
(Explain your reasoning in a logically airtight manner, so that no
reader could question your statements.)
Therefore, (conclusion) is true. (Draw a box or checkmark or
write Q.E.D.—the abbreviation of quod erat demonstrandum, Latin
for “whichwas to be demonstrated”—to indicate that you’re done.)

Admittedly, there is a lot of grey area in just how one should argue in the
direction of (conclusion) is true. This is where the creativity and art of proof come
in. However, having a structure toworkwithin is very helpful. Working backwards
from (conclusion) is sometimes helpful as part of the attempts, as long as the results
are presented “forwards.” One must be careful to avoid the temptation to start with
the conclusion and work backwards and then hand that in as a finished proof; the
steps have to be reversible and presented in the appropriate order. (One must also
avoid the temptation to give a few examples and call it a day. That is not a proof.)
Let’s think through a simple direct proof.

Example 1.4.8 (of a direct proof). Let us show that if n is an even number, then
for any integer k, the number kn is even. We have been given the statement in
if-then form, so we may suppose that n is an even number. Our desire is to find
a way to show that kn is even. What do we know about even numbers? Well,
the definition of an even number says that it is a multiple of 2, so that means that
n = 2m for some integer m (in fact, it’s the integer n

2 ). We can substitute this into
the expression we want to know about, kn, to see that kn = k2m. Aha! This is also
2(km) and that means the expression is a multiple of 2, and so it is even. We are
done (except for writing it up nicely, which we leave to you in order to save some
typing).

Usually direct proofs are not so simple. Sometimes they are much longer;
sometimes they require a number of cases. Also, in the wide world of mathematics,
people don’t usually name the proof techniques they’re using (except for induction,
which we’ll learn about in Chapter 4). Thus, it is rare to find the sentence, “We
proceed by direct proof” written outside of an introduction to proof writing.
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Then there is the problem of dealing with false statements. What are you sup-
posed to do if you are given a proposition to prove and it turns out to be false?
Well, here’s the deal. First, you have to figure out that the proposition is false.
(It’s not a bad idea to suspect that any statement you’re asked to prove might be
false.) If a statement is false, you know why: you’ve found a particular case in
which it is untrue, also known as a counterexample. So that’s all you have to do
… state that counterexample.

Example 1.4.9 (of a counterexample). Proposition: If n is even, then 2n−5 is also
even.

This proposition is false, because 4 is an even number but 2 ·4−5 = 8−5 = 3
is odd and thus not even.

An excellent reference for learning about proof techniques and proof writing
is Book of Proof by Richard Hammack. It has tons of examples and elementary
exercises and is freely available online [12].

Example 1.4.10 (of an open problem). Proposition: If n > 2 is even, then n can
be written as the sum of two primes.

Maybe you conjectured this on page 11. Surprise! This is a famous statement
known as theGoldbach conjecture. No one knows whether this proposition is true
or not! However, most people think it is very likely that the Goldbach conjecture is
true—it has been verified for numbers up to 3 ·1018. (Christian Goldbach (1690–
1764) made the conjecture in 1742 as part of a correspondence with Euler, who
figures prominently in Chapter 12.)

Check Yourself

1. Prove that if n is even, then n2 is even.

2. Prove that if n is odd, then n2 +5n−3 is also odd.

3. Challenge: Invent your own false proposition and accompany it with a counterex-
ample.

1.5 Pigeons and Correspondences

We will have much discussion of sets and subsets in Chapter 2, but for now we
will define subsets so that we can count them. A subset A of a set B is a set all of
whose members are also members of B. For example, {1,4,duck} is a subset of
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2 options

n slots

2 options
2 options 2 options2 options

Figure 1.3. By the product principle, there are 2n ways to fill in these slots.

{1,2,3,4,5,duck}, but {duck,egg} is not. We would like to count the number of
subsets of a finite set with n elements, so we will do it more than once, in different
ways.

The first way excellently uses the product principle. It also uses the idea of
one-to-one correspondence. This is the idea behind converting any counting prob-
lem (call this one Problem 1) into another counting problem (perhaps called Prob-
lem 2): if the items counted in Problem 1 are in one-to-one correspondence with
the items counted in Problem 2, then there are the same number of items counted in
each problem. But before discussing this excellent way of counting subsets, let’s
do an example.

Example 1.5.1. What are all the subsets of {egg,duck}? Certainly {egg} and
{duck} are subsets. Also, {egg,duck} is a subset of itself (the elements are the
same), and the empty set (denoted /0) is also a subset. In fact, the empty set is a
subset of every set, though in a rather boring way. So in total, {egg,duck} has four
subsets.

Consider these subsets as follows. Each subset corresponds to a way of filling
in two blanks . The first blank either has egg or doesn’t, and there are
two options there. The second blank either has duck or doesn’t, and there are two
options there. The product principle says there are 2 ·2 = 4 subsets in total.

From this, one can abstract that if a set E has n elements, one of which is egg,
then half of the subsets of E contain the element egg. Each subset of E corresponds
to a way of filling in n blanks, as indicated in Figure 1.3. The first blank either
has egg or it doesn’t, and there are two options there. Likewise, each other blank
either has its assigned element or it doesn’t, and each has two options. The product
principle says there are 2 · · · · ·2= 2n subsets in total. Wewill revisit this argument
in another context (graph theory) in Chapter 10.
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Here is a relatedway to count the subsets of an n-element set. We assign a 1 or 0
to each set element, depending on whether it is or is not in the given subset (much
like filling in or leaving a blank). This produces a one-to-one correspondence
between subsets and strings of binary digits (called binary strings). We again use
the set {egg,duck} as an example. As shown in the table below, we convert each
subset to a binary string.

Subset Binary String Decimal Number Counting Number
/0 00 0 1
{duck} 01 1 2
{egg} 10 2 3
{egg,duck} 11 3 4

We can read each binary string as representing a binary number and then con-
vert each such binary number to decimal (base 10). However, the smallest of those
decimal numbers is 0, which is not useful for counting, so we add 1 to each of the
decimal numbers. This effectively produces another one-to-one correspondence,
between binary strings and counting numbers. (By the way, one-to-one correspon-
dences are more formally known as bijections, and we will discuss them in more
detail in Chapter 3.)

This reduces our original question to “How many binary strings are there with
n digits?” We might note that the largest binary number represented by an n-digit
binary string is 111 . . .1 (n ones). Now, there is one more binary string than there
are numbers counting up to 111 . . .1 (n ones) because we need to include the string
000 . . .0 (n zeroes). So, we can simply add 1 to the decimal equivalent of 111 . . .1
(n ones). Also, we could add 1 before or after converting to decimal, so let’s do it
before and get 1000 . . .0, or 1 followed by n zeroes. That’s 2n—ta da!

Each way of counting the number of subsets of a set is a different proof of

Theorem 1.5.2. A set with n elements has 2n subsets.

It is useful to have different proofs of the same theorem because they give dif-
ferent understandings of, or different perspectives on, the mathematics involved.
Hidden in the above proofs is the following.

Fact. If two sets A and B are in one-to-one correspondence, then they have
the same size.

Yes, you probably knew this, but it is worth stating explicitly so that you will
remember it when it is useful. How exactly will it be useful? Well, we will focus
in Chapters 6 and 7 on a few types of counting problems—andmost other counting
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Figure 1.4. Pigeons sitting in pigeonholes.

problems can be solved by creating one-to-one correspondences with those famil-
iar problems. So trying to find one-to-one correspondences is a skill you’ll want
to acquire over time. There are related facts about the sizes of sets that are not in
one-to-one correspondence, and we’ll find those in Chapter 3.

Here is another explicit statement of a fact that you probably already know.

The pigeonhole principle. If you have more pigeons than pigeonholes, then if
every pigeon flies into a hole, there must be a hole containing more than one
pigeon. (See Figure 1.4.)

Really. Not kidding, it is actually called the pigeonhole principle by pretty
much everyone; this is not a silly name invented for this book, unlike some other
names you will find here. How on earth are these pigeons relevant?

Example 1.5.3. Suppose you have a bag of pigeons, some grey and some black.
More classically, suppose you have a drawer full of grey socks and black socks.
How many pigeons/socks must you grab in order to be sure you have two of the
same color? One is clearly not enough, and will only ask to drive the bus; two
might be enough if you’re lucky, but you could also get one grey and one black; but
three gives the guarantee that even if the first twowere grey and black, respectively,
the third must be either grey or black and thus be the same color as one of the first
two pigeons/socks.

While we are making explicit things you know (but might not have stated out-
right), here is

How to apply the pigeonhole principle:

1. Figure out what represents the pigeons. In Example 1.5.3, these were both
pigeons and socks.

2. Figure out what represents the pigeonholes. In Example 1.5.3, the pigeon-
holes are pigeon/sock colors.
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3. Figure out how pigeons correspond to holes. In Example 1.5.3, a pigeon
flies into a hole that matches its color.

Sometimes it is not obvious how to apply the pigeonhole principle, and in such
cases the explicit instructions will be useful. Let’s do amore complicated example.

Example 1.5.4. Did you know that in San Francisco, at least five people have the
same number of hairs on their heads? Wow, that’s gnarly. Intuition first:

The population of San Francisco is at least 870,000, according to https://www.
census.gov/quickfacts/fact/table/sanfranciscocitycalifornia,US/PST045216.

According to various unreferenced sources on “teh intarwebs,” the average
person has 100,000 hairs on hir head; those who are naturally blonde average
140,000 hairs. It seems that 180,000 would be a reasonable upper bound for the
number of hairs on a human head, but let’s be safe and use 200,000 as an upper
bound.

Then, 4 ·200,000< 800,000< 870,000, and so it looks like we have more than
four people per hair-number. With pigeons:

Pretend that each resident of San Francisco is a pigeon.
And, pretend that there is a set of pigeonholes numbered from 1 to 200,000.
Even if the first 200,000 pigeons fly into different holes, and then the next

200,000 pigeons each fly to a hole containing only one pigeon, and then the
next 200,000 pigeons each fly to a hole containing only two pigeons, and then
the next 200,000 pigeons each fly to a hole containing only two pigeons, there will
be four pigeons in each hole and there are at least 70,000 pigeons who still need
holes. Thus, there must be some hole that houses at least five pigeons, and there-
fore there are at least five San Franciscans with the same number of hairs on their
heads.

By the way, this kind of argument is known as an existence proof. That’s
because we know the five people exist, but we don’t know who they are. (This is
also called a nonconstructive proof, in contrast to a constructive proof, in which
we would explain how to find the five people.) Some people find existence proofs
unsatisfying. Oh, well.

Example 1.5.4 used a variant on the pigeonhole principle, namely

The generalized pigeonhole principle. If you have more than k times as many
pigeons than pigeonholes, then if every pigeon flies into a hole, there must be
a hole containing more than k pigeons.

https://www.census.gov/quickfacts/fact/table/sanfranciscocitycalifornia,US/PST045216
https://www.census.gov/quickfacts/fact/table/sanfranciscocitycalifornia,US/PST045216
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Notice that when proving Theorem 1.5.2, we used a one-to-one correspon-
dence; the pigeonhole principle is essentially using the lack of a one-to-one cor-
respondence. (After all, if there were a one-to-one correspondence, there would
be the same number of pigeons as pigeonholes.) We will investigate some for-
mal details along these lines in Chapter 3. Similarly, the generalized pigeonhole
principle is essentially using the lack of a many-to-one correspondence.

For a final example, we will use Theorem 1.5.2 together with the pigeonhole
principle.

Example 1.5.5. Given any list of 25 numbers, each of which has at most five digits,
two subsets of the list have the same sum. Again, intuition first:

Any one of the numbers is less than 100,000, so the sum of all 25 of them is
less than 2,500,000. Therefore any subset of the 25 numbers also has sum less
than 2,500,000. (We will ignore the empty set, even though it is a subset of the
numbers.)

To find the lowest sum possible, consider the case of a subset that’s just the
number 00001. It has sum 1. Therefore, there are at most 2,500,000 different
possible sums the subsets could have.

Now, how many subsets are there? We know this from Theorem 1.5.2—there
are 225 = 33,554,432 possible subsets. (Actually, because we have ignored the
empty set, we are only considering 225 −1 = 33,554,431 subsets.)

There are way more subsets than sums, so two of the subsets must have the
same sum. In terms of pigeons, we represent the subsets by pigeons and the
subset-sums by pigeonholes; a pigeon flies to the pigeonhole labeled with its
subset’s sum.

Check Yourself

1. List all the subsets of {egg,duck,goose}. How many are there? Howmany of them
contain egg? … duck? … goose?

2. Consider a standard deck of cards with suits hearts (♡), spades (♠), clubs (♣), and
diamonds (♢), and values 2–10, jack, queen, king, and ace. How many cards must
you deal out before being assured that two will have the same suit? How many
must you deal out before being assured that two will have the same value?

3. Challenge: Invent your own counting question that can be answered using the pi-
geonhole principle.
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1.6 Where to Go from Here

This chapter contained a very basic introduction to enumerative combinatorics,
the science of counting. To learn more, consult Chapters 6–9 (and then see where
those chapters direct you!).

More specifically, binary numbers and strings are used throughout computer
science as ways of representing data in computers. Sets and subsets are treated
extensively in Chapter 2. The study of number properties such as even, odd, and
prime is part of the larger field of number theory, of which we will encounter more
in Chapter 5 and which is addressed in Chapter 16. One-to-one correspondences
are studied at length in Chapter 3. We will address more proof techniques in Chap-
ters 2 and 4, and Richard Hammack has written the lovely Book of Proof [12] for
further study.

Yes, this is a brief section, but that’s because this is the most introductory
chapter! In other chapters we will give more information and advice.

Credit where credit is due: Most of the problems in Section 1.2 were inspired by [3],
and several problems in Section 1.9 were inspired by [1]. In Section 1.2, WEBS is a real
store (see www.yarn.com) and the Luminous Nose is a real restaurant in Japan (or at least
that’s what I’m told the Luminous Nose building is). Example 1.5.3 refers toDon’t Let the
Pigeon Drive the Bus by Mo Willems. Bonus Check-Yourself Problem 9 was suggested
by Doug Shaw; Bonus Check-Yourself Problem 1 was inspired by colleagues at the Centre
for Textiles and Conflict Studies. In Section 1.9, the grape-nut burgers in problem 1 are
Jim Henle’s recipe, Problem 5 references an old internet joke from the age of modems,
and Problems 30–32 were inspired by Karl Schaffer’s notes thereon.

1.7 Chapter 1 Definitions

disjoint sets: Sets with no elements in com-
mon.

union of sets: The union of two sets A,B
(or many sets A,B, . . . ,N) is a set con-
taining all members of A and of B (and
ofC, . . . ,N).

subset: A subset A of a set B is a set all of
whose members are also members of B.

definition: A precise statement of the
meaning of a term. (Think dictionary,
but better.)

conjecture: A statement proposed to be
true and made on the basis of intuition
and/or evidence from examples.

theorem: A statement that can be demon-
strated to be true.

proof: A justification of the truth of a state-
ment using reasoning so rigorous that the
argument compels assent.

proposition: A smallish theorem, or a the-
orem offered (proposed) to the reader.

www.yarn.com
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lemma: A small theorem, usually stated
and proven in the process of proving a
regular-size theorem.

corollary: A statement whose truth follows
directly (or almost directly) from a re-
lated theorem.

counterexample: A particular case in
which a statement is untrue. For exam-
ple, 3 is a counterexample to the state-
ment all numbers are even.

prime number: An integer n > 1 whose
only positive divisors are n and 1.

even number: A number evenly divisible
by 2. Equivalently, a number m is even
if m = 2k for some integer k.

odd number: A number m is odd if m =
2k+1 for some integer k.

binary number: A number expressed using
only the digits 0 and 1, with counting
proceeding as 1,10,11,100,101,110, . . .
and with places representing powers of
two, increasing to the left and decreasing
to the right.

1.8 Bonus Check-Yourself Problems
Solutions to these problems appear starting on page 593. Those solutions that model a
formal write-up (such as one might hand in for homework) are to Problems 2, 4, and 6.

1. A Timbuk2 custom messenger bag
comes in four sizes, has 46 options
for the left-panel and center-panel and
right-panel fabrics, 18 different binding
options, 27 logo colors, 11 liner colors,
three options for pocket style, two hand-
ednesses, and 47 different options for
the strap pad. (Really, not kidding—
these numbers came from the Timbuk2
website in October 2014.) How many
different custom messenger bags could
one order?

2. Prove that the product of any three odd
numbers is also odd.

3. Takeo, a paper store in Tokyo, has walls
lined with coded drawers. Each code
designates a type of paper. One such
drawer is 2Q08. If the first entry has
to be 1, 2, or 3 (there are only three
walls with drawers), the second is a let-
ter, and the last two are numbers, then
how many drawers could Takeo have?

4. You want to buy an electric car. The
Chevy Volt comes in eight colors (red,
brown, grey, pale blue, two blacks, two
whites), offers three kinds of wheels,
and has five kinds of interiors (two
cloth, three leather). The Tesla comes
in nine colors (black, two whites, two
greys, brown, red, green, blue), and
gives a choice of three roof styles (one
is glass), four wheel styles, four seat
colors, four dashboard prints, and three
door-trim colors. There are three ver-
sions of the Nissan Leaf (S, SV, SL),
each of which comes in seven col-
ors (two whites, two greys, red, blue,
black). How many different choices of
car do you have?

5. Prove, or find a counterexample: the
sum of two consecutive perfect cubes is
odd.

6. How many four-digit phone extensions
have no 0s and begin with 3?



22 1. Counting and Proofs

7. In 2016, there were 3,945,875 live
births in the US. (Source: http://www.
cdc.gov/nchs/fastats/births.htm.) Did
there have to be two of these births
within the same second?

8. How many length-8 binary strings have
no 0s in the fourth place?

9. You receive a choose-your-own-
adventure certificate for a jewelry store!
The deal is that you get to pick one of
eight precious gems, and either a ring
or a bracelet to put it in. There are
three possible ring styles and six pos-
sible bracelet styles.
(a) Howmany possible prizes are there?
(b) How did you answer the previous

question? If you used the product
principle first, re-answer the ques-
tion using the sum principle first.

(And if you used the sum principle
first, re-answer the problem using
the product principle first.)

(c) On closer look, you realize that nei-
ther the ruby nor the emerald would
look good on the bracelet. How
many prizes are still possible?

10. I have a lot of stuff in my stuff-holder:
six ball-point pens, a silver star wand,
three teal signature pens, a bronze-
yellow colored pencil, five liquid ink
pens, three mechanical pencils, a high-
lighter, six permanent markers, seven
gel pens, a Hello Kitty lollipop, two
markers, three wooden pencils, a 3-
inch-long pen, a calligraphy marker, a
pen shaped like a cat, and a pair of left-
handed office scissors.
How many writing utensils do I have in
the stuff-holder?

1.9 Problems That Use Counting or Proofs
Even when a problem statement doesn’t explicitly say that you must explain your rea-
soning, you still should give some justification for your answer—even if it’s just a few
words.

1. Bruno Burger’s specialty is, you
guessed it, burgers. They offer four
different burger patties (chicken, fish,
soy, and grape-nut) with your choice
of seven vegetables (onions, lettuce,
tomato, kale, red onions, zucchini, and
eggplant). How many patty-with-a-
vegetable burgers can be ordered?

2. The Supreme Bruno is any patty-with-
a-vegetable burger plus a condiment
(choose from Worcestershire sauce,
wasabi sauce, or mustard); you can
also have cheese, or not. How many
Supreme Brunos could be ordered?

3. Prove that the sum of two even numbers
n1 and n2 is also even.

4. Prove that the sum of two odd numbers
n1 and n2 is even.

5. You are assigned to communicate with
a truly ancient computer. You must
do this by telephone by shouting binary
digits over the line, in clumps of eight
digits. How many different eight-digit
binary strings are there to shout?

6. A local creperie offers sweet crepes and
savory crepes. A sweet crepe could
have any fruit (banana, strawberry,
mango, apple, lemon) and any syrup

http://www.cdc.gov/nchs/fastats/births.htm
http://www.cdc.gov/nchs/fastats/births.htm
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(nutella, chocolate, caramel, honey).
A savory crepe could have any veg-
etable (broccoli, mushroom, spinach)
and any protein (turkey, cheese, prosci-
utto). Howmany different crepes are on
the menu?

7. Prove that every binary number n that
ends in 0 is even.

8. Prove that every odd number n ends in
1 in its binary representation.

9. Scary Clown offers a Sad Meal contain-
ing a sandwich, a salad, a dessert, and
a drink. (They are not mixed together
in the box.) There are 11 types of sand-
wiches, 3 types of salads, and 5 differ-
ent kinds of desserts. A person with low
standards for food could eat a different
Sad Meal every day for three years. So
how many drinks are possible choices
for a Sad Meal?

10. Prove, or find a counterexample: the
difference of two consecutive perfect
squares is odd.

11. Every US coin is stamped with the year
in which it was minted. How many
coins do you need to have in your pocket
to be assured that at least two of them
have the same last digit? How many do
you need to be assured that at least two
have the same first digit?

12. Prove, or find a counterexample: the
sum of two perfect squares is even.

13. In order to keep track of circulation
numbers, the library asks you to note
on a form, when you leave the library,
which combinations of 15 subject ar-
eas and of 8 types of material (books,
current journals, databases, bound jour-
nals, videotapes, microfilm, microfiche,
DVDs) you used. How many possible

ways are there to fill in a line on the
form?

14. (Still about the library) Of course, not
every combination is realistically possi-
ble, as the library does not hold mate-
rials in every type for every discipline.
If the library has six types of material
for each discipline, how many possible
ways are there to fill in a line on the
form?

15. (And more about the library) More re-
alistically, some disciplines use mate-
rials in more differing forms than oth-
ers. Let’s look at just a few disciplines.
The Dance holdings are in videotape,
DVD, current journals, bound journals,
and books. The Math holdings are
in books, current journals, databases,
bound journals, videotapes, and micro-
film. The Computer Science holdings
are in books, databases, and DVDs. An-
cient Studies holdings are just bound
journals, videotapes, microfilm, andmi-
crofiche. How many possible ways are
there to fill in a line on the form for these
four disciplines?

16. Prove, or find a counterexample: the
sum of two primes is even.

17. At Chicago O’Hare International Air-
port, there are an average of 1,185 di-
rect flights per day (source: http://
www.flychicago.com/ohare/myflight/
direct/pages/default.aspx). Prove that
at least two of these flights must take
off within 90 seconds of each other.

18. Prove that if n is even, then (−1)n = 1.

19. How many different seven-digit phone
numbers are there?

http://www.flychicago.com/ohare/myflight/direct/pages/default.aspx
http://www.flychicago.com/ohare/myflight/direct/pages/default.aspx
http://www.flychicago.com/ohare/myflight/direct/pages/default.aspx


24 1. Counting and Proofs

20. How many different seven-digit phone
numbers begin with 231- and contain
no 9s?

21. Is the product of two odd numbers even
or odd? Prove it.

22. Let us try to strengthen the result in Ex-
ample 1.5.5.
(a) Does a list of distinct five-digit num-

bers of length 20 have the property
that there must be two subsets of the
list with the same sum?

(b) What is the smallest list of distinct
five-digit numbers such that there
must be two subsets of the list with
the same sum?

23. Prove that if n is any integer, then 3n3+
n+ 5 is odd. (Suggestion: do one case
for n odd and one case for n even.)

24. A cold-footed centipede has a drawer
filled with many, many socks. And yes,
that centipede does have 100 feet. If the
centipede only owns green and brown
socks, how many must it pull from the
drawer in the dark of the morning to be
assured that it has a matching set for all
of its feet (100 socks of the same color)?
What if the centipede also owns polka-
dotted socks? What if the centipede’s
drawer has many, many socks of k dif-
ferent colors?

25. Challenge: What if the centipede wants
50 (possibly different) matching pairs,
one pair for each pair of feet? Consider
first a centipede who only owns green
and brown socks, then a centipede who
also owns stripey socks, and then a cen-
tipede who owns k different colors of
socks.

26. Let us propose an alternate definition
for prime numbers: An integer n ≥ 1 is

prime if the only positive divisors of n
are n and 1. Which numbers are prime
under this definition? Why has the
mathematical community chosen not to
use this definition?

27. Let us propose an alternate definition
for prime numbers: An integer n > 1 is
prime if the only positive divisor of n is
n. Which numbers are prime under this
definition? Why has the mathematical
community chosen not to use this defi-
nition?

28. The Red Dot company sells laser point-
ers in three colors (red, green, purple)
and two lengths (keychain, pencil). The
green and purple laser pointers only
comewith regular tips, but there is also a
Fancy Tip option for the red laser point-
ers. How many options are there for
Red Dot laser pointers?

29. You buy a Scheepjes Catona Colour
Pack, which contains 109 mini-skeins
in rainbow colors that “create a collec-
tion of mercerized cotton that will daz-
zle and delight you.” However, you only
have eight rainbow-color bins (red, or-
ange, yellow, green, blue, indigo, violet,
and neutral) to store them in. Prove that
some bin must contain at least 14 mini-
skeins.

30. Magic Trick! You challenge a friend to
choose seven different natural numbers
in the range 1–12. You claim that (and
so you should be able to prove that)…
(a) … two of your friend’s seven num-

bers sum to 13.
(b) … two of your friend’s seven num-

bers have a difference of 6.
(c) … two of your friend’s seven num-

bers have a difference of 3.
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31. Magic Trick #2! This one requires two
friends. One of your friends picks eight
different numbers in the range 1–20.
The second friend chooses one of these
eight numbers to remove. You claim
that there are two subsets of the remain-
ing numbers that have the same sum.
Prove your claim!

32. In Massachusetts there are a lot of
Dunkin Donutses. It is not particularly
unusual to find five Dunkin Donutses
within one square mile. Must there be
two of them within 3

4 of a mile of each
other? What about within 1

2 mile of each
other?

33. In the author’s current house, the foyer
has a two-shelf bookshelf, the living
room has two six-shelf bookshelves,

the dining room has a two-shelf book-
shelf, and the pantry has a shelf full of
books. In addition, there are three other
shelves in the dining room that have
books on them, and there are three shelf-
like surfaces in the living room that hold
piles of books. How many different
shelves could be holding the bookKeep-
ing Ducks and Geese by Chris andMike
Ashton?

34. The Jinhao Shark fountain pen comes
in 12 different colors and two different
nib styles. How many different shark-
headed pens could one own?

35. Prove that if a(ab+1) is odd, then one
of a,b must be odd and the other must
be even.

1.10 Instructor Notes

Most of the notes for instructors given in this text are simply descriptions of what I do in
class and how I think about it. You should do what works for you in your classroom; feel
free to ignore any advice I give that does not apply to your situation. However, I hope that
some of this commentary is of use.

The first week of the semester often has less class time than most other weeks. It is
feasible to spend only one or two class meetings on this chapter. The first class meeting
must of course begin with some orientation (such as introductions and/or syllabus review)
but the bulk of the class can be spent with students working in groups on problems from
Section 1.2. It is worth reassuring students that even though they have no experience yet
with discrete mathematics, these are problems they can approach just by thinking about
them; discrete math is a natural way of thinking.

Working in groups on the first class day has the advantages of setting a collaborative
and interactive tone early on and having classmates meet each other (this is especially
useful for first-year class members). I advise counting the students off as 1,2, . . . ,⌊ n

4⌋
(where n is the number of students present), asking the 1s to collect in one area, the 2s in
another, etc., and reminding students to introduce themselves to each other before starting
work. Be sure to reserve ten minutes at the end of class to discern which problems have
been completed by all groups and elicit verbal explanations of their solutions from group
representatives.
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To reinforce what students learned in class, have them read Sections 1.3–1.5 for the
next class, specifically assigning the Check Yourself problems.

A good warmup for the second day of class is asking the students to share their Check
Yourself Challenge responses. This may lead to a discussion of other Check Yourself
problems if students have questions about them. Then have the class walk the instructor
through their choice of proof that a set of size n has 2n subsets, and use this as an opening
to discuss how to turn an argument into a written proof. Generally, students will have
different ways of explaining the same proof, and generally, they will not have very precise
language this early in the semester. It may take one-half to one hour for students to hash
out this simple proof, even with prompts from the instructor. This is a valuable exercise
for them to learn how much work is involved after solving a problem in order to submit
homework. If any time remains in class, ask whether students have questions over the
reading or Check Yourself problems, and then revisit problems not completed or discussed
the first day. (If you have lots of extra time, have the students start in on the Counting
Exercises—but be sure to save a few to have them write up as homework!)

In assessing your students after the first week of classes, remember that they will not
have been able to master basic proof techniques yet—they’re just starting! Mastery will
come over a period of weeks as they practice proof writing in multiple mathematical con-
texts. In case you desire (now or later) additional basic proof problems for your students,
a selection of them is provided in Section TI.2.



Chapter 2

Sets and Logic

2.1 Introduction and Summary

Sets and logic are the fundamentals that underlie all of mathematics, not just dis-
crete mathematics. However, a discrete mathematics course is a customary place
to address them directly. Sets are collections of objects. Logic is a formal way
of describing reasoning. We will both describe and construct sets, and we will
develop truth tables as a way to use logic on compound statements. Logical tools
are available for when we have trouble figuring out how to reason precisely using
English.

Both sets and logic come with a lot of notation. In order to do anything inter-
esting with either sets or logic, you need to be familiar with that notation. (In the
case of logic, we will not use the notation very often after this chapter.) Hence,
this chapter has a lot of reading that you must complete before you can get on with
the discovery and doing of related mathematics. It may feel a bit tedious; sorry.
Break it up into smaller chunks to aid focus and retention.

This chapter also contains our first introduction to the interesting proof tech-
nique of contradiction (and to the less interesting, but super-useful, proof technique
of double-inclusion). Proof by contradiction basically works by hypothesizing that
a theorem is false (say “suppose not!”) and then obtaining a statement that is clearly
false (such as 0 = 1).

Try not to be intimidated by the amount of unfamiliar material in this chapter.
We will be working with logical thinking and proof techniques all semester, and
you are not expected to fully grasp them yet. The intent of this chapter is to give
you the ideas and terminology so you can work to master the ideas as you use
them in context. You will probably want to reread parts of this material later in the
course to assist in that endeavor.

27
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2.2 Sets

Sets are ubiquitous in mathematics (and in life!). The definition of the word set
has a long and sordid history, full of confusions such as whether a set is allowed to
contain itself. We will be a bit imprecise here and give more of a description than
a definition.

Definition 2.2.1 (of set). A set contains elements. The elements must be distinct,
but their order does not matter. There may be finitely many or infinitely many
elements in a set. Elements can be words, objects, numbers, or other sets (i.e.,
basically anything).

When an element a is a member of a set A, we denote this by a ∈ A (and read
it aloud as “a is in A” or “a is an element of A”). The notation a1,a2 ∈ A means
that both a1 and a2 are elements of A. Often, sets are denoted by capital letters,
and their elements are denoted by related lowercase letters.

Example 2.2.2 (of your favorite sets). The sets most commonly used in discrete
math are

the natural numbers, N= {1,2,3, . . .},

the binary digits, Z2 = {0,1},

the integers, Z= {. . . ,−2,−1,0,1,2, . . .}.

Beware that some people (many computer scientists and somemathematicians)
think that 0∈N, perhaps because computer scientists often start counting with zero
instead of with one. In order to have consistency with mathematical induction (see
Chapter 4), we disagree with this view. Instead, we refer to the set {0,1,2,3, . . .}=
W as the whole numbers (but we refer to it rarely).

Example 2.2.3 (of other sets). The set {1,2,3} is the same set as {2,3,1}. Simi-
larly, {. . . ,−6,−4,−2,0,2,4, . . .} is the same infinite set as {0,2,−2,4,−4, . . .}.
(The dots indicate that the established pattern keeps on going.) By some defini-
tions, {1,1,2,3} is not a set because elements are repeated, but in this text we will
simply consider {1,1,2,3} as an inefficient expression of the set {1,2,3}. On the
other hand, {1,{1,2,3},3} is a perfectly fine (and well-expressed) set. The set
with no elements {} is often denoted /0 and called the empty set or the null set. It
is different from {{}} = { /0}, which contains one element (the empty set). A set
of four duck heads is shown in Figure 2.1.
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Figure 2.1. The elements of the set {dh1,dh2,dh3,dh4} are duck heads.

This is an appropriate moment to recall that |A| denotes the number of ele-
ments in a set, also called its size or its cardinality. We will only consider the
cardinality of finite sets here, and if you are interested in infinite sets, you should
look at Chapter 15. Here are a few examples: |{1,2,3}| = 3; |{{1,2,3}}| = 1;
|{{1,2,3},N}|= 2.Donot confuse set cardinalitywith absolute value, even though
they use the same notation; one applies to sets and the other to numbers, so there
is no conflict.

2.2.1 Making New Sets from Scratch

So far, we have described a set by listing all its elements. Most of the time we
instead describe the pattern that the elements follow. For example, 2Z= {k ∈Z | k
is even}= {. . . ,−4,−2,0,2,4, . . .}. The first expression is read as “two zee is the
set of k in zee such that k is even,” or as “two zee is the set of integers k such that
k is even,” or as “two zee is the set of all integers that are even.” Another way of
writing this same set dispenses with the word “even”: 2Z = {k ∈ Z | k = 2ℓ for
some ℓ ∈ Z}. Here we have substituted the definition of even for the word “even.”

Example 2.2.4. The set {a1a2a3 | ai ∈Z2} is the set of all three-digit binary strings
{000,001,010,011,100,101,110,111}. Similarly, {a1a2a3a4 | ai ∈ Z2,a1 = 1,
a3 = 0} is the set of all four-digit binary strings with first digit 1 and third digit
0, or {1000,1001,1100,1101}. The set {(a,b) | a ∈ 2Z,b ∈ {0,1,2}} is the set
of all ordered pairs where the first component is an even integer and the second
component is 0,1, or 2.
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Basically, we write sets in the form {type of elements | condition(s)}. Often
the type of elements will include a restriction to some set.

2.2.2 Finding Sets inside Other Sets

Recall from Chapter 1 that if we have two sets A and B, then A is a subset of B if
every element of A is also an element of B. Let’s say it again:

Definition 2.2.5. If A and B are sets, then A is a subset of B if every element of A
is also an element of B. We denote this relationship as A ⊂ B.

Technically, the symbol ⊂ means that A is a proper subset, so that there is at
least one element in B that is not in A, but we will be loosey-goosey with our usage
and allow A ⊂ B to mean that A is perhaps equal to B. The symbol ⊆ is used to
indicate that perhaps A and B are equal, and the symbol ( indicates that A and B
are definitely not equal. (Do not confuse ( with ̸⊂, which means that A is not a
subset of B!) Notice that /0 ⊂ A for any set A—because all zero of the elements in
/0 are also elements of A! Every set contains some nothingness.

Example 2.2.6 (of flavors of subsets and non-subsets). We start withA= {2k | k>
0,k ∈ Z}, the even natural numbers; A ⊂ N and, in fact, A ( N. In binary land,
{1} ⊂ Z2 and {0,1} ⊆ Z2 but {2} ̸⊂ Z2. Less commonly seen are the equivalent
statements Z2 ⊃ {1}, Z2 ⊇ {0,1}, and Z2 ̸⊃ {2}. We could have instead written
1 ∈ Z2,2 ̸∈ Z2 for the first and last of those statements (do you see why?).

A related concept is that of the power set P(A) of a set A. It is the set of all
subsets ofA. (You know fromTheorem 1.5.2 that ifA is finite, then |P(A)|= 2|A|.)
We will not use this concept very often, but it is worth mentioning because other
sources you encounter in your mathematical life will expect you to recognize it.

The notion of subset allows us to define the idea of set complement. We denote
the complement of A by A, though other people use notations like AC or A′ (that
last one is silly because the symbol ′ is used for so many other things, but still, you
should be warned).

Definition 2.2.7. If A ⊂ B, then A = B \A, all the elements of B that are not in A,
is called the complement of A relative to B. (This is sometimes written as B−A.)

So if you see the symbol A, know that there is secretly a B out there that you
must know about in order to understand what A is. Sometimes the universe is
temporarily redefined as a particular set (instead of the universe we live in) and
it takes the place of B for all sets A1,A2, . . . ,An in a discussion. (By the way, if
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there are several sets under discussion, we may refer to them as the first set or
A1 (pronounced “A-one”), the second set, the nth set, etc.). We can think of a set
complement as a way of removing one set from another.

Example 2.2.8 (of complements). As a small example, note that {1,3,5,7}\{1,5}
= {3,7}. Now let B be the set of four-digit binary strings. Then B \ {a1a2a3a4 |
ai ∈ Z2,a1 = 1,a3 = 0}= {0000,0001,0010,0011,0100,0101,0110,0111,1010,
1011,1110,1111}.

The notation B\A can be extended to situations where A is not a subset of B;
in these cases, we interpret B \A to mean B \ (elements of A in B) = B \ (A∩B).
For example, {1,3,5,7} \ {1,5,6} = {3,7}. We simply remove any elements of
B that are elements of A.

2.2.3 Proof Technique: Double-Inclusion

There is a simple way to show that two sets are equal (if in fact they are), and it
has a special name because it is used so frequently. You may deduce that name
from the title of this section. To show that A = B, show first that A ⊂ B and then
show that B ⊂ A. This means that A is included in B and B is included in A and
thus arises the term double-inclusion.

Of course, it might be useful to understand how to show that A ⊂ B (or B ⊂ A)
in order to execute a double-inclusion proof. A technical way to think about A ⊂ B
is with the statement if a ∈ A, then a ∈ B. So a formal inclusion proof proceeds as
follows:

Let a be any element of A.

(Reasoning, statements.)

Therefore, a ∈ B, and so A ⊂ B.

Example 2.2.9. Two different expressions can describe the same set. Let us show
that two descriptions of the set of even numbers are equivalent. To that end, let
E1 = {k ∈ Z | k = 2ℓ for some ℓ ∈ Z} and let E2 = {2r+6 | r ∈ Z}. First, we will
show that E1 ⊂ E2. Let e be any element of E1. Then e = 2ℓ for some ℓ ∈ Z. If we
let r = ℓ−3, then e = 2ℓ= 2(r+3) = 2r+6, where r ∈ Z, and therefore e ∈ E2.
Now, we will show that E2 ⊂ E1. Let t be any element of E2. Then t = 2r + 6,
where r ∈ Z. Setting ℓ = r+ 3, we have that t = 2r+ 6 = 2(r+ 3) = 2ℓ, where
ℓ ∈ Z, and therefore t ∈ E1. Because E1 ⊂ E2 and E2 ⊂ E1, we conclude that
E1 = E2.
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2.2.4 Making New Sets from Old

The most common operations on sets are the three defined here.

Definition 2.2.10. The union of sets A and B is a set A∪B containing all the el-
ements in A and all the elements in B (with any duplicates removed). Similarly,
the union of sets A1,A2, . . . ,An is A1 ∪A2 ∪·· ·∪An =

∪n
i=1 Ai and contains all ele-

ments in the Ai (with any duplicates removed). Dealing with infinitely many sets
is a little bit trickier and depends on how many there are (see Chapter 15 for more
on this), but for now we’ll say that

∪∞
i=1 Ai and

∪
i∈N Ai are the same.

Example 2.2.11. Let A = {egg,duck,3,4} and let B = {duck,goose,7,8}. Then
A∪B = {egg,duck,goose,3,4,7,8}.

Let Ai = {i}. Then
∪∞

i=1 Ai = N.

Definition 2.2.12. The intersection of sets A and B is a set A∩B containing every
element that is in both A and B. Similarly, the intersection of sets A1,A2, . . . ,An
is A1 ∩A2 ∩·· ·∩An =

∩n
i=1 Ai and contains only elements that are in all of the Ai.

We may sometimes take infinite intersections as in
∩∞

i=1 Ai and
∩

i∈N Ai.

Example 2.2.13. With A and B and Ai defined as in Example 2.2.11, A ∩ B =
{duck} and

∩∞
i=1 Ai = /0.

Two sets A and B are called disjoint if A∩B= /0. We now have enough notation
to give a super-formal way of restating the sum principle.

Theorem 2.2.14. If A1, . . . ,An are disjoint finite sets, then |A1 ∪ ·· · ∪An| =
|A1|+ · · ·+ |An|.

That is perhaps the most boring way to state the sum principle (can you think
of a more boring way?), so we will not generally use it. It is, however, worth
noting that almost every mathematical statement can be rewritten to use formal
set language; and, it is also worth noting that this often borifies a given statement.
(Definition: bor · i · f y, to intensify the level of boringness something has.) At the
same time, we informally use set theory in our daily lives; for example, red-headed
women are the intersection of the set of redheads and the set of women. Most of
the time, we don’t even notice that we’re using set theory, but if you listen to
conversations and look in the media, it’s all over the place (albeit implicitly).

Definition 2.2.15. The Cartesian product of sets A and B is a set A×B containing
all possible ordered pairs where the first component is an element of A and the
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second component is an element of B. In other words, A × B = {(a,b) | a ∈
A and b ∈ B}. Likewise, the Cartesian product A1 ×A2 × ·· · ×An is the set of
all n-tuples (a1,a2, . . . ,an) where ai ∈ Ai.

Example 2.2.16 (of Cartesian products). The set {duck,goose}×{egg}= {(duck,
egg),(goose,egg)}. When the empty set is involved, there’s a trick; {5,7,9,11}×
/0 = /0 because there are no possible ordered pairs with the second component
from the empty set. Binary strings of length two are formally Z2 ×Z2 = {0,1}×
{0,1}= {(0,0),(1,0),(0,1),(1,1)}. This is sometimes abbreviated as (Z2)

2. Like-
wise, binary strings of length n are formally Z2 ×Z2 ×·· ·×Z2 = (Z2)

n.

2.2.5 Looking at Sets

The most common example of a Cartesian product is that the real plane R2 is
secretly R×R, as shown in Figure 2.2. (R is shorthand for the real numbers.)

Figure 2.3 shows two other examples of Cartesian products.

1 2

1

3

R

R

Figure 2.2. At left, R2; at right, {1,2}×{1,3}.

duck egg

1

3

2

3

1 2

Figure 2.3. At left, {duck,egg}×{�,◦}. At right, {1,2}×{1,3}×{2,3}. Although the
set looks as though it is misplaced, it is not. (Grey lines are added to help locate the points
in space but are not part of the set.)
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A

B
C

D

Figure 2.4. Each Venn diagram shows the relationship between two sets. Note that B ⊂ A
but no subset relationship exists betweenC and D.

A

B
C

D

Figure 2.5. At left, A\B, the part of A that does not include B, is shaded; at right, C∩D,
the overlap betweenC and D, is shaded.

We need ways of visualizing larger and more abstract sets. The usual method
is called a Venn diagram, in which we draw a big box to denote the universe and
then blobs to represent sets. Here are a couple of examples, shown in Figure 2.4.
Those are pretty boring because they simply show two sets each. The information
provided by the Venn diagrams is what kind of subset relationship (if any) exists
between the two sets. Let’s indicate some new sets that are derived from the old
sets—in Figure 2.5 we shade the results of performing set operations on our old
sets. This process extends to some fancy shaded diagrams when we have three sets
and multiple set operations, as in Figure 2.6. In Figures 2.7–2.9, we show how to
find these same sets using hatching.

A B

C

A B

C

A B

C

Figure 2.6. From left to right, (A∩B)∪C, A∩ (B∪C), and A∪C.
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A B

C

A B

C

A B

C

Figure 2.7. From left to right, A, A∩B, and (A∩B)∪C.

A B

C

A B

C

A B

C

Figure 2.8. From left to right, B, B∪C, and A∩ (B∪C).

A B

C

A B

C

A B

C

Figure 2.9. From left to right, A, A∪C, and A∪C.

To exhibit (A ∩ B)∪C, we look within the parentheses. We start at left in
Figure 2.7 by hatching A. Because we want A∩B, we use a different hatching
for B so that A∩B is crosshatched. Then, to demonstrate the union with C, we
crosshatchC to match.

To exhibit A∩ (B∪C) in Figure 2.8, we again look within the parentheses.
We start by hatching B. Because we want B∪C, we use the same hatching on C
as on B. In contrast, we want to intersect this set with A, so we use a different
hatching on A so that the intersection is crosshatched.

The first step in showingA∪C is to hatchA at left in Figure 2.9. To showA∪C,
we use the same hatching onC as on A. Finally, what we want to exhibit is A∪C,
so we apply hatching on the remainder of the diagram and erase the previously
applied hatching.
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If you would like to practice using Venn diagrams, here are three online re-
sources that you will likely find helpful.

http://demonstrations.wolfram.com/InteractiveVennDiagrams/: This soft-
ware lets you click on parts of a two- or three-set Venn diagram to shade
them, and then it shows the set notation for the corresponding set and its
complement.

http://randomservices.org/random/apps/VennGame.html: This applet has
you click on a set-notation description and then shades the corresponding
regions of a Venn diagram.

http://math.uww.edu/~mcfarlat/143venn.htm: This “quiz” applet has 15
different symbolic descriptions of sets. You have to figure out which regions
on the corresponding Venn diagrams should be shaded, and mousing over a
nearby diagram will show the correct shading.

Check Yourself

There may seem to be a lot of these problems, but each one is quick to do.

1. List the elements of {z ∈ Z | −10 ≤ z < 10}.

2. Write the set {2,4,6,8,10} as a set of elements subject to a condition.

3. What is the cardinality of the set{duck, /0,{duck,egg},{duck,{duck,egg, /0}}}?

4. Is {3,6,13,67} ⊂ {67,4,53,5,13,6}?

5. List the elements of P({−1,5,20}).

6. Let A = {5,6,7,8,9,23}, B = {6,7,9,456,3.142}, and C ={7,4,8,2.3,π,6}. List
the elements of …

(a) … A∪B.
(b) … B∩C.
(c) … A\C.

7. Let D = {6.53,42,1,hat} and F = {0,−2}. List the elements of …

(a) … D×F .
(b) … F ×D.
(c) … D×D.
(d) … /0×F .

http://demonstrations.wolfram.com/InteractiveVennDiagrams/
http://randomservices.org/random/apps/VennGame.html
http://math.uww.edu/~mcfarlat/143venn.htm
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8. Draw a visual representation of the set {1,2,3}×{4,5}.

9. Make a Venn diagram that represents {1,2,3,4,5,6}∩{4,5,6,7,8,9}.

10. Challenge:

(a) Invent three sets of your own.
(b) Find a different way to write each of the sets (for example, list the elements,

or describe what the elements have in common using set notation).
(c) Make a Venn diagram showing the relationships between your three sets.

2.3 Logic

Regular old English communication is not very precise, and many sentences have
more than one interpretation. The reason logical notation and language have de-
veloped is so that there can be no question as to what a statement is intended to
convey. The word “logic” is used to refer to an area of mathematics as well as a
type of thinking. In all of mathematics, we use logical thinking, and we use the
notation and language of the area of mathematics known as logic when less formal
communication does not serve us well.

The basic component of logical language is the statement, which is a sentence
that is either true or false. (To say that in a snooty way, a statement has a truth value
from the set {true, false}.) Here is a non-statement: “Be a blue-footed booby.”
That sentence is an imperative; likewise, questions are not statements. Similarly,
“{−3,0,2}\{0,1}” is not a statement because it lacks a verb; it is only an expres-
sion.

Example 2.3.1 (of statements). Here are a few statements.

The December 2009 issue of Mathematics Magazine has 78 pages.

32−6 = 16.

{1,5,7}∩{1,2,8}= {2}.

There is a one-to-one correspondence between four-digit binary strings and
the corners of a four-dimensional cube.

In logic, we don’t care about whether a statement is true or whether it is false.
(Reread Example 2.3.1 with this in mind!) Our intent will be to examine the re-
lationships between statements when they are combined in certain ways. We care
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about the roles that statements play rather than their validity or truth value. Thus,
logical language omits the details of statements by referring to them with variables
(usually P or Q or R), so that one can stick any statements into the templates that
result. This simultaneously makes logical language useful and more difficult to
read.

2.3.1 Combining Statements

There are just a few constructions used in logic to combine statements, called con-
nectives. They are as follows:

and is the verbal analogue to set intersection, so P-and-Q is only true if both
P and Q are true;

or is the verbal analogue to set union, so P-or-Q is true whenever either P
or Q is true;

not makes a true statement false and makes a false statement true; it gives a
statement its opposite meaning;

implies means that one statement is a consequence of the other; it is also
written as if-then and is called a conditional statement.

Example 2.3.2 (of a very compound statement). Consider the statement if x ∈ Z
and x < 2.7 then x is negative or x ∈ {0,1,2}. The implication combines the
substatements x ∈ Z and x < 2.7 and x is negative or x ∈ {0,1,2}. Each of those
has two substatements of its own; the and has substatements x ∈ Z and x < 2.7,
and the or has sub-statements x is negative and x ∈ {0,1,2}. Then, note that the
statement under consideration is true. (If we changed x ∈ {0,1,2} to x ∈ {0,1},
then it would be false.)

Example 2.3.3 (of ambiguity without parentheses). Consider the statement x ∈ Z
and x < 3.6 or x > 628.3. Does it mean (x ∈ Z and x < 3.6) or x > 628.3, or does
it mean x ∈Z and (x < 3.6 or x > 628.3)? The number x = 1,002.7 is described by
the first statement but not the second statement. The number x =−23 is described
by both statements. When we combine statements, we must be careful that the
resulting statements are unambiguous, and so we must use enough parentheses.

Now we will be completely precise: we will define each of the connective
terms using a truth table. As the name indicates, a truth table is a table that lists
the truth values of a statement. Here is a silly and useless truth table:
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P P
T T
F F

This can be read aloud as when P is true, P is true; when P is false, P is false.
See? It is indeed useless.

Wewill now define and (denoted∧), or (denoted∨), and not (denoted¬) using
serious and useful truth tables.

P Q P∧Q
T T T
T F F
F T F
F F F

P Q P∨Q
T T T
T F T
F T T
F F F

P ¬P
T F
F T

P Q P xor Q
T T F
T F T
F T T
F F F

Looking at these truth tables, we can see that there is a difference between the
usual English use of or and the formal logical use of or. After dinner, a host might
ask, “Would you like coffee or tea?” (The answer “neither” corresponds to the line
in the truth table where P and Q are both false.) The intent is to offer either coffee
or tea, not both—regular English or is actually exclusive or, abbreviated xor. We
have given a bonus truth table for xor above. Notice that the number of rows in
a truth table depends on the number of statements involved. We need 2 rows for
P, 4 for P,Q, 8 for P,Q,R, 16 for P,Q,R,S, and so forth, so that we can have all
possible combinations of true and false.

Example 2.3.4. We will make a truth table for (P∧Q)∨R.

P Q R P∧Q (P∧Q)∨R
T T T T T
T T F T T
T F T F T
T F F F F
F T T F T
F T F F F
F F T F T
F F F F F

Sometimes we can ignore a few rows of a truth table: if we have particular state-
ments corresponding to P,Q,R, . . ., and we know that one of the statements is true
(or, likewise, false), then we only need the rows of the truth table corresponding
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to that truth (or falsehood). Let us suppose that Q stands for the statement the sun
is plaid. This is clearly false, so we could just write

P Q R P∧Q (P∧Q)∨R
T F T F T
T F F F F
F F T F T
F F F F F

Translating between logic and set notations. There is a correspondence
between set and logic notations, particularly when the logical statements are
about sets. The elements for which the statement P∧Q holds are those in
the set A = {x | P is true for x} and the set B = {x | Q is true for x}, and
together those elements form the set A∩B. Similarly, the elements for which
the statement P∨Q holds are those in the set A = {x | P is true for x} or the
set B = {x | Q is true for x}, and together those elements form the set A∪B. In
this sense, ∧ (or and) for statements corresponds to ∩ for sets, and ∨ (or or)
for statements corresponds to ∪ for sets. The analogy for the connective not
is a bit subtler; elements for which ¬P holds are those not in the set A = {x | P
is true for x}, but then where are they? For this to make sense, we must make
reference to a universe set U so that the elements not in A are those in A, the
complement of A relative toU .

Example 2.3.5 (of combining set and logic notations). Wecan describe the setA1∩
(A2 ∪A3) as {x | x ∈ A1 ∩ (A2 ∪A3)}. Via a set of equivalences, we can turn it into
another set:

{x | x ∈ A1 ∩ (A2 ∪A3)}= {x | x ∈ A1 and x ∈ (A2 ∪A3)}
= {x | x ∈ A1 and x ∈ (A2 or A3)}
= {x | (x ∈ A1 and x ∈ A2) or (x ∈ A1 and x ∈ A3)}
= {x | (x ∈ A1 ∩A2) or (x ∈ A1 ∩A3)}
= {x | (x ∈ A1 ∩A2)∪ (x ∈ A1 ∩A3)}
= (A1 ∩A2)∪ (A1 ∩A3).

Cool!

Next is implies (denoted by⇒). We read P ⇒ Q as “P implies Q” or as “If P,
then Q.” Implication can be seen from different perspectives; when we are writing
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a proof, P⇒Q needs justification, andwe considerP andQ as separate statements,
with⇒ standing in for the chain of argumentation that forms the bulk of a proof.
In a logical context, P ⇒ Q is a single statement that has truth values defined by
the following truth table.

P Q P ⇒ Q
T T T
T F F
F T T
F F T

This might seem a little weird. Or, more precisely, the last two lines of the
table might seem a little bit weird. How can P ⇒ Q be true if P is false? Consider
a practical and pleasant example, namely, the statement if you go to the party, then
you will get some candy. If you don’t go to the party, you don’t expect to get any
candy, but you might get some anyway from some other source. But it’s still true
that if you did go, you’d get candy, so even though you don’t go to the party, the
implication still holds; the promise made to you is true.

There are many equivalent ways of writing implication, which is lovely but
sometimes confusing. The statement P ⇒ Q is usually read as P implies Q or as
if P then Q but can also be read as P only if Q and P is sufficient for Q to hold.
On the other hand, Q ⇒ P can also be read as P if Q (see, if Q then …) and P is
necessary for Q. Let’s look again at the statement if you go to the party, then you
will get some candy. Here, P is you go to the party and Q is you will get some
candy. We could restate the statement as going to the party is sufficient for getting
some candy, or as you go to the party only if you get some candy, or also as getting
some candy is necessary when you go to the party.

Now, check this out: we can combine truth tables. (Note that arrows do work
the way they should, so P ⇐ Q means “If Q, then P.”)

P Q P ⇒ Q
T T T
T F F
F T T
F F T

P Q P ⇐ Q
T T T
T F T
F T F
F F T

P Q P ⇒ Q P ⇐ Q (P ⇐ Q)∧ (P ⇒ Q)

T T T T T
T F F T F
F T T F F
F F T T T
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It may not surprise you to learn that we abbreviate (P ⇐ Q)∧ (P ⇒ Q) as
P ⇔ Q and read that as “P if and only if Q.” This is a fairly common kind of
mathematical statement, used to show that two statements P and Q are logically
equivalent. (More generally, any time two compound statements have the same
truth tables, they are considered logically equivalent.) Some people are irritated
by having to write out the words “if and only if” and abbreviate the phrase to iff.
This statement type is called a biconditional. Additionally, even though we’re
not talking about proofs at the moment, it’s worth pointing out that if you want
to prove a biconditional statement you almost always have to split it into the two
implications and prove them separately. (It’s possible to string together a bunch of
biconditionals, but that’s hard. Don’t bother.) We often write (⇒) to indicate we’ll
prove that P implies Q and then write (⇐) to indicate we’ll prove that Q implies
P … and we start a new paragraph for each.

Advice. If you’re new to the mathematical uses of and, or, not, and implies, then
you might want to carry their truth tables around with you for a while until you
internalize them.

Logic is related to our goal of learning proof crafting because there we need
to produce rigorous and airtight reasoning. Well, using logical language certainly
does that! When we aren’t sure whether we’re being rigorous enough, logic is
here for us to fall back on. However, we don’t want to resort to formal logic too
often because it kills ease of communication. Plus, logical language is devoid of
context—it doesn’t care whether a given statement is true or false, but we do. And
we want to convince others of that truth or falsehood.

On the other hand, logical notation is used in writing computer code, espe-
cially in creating conditionals (that’s code-speak for if-then statements). For ex-
ample, If[ (a==b || a==0) && c < 5, c, 0] says if a = b or a = 0, and if c is less
than 5, then return the value of c; otherwise, return 0. It may seem like the major
use of logic for computer scientists is knowing the notation so that code can be
written, but it is important to understand logical equivalence so that code can
be refined for speed increases. Hardware designers use circuitry that corresponds
to logical connectives, sominimizing their number can have positive consequences
for power consumption and manufacturing cost.

2.3.2 Restriction of Variables via Quantifiers

One can make—and in fact we have already made—statements that include vari-
ables, such as k is even or x2 −3 = 1. In these cases, whether or not the statement
is true depends on what value the variable (here, k or x) has. The statement k is
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even is true only when k is even (duh) and x2 − 3 = 1 is true only when x = 2
or x = −2 (slightly less duh). Notice that statements always have verbs in them
(is this a “duh”?) so they differ from functions like k or x2 − 3 that merely pro-
duce numbers. Sometimes people will refer to a variable-including statement as
P(k) instead of just P; we won’t do that here because it confuses us and, therefore,
potentially you as well.

The quantifiers “for all” (denoted ∀, which is sometimes colloquially referred
to as “the upside-down A” by students who forget what it stands for) and “there
exists” (denoted ∃, which is similarly sometimes colloquially referred to as “the
backwards E”) restrict the variables referred to in a statement. We can rewrite our
two example variable statements using these quantifiers.

Example 2.3.6. The statement for all even k, k is even is certainly true, though for
all k, k is even is false and there exists k such that k is even is true. Similarly, for
all x, x2 −3 = 1 is false, whereas there exists x such that x2 −3 = 1 is true.

We can prove that last statement. Consider x = 2 and note that 22 −3 = 1, so
there does exist an x such that x2 − 3 = 1. This technique generalizes. Existence
proofs can be done simply by giving an example: you’ve shown that the desired
object exists! But this is the only time an example works as a proof.

Sometimes it would be more convenient if people used quantifiers in ordinary
English. For example, in the common statement every duck wants a cookie, the
speaker could mean that given any duck, it desires some cookie (∀ d ∈Ducks,∃ c∈
Cookies such that d wants c), or the speaker could mean there exists a cookie that
every duck wants (∃ c ∈ Cookies such that ∀ d ∈ Ducks,d wants c). Notice that
this exemplifies not only the vagueness of English but that placing quantifiers in
different orders changes the meaning of a statement. So be careful!

Example 2.3.7. Consider the statement ∀n ∈ 2Z,∃ a,b ∈ Z such that a = 2k1+ 1,
b = 2k2 +1, and n = b−a. This basically says that for every even integer, there
exist two odd integers such that the even integer is the difference of the odd inte-
gers. This is a true statement; given any even integer n, the integer a = n−1 will
be odd, as will b = n−1+n = 2n−1, and b−a = 2n−1− (n−1) = n.

If we change the order of the quantifiers, we may obtain ∃ a,b ∈ Z such that
a = 2k1 + 1,b = 2k2 + 1, and such that ∀n ∈ 2Z,n = b− a. This says that there
exist two odd integers such that for every even integer, that even integer is the
difference of the two odd integers. This is a false statement; no matter which two
odd integers a,b are considered, they have a single difference b− a that is even.
Any other even integer, such as b−a+2, cannot be the difference of a and b, so the
statement does not hold for most even integers (let alone for every even integer).
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2.3.3 Negation Interactions

Even professional mathematicians sometimes find negating statements to be some-
what challenging. To be safe, take the English-mathematics version of a statement,
substitute quantifiers (but don’t go to full logic-speak), and then use the rules we
will see here.

Example 2.3.8. ¬(All ducks like cookies) is logically equivalent to there exists a
duck who does not like cookies. Unsurprisingly then, ¬(some duck likes cookies)
is logically equivalent to all ducks dislike cookies. More mathematically, ¬(for all
integers k, k = 2.5) is equivalent to there exists an integer k such that k ̸= 2.5.

Basically, if you have the statement¬(∀ stuff), that converts to ∃¬(stuff), and if
you have the statement ¬(∃ stuff), that converts to ∀¬(stuff). At least this reduces
the problem of negating to a shorter statement, though (stuff) might have some
more quantifiers hidden within it.

Example 2.3.9 (of wacky negations). Let’s negate a couple of statements. Con-
sider for all ducks, there exists a cookie such that a tree weeps. In logic notation,
this becomes ∀ ducks, ∃ a cookie such that a tree weeps. Thus, the negation pro-
ceeds as ¬(∀ ducks, ∃ a cookie such that a tree weeps), which becomes ∃ a duck,
¬(∃ a cookie such that a tree weeps), and then ∃ a duck, such that ∀ cookies ¬(a
tree weeps), ending with there exists a duck such that for all cookies, no tree weeps.
Consider now there exists an egg such that it cracks for all cooks. Its negation is
slightly simpler. We translate first to logical notation to achieve ∃ an egg, such that
it cracks ∀ cooks. Its negation is ¬(∃ an egg, such that it cracks ∀ cooks), which
becomes ∀ eggs, ¬(∀ cooks it cracks), then ∀ eggs, ∃ cooks¬(it cracks) and finally
∀ eggs, ∃ cooks it does not crack. This doesn’t make much grammatical sense, so
we reword it to read for any egg, there exists a cook who cannot crack it.

Negation plays nicely with other connectives, as follows.

DeMorgan’s laws (logic version). (¬P)∨(¬Q) is logically equivalent to¬(P∧
Q), and (¬P)∧ (¬Q) is logically equivalent to ¬(P∨Q).

Example 2.3.10. No ducks and no chickens is the same as no ducks or chickens.

People often think DeMorgan’s laws are pretty obvious, but we have stated
them here for completeness (as well as because sometimes they are needed when
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statements P and Q are elaborate). We will investigate another form of DeMor-
gan’s laws in Section 2.4.

Negation and implication. The statement P ⇒ Q is logically equivalent to
the statement ¬Q ⇒¬P.

Definition 2.3.11 (of implication relatives). We sometimes call P ⇒ Q the original
statement and always call ¬Q ⇒ ¬P the contrapositive statement. Along these
lines, Q ⇒ P is the converse statement, and ¬P ⇒ ¬Q is the inverse statement,
and also the contrapositive of the converse statement. All four of these statements
are known as implications.

Notice that an implication and its converse are usually not both true at the
same time. For example, if I am at the combination Pizza Hut and Taco Bell, then
I am at the Pizza Hut is always true, but if I am at the Pizza Hut, then I am at the
combination Pizza Hut and Taco Bell is often false.

Should you wish to practice the use of logic notation, logical thinking, and
truth tables, here are some resources.

http://demonstrations.wolfram.com/PropositionalLogicPuzzleGenerator/:
You are shown some polygons along with a list of statements in logic no-
tation. (The logic notation is not quite the same as used in this book, but
there is a help option that explains it.) Each statement is marked as true
or false. The challenge is that the polygons are not labeled but referred to
in the statements as A, B, C, etc., and you get to match the labels with the
polygons.

http://demonstrations.wolfram.com/LogicWithLetters/ and
http://demonstrations.wolfram.com/2DLogicGameWithLetters/ and
http://demonstrations.wolfram.com/LogicWithLogicians/: These puzzles do
not use formal logic notation but give practice in logical thinking.

http://www.cs.utexas.edu/~learnlogic/truthtables/: After typing in a logi-
cal statement, you are given a corresponding blank truth table to fill in—it
just has headers and a few beginning columns. You can choose whether to
have your work checked entry by entry, or when you’re done filling in the
table. Warning: this applet uses a single arrow for implies instead of the
double arrow we use in this text.

http://demonstrations.wolfram.com/LogicWithLetters/
http://demonstrations.wolfram.com/2DLogicGameWithLetters/
http://demonstrations.wolfram.com/LogicWithLogicians/
http://www.cs.utexas.edu/~learnlogic/truthtables/
http://demonstrations.wolfram.com/PropositionalLogicPuzzleGenerator/
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Check Yourself

These problems take less time to do than they at first appear to take.

1. Let P represent the statement Ximena is pretty, Q represent Ximena is quizzical, and
R represent Ximena is a rugby player. Write (P∨Q)∧R as an English sentence.

2. WriteMiyuki does not like kumquats, but ze likes pickles or daikon in logic notation.

3. Rewrite every cat drinks beer as an implication.

4. Challenge: Come up with two examples of mathematical statements and two ex-
amples of mathematical non-statements.

5. Using truth tables, verify that the converse of a statement is not logically equivalent
to the original statement. (Suggestion: make the columns P, Q, P ⇒ Q, andQ ⇒ P,
and compare the last two columns.)

6. Write the contrapositive of the statement if the maple tree is orange, then the scis-
sors are closed.

7. Using truth tables, verify that the statement if I am at the combination Pizza Hut
and Taco Bell, then I am at the Pizza Hut is always true.

8. Negate the statement there exists an even number n such that n < 10.

2.4 Try This! Problems on Sets and Logic

These problems are intended to be discussed with peers. Some students find these
problems quite challenging and others find them easy. Your eventual success in
discrete mathematics is unlikely to be related to your feelings about this particular
collection of problems.

1. What is the cardinality of {0,cat,{dog},{2.1,6}}? List all its subsets. (How
many should there be?)

2. Formally negate the statement “You can fool all of the people all of the time.”

3. List several elements of the set E = {x ∈Z | 1
2 x ∈Z} and then give a simpler

description of E.

4. Here are DeMorgan’s laws, given in logic notation: ¬(P∨Q) is logically
equivalent to (¬P) ∧ (¬Q) and ¬(P ∧ Q) is logically equivalent to
(¬P)∨ (¬Q).
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(a) Express DeMorgan’s laws using set notation.
(b) Prove DeMorgan’s laws using truth tables.
(c) Prove DeMorgan’s laws using Venn diagrams.
(d) Prove DeMorgan’s laws using set-element notation. (Suggestion: use

double-inclusion.)
(e) Can you state DeMorgan’s laws for three or more sets?
(f) Does that give you any ideas for stating, using logic notation, DeMor-

gan’s laws for three or more statements?

5. LetA be the set of even numbers from−6 to 6 (inclusive), and letB be the set
of odd numbers from −6 to 6 (inclusive), living in the universe of integers
from −10 to 10 (inclusive).

(a) List the elements of B.
(b) What is A∪B?
(c) Describe A\B using fewer symbols.

6. Is ¬(P ⇒ Q) logically equivalent to P∧¬Q?

7. Let Ak = {0,1, . . . ,k}. What is
∪n

i=1 Ai? How about
∩n

i=0 Ai?

8. Draw a Venn diagram representing (A∩B)∩ (A∪C).

9. Is it true that ∃m ∈ Z | ∀n ∈ Z,m = n+5?

2.5 Proof Techniques: Not!

After all that boring reading, you probably are sighing at the thought of dealing
with more material in this chapter. But fear not! This is shorter and more interest-
ing (really!).

We already know how to do a straightforward proof, by directly proving an
implication P ⇒ Q: we assume P is true and then deduce that Q is therefore true.
We already know one way to disprove P ⇒ Q: find a counterexample. Now we
will use a single fact from logic to burst wide open the clouds surrounding proof
and shine glowing rays of truth on the situation.

Remember from Section 2.3.3 that the contrapositive of a statement is logi-
cally equivalent to the statement itself. That means we could prove (¬Q)⇒ (¬P)
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instead! This is but a tiny step removed from doing a direct proof: here we assume
¬Q and deduce that ¬P is therefore true. In fact, you can use the template from
Section 1.4 (page 12) by simply inserting ¬Q for P and inserting ¬P for Q.

Example 2.5.1. Let n,m ∈ N. We will prove that if n ·m is odd, then an n×m
grid cannot be tiled with dominoes. (A grid is tiled if every square is covered
exactly once.) The contrapositive of this statement is if an n×m grid can be tiled
with dominoes, then n ·m is not odd. So, suppose an n×m grid can be tiled with
dominoes. There are a total of n ·m squares, and every domino covers two squares.
Therefore, the tiling uses n·m

2 dominoes, and so n ·m must be even. Therefore, n ·m
is not odd.

There is a related technique we can use—it is called proof by contradiction and
it proceeds by assuming the statement we want to prove is false and obtaining a
logical problem of some kind. For an oversimplified example, if we want to prove
that P ⇒ Q, we would assume P is true and Q is false, and if we can show that Q
false implies P false, then this contradicts our assumption that P was true. (Read
that aloud three times…) You may astutely notice that this is actually proving the
contrapositive. In this case, we might start by drafting a proof by contradiction,
continue by discovering that we’ve proven the contrapositive, and write the clean
version of the proof as a contrapositive proof.

More commonly when using proof by contradiction, the P in P ⇒ Q is a com-
pound statement containing several conditions (e.g., if k is an integer, ℓ is even,
and the moon is green), and we will only contradict one part of P rather than prov-
ing the negation of P as a whole (e.g., showing that the moon is not green and thus
deriving a contradiction).

Less common but still useful is assumingQ is false and deriving a contradiction
unrelated to the statements under consideration—for example, showing that Q is
false implies that 2 is an odd number.

Template for a proof by contradiction:

1. Restate the theorem in the form if (conditions) are true, then (conclu-
sion) is true.

2. On a scratch sheet, write suppose not. Then write out (conditions) and
the negation of (conclusion).
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3. Try to simplify the statement of ¬(conclusion) and see what this might
mean.

4. Attempt to derive a contradiction of some kind—to one ormore of (con-
ditions) or to a commonly known mathematical truth.

5. Repeat attempts until you are successful.

6. Write up the results on a clean sheet, as follows.

Theorem: (State theorem here.)
Proof: Suppose not. That is, suppose (conditions) are true but
(conclusion) is false.
(Translate this to a simpler statement if applicable. Derive a con-
tradiction.)
Contradiction!
Therefore, (conclusion) is true. (Draw a box or checkmark or
write Q.E.D. to indicate that you’re done.)

Example 2.5.2. We will prove that there are infinitely many powers of 2, i.e.,
20,21,22, . . . . Suppose not. Then there are finitely many powers of 2; let the num-
ber of them be n. Therefore, we can sort them in increasing order of size. Consider
the largest of these, k. Then 2k is not one of the n powers of 2; it is larger than
any of them because 2k > k. Therefore, there are at least n+1 powers of 2, which
contradicts the supposition that there were only n of them.

Contradiction can also be used to disprove false statements. In this case, as-
sume the statement is true and derive a contradiction.

Check Yourself

1. Prove that if n2 is odd, then n is odd. (Suggestion: try proving the contrapositive.)

2. Prove that if there are ten ducks paddling in four ponds, then some pond must con-
tain at least three paddling ducks. (Suggestion: try contradiction.)

3. Challenge: Develop your own statement that can be proved by contradiction.
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2.6 Try This! A Tricky Conundrum

Consider the following argument: You must learn about sets or learn about logic
if you go on to the next chapter. You did not learn about sets and did not go on to
the next chapter. Therefore, you must not have learned about logic.

1. Decide for yourself whether or not the conclusion is correct (that you must
not have learned about logic). Make a note of this decision.

2. In a small group, exchange your decisions and share your reasoning (justify
your decisions). Please collaborate from here on out.

3. Let’s check our logic formally.

(a) Dissect the first sentence and find three statements within it that you
can label with letters.

(b) Turn the first sentence into an expression using formal logic symbols.
(c) Express the second and third sentences in formal logic symbols, too.
(d) Make a (big) truth table that includes parts for each of the sentences

and for the argument as a whole.

4. Compare the result of this truth table to your original idea. If they agree,
explain how they are compatible. If they do not agree, find the source of the
error.

5. If you have some time left over, work on these proofs.

(a) For n ∈ N, prove that if n3 +6n2 −2n is even, then n is even.
(b) Let x ∈ R. Show that if x5 +7x3 +5x ≥ x4 + x2 +8, then x ≥ 0.
(c) Prove that an 8× 8 chessboard with a square missing cannot be tiled

with dominoes.
(d) Prove that for n odd, an n×n chessboard missing its lower-right-hand

corner can be tiled with dominoes.

2.7 Additional Examples

Example 2.7.1 (of manipulating set notation). Let S1 = {q + 1 ∈ Z | q = 2k for
some k ∈ Z}, and let S2 = {2r+ 5 | r ∈ Z}; we want to show that S1 = S2. First,
we will show that S1 ⊂ S2. Let s be any element of S1. Then s = 2k+1 for some
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k ∈ Z. If we let r = k−2, then s = 2k+1 = 2(r+2)+1 = 2r+5, where r ∈ Z,
and therefore s ∈ S2. Now, we will show that S2 ⊂ S1. Let t be any element of
S2. Then t = 2r+ 5, where r ∈ Z. Setting k = r+ 2, we have that t = 2r+ 5 =
2(k− 2)+ 5 = 2k+ 1, where k ∈ Z, and therefore t ∈ S1. Because S1 ⊂ S2 and
S2 ⊂ S1, we conclude that S1 = S2.

Example 2.7.2 (of Venn diagrams). We will exhibit (A∩B)∪ (A∩B) using Venn
diagrams.

We begin by looking within the parentheses. The first set of parentheses con-
tains A ∩ B. We start at left in Figure 2.10 by hatching A. Because we want
A ∩ B, we use a different hatching for B and then combine these so that A ∩ B
is crosshatched.

A B A B A B

Figure 2.10. At left, A; in the middle, B; at right, A∩B.

The second set of parentheses contains A∩B. We start at left in Figure 2.11
by hatching A. Because we want A∩B, we use a different hatching for B and then
combine these so that A∩B is crosshatched.

A BB A BA

Figure 2.11. At left, A; in the middle, B; at right, A∩B.

Finally, we combine these sets. We start at left in Figure 2.12 by showing
A∩B, and in the middle we show A∩B. Because we want (A∩B)∪ (A∩B), we
display both at once using the same type of hatching.
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A B A B A B

Figure 2.12. At left, A∩B; in the middle, A∩B; at right, (A∩B)∪ (A∩B).

Example 2.7.3 (of breaking down a very compound statement). Consider the state-
ment if x∈Z and x>−7.2 then x is positive or x∈{0,−1,−2,−3,−4,−5,−6,−7}.
The largest logical substructure is the if-then implication, which combines the sub-
statements ⟨x ∈ Z and x >−7.2⟩ and ⟨x is positive or x ∈ {0,−1,−2,−3,−4,−5,
−6,−7}⟩. Each of those has two substatements of its own; the and has substate-
ments ⟨x ∈ Z⟩ and ⟨x > −7.2⟩, and the or has substatements ⟨x is positive⟩ and
⟨x ∈ {0,−1,−2,−3,−4,−5,−6,−7}⟩.

Example 2.7.4 (of evaluating statements with truth tables). Here is an argument
someone might make: The jelly bean is blue. Blue things are tasty. Therefore,
the jelly bean is tasty. Is this argument correct? We will represent jelly bean as J,
blue as B, and tasty as T . Then the jelly bean is blue is really if it is a jelly bean,
then it is blue or J ⇒ B. We can similarly write the other statements as B ⇒ T and
J ⇒ T . Surely, if J ⇒ B and B ⇒ T , then J ⇒ T , right? Let’s see…

J B T J ⇒ B B ⇒ T (J ⇒ B)∧ (B ⇒ T ) J ⇒ T ((J ⇒ B)∧ (B ⇒ T ))⇒ (J ⇒ T )

T T T T T T T T
T T F T F F F T
T F T F T F T T
T F F F T F F T
F T T T T T T T
F T F T F F F T
F F T T T T T T
F F F T T T T T

Yup, it’s all true! Literally, all entries in the last column of the truth table are
T—this means the implication, and therefore the argument, is correct.

Example 2.7.5 (of quantifier order mattering). Let d,e ∈ Z. Consider the state-
ment ∀e,∃d such that d < e. This true statement basically says that given an
integer, we can find a smaller one. For example, given e = −32, we can find
d =−4,389.
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If we change the order of the quantifiers, our new statement is ∃d,∀e such that
d < e. This statement says there is some integer such that every other integer is
larger. That’s not true!

(If you are (or have been) a student of calculus, compare this example to the
formal (ε-δ ) definition of limit.)

Example 2.7.6 (of wacky negations). Consider the statement for all futons, there
exists a duck such that stripes are in fashion. In logic notation, this becomes ∀
futons, ∃ a duck such that stripes are in fashion. Thus, the negation proceeds as
⟨¬(∀ futons, ∃ a duck such that stripes are in fashion)⟩; ⟨∃ a futon, ¬(∃ a duck
such that stripes are in fashion)⟩; ⟨∃ a futon, such that ∀ ducks ¬(stripes are in
fashion)⟩; … and finally, ⟨there exists a futon such that for all ducks, stripes are
not in fashion⟩.

2.8 Where to Go from Here

Commandment. Go back and reread the material on proof in Section 1.4.
And (grin) reread Section 3 on how to read mathematics.

We will apply the concepts introduced in this chapter throughout the text, but
logic will be particularly important in Chapter 5 when we study the construction
of algorithms. The type of basic set theory introduced in this chapter is pervasive
in and essential for all of mathematics and has a somewhat different flavor when
used in courses based in continuous as opposed to discrete mathematics, such as
real analysis and topology. If after working through thematerial in this chapter, you
want to see more examples and have more elementary exercises to work, consult
Book of Proof by Richard Hammack [12].

Venn diagrams are a source of much interesting investigation. If you try to
draw a Venn diagram that represents four or more sets, you will quickly run into
trouble showing all possible intersections. For a good survey of approaches to this
problem, see http://www.combinatorics.org/Surveys/ds5/VennEJC.html, which
also tells you more than you ever wanted to know about Venn diagrams—and
includes a zillion references.

Set theory and logic are subfields of mathematics on their own, so there is a
great deal to learn about each of these. (Sometimes they are lumped together as
foundations of mathematics.) We will address a small bit of set theory in Chap-
ter 15. You can take upper-level undergraduate courses on set theory and on logic;
if you wish to self-study, Sweet Reason: A Field Guide to Modern Logic by Tom

http://www.combinatorics.org/Surveys/ds5/VennEJC.html
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Tymoczko and Jim Henle and An Outline of Set Theory by Jim Henle should be
the resources you use first.

Within mathematics, set theory and logic are small subfields but are quite ac-
tive. For example, the Association for Symbolic Logic sponsors sessions of re-
search talks at national mathematics conferences. One famous result in the area is
Gödel’s incompleteness theorem, which basically says that in any logical system
there are statements that cannot be proven to be true or shown to be false. Classical
problems in foundations of math were often related to what set of axioms (assump-
tions or rules) is needed, or is best, for various statements to be true. Modern logic
research involves making formal abstract models of other parts of mathematics in
order to prove more powerful theorems.

Credit where credit is due: The first activity in Section 2.6 was adapted from an example
in [8]; the first puzzle and the project in Section 2.10 were adapted from exercises in [1].
The example on page 45 references a song by Das Racist (find it on YouTube). Problem 12
in Section 2.12 includes a phrase from “Song for a Future Generation” by the B-52s. Four
problems in the latter part of Section 2.12 were donated or inspired by Heather Ames
Lewis.

2.9 Chapter 2 Definitions

set: A mathematical object that contains
distinct unordered elements. There may
be finitely many or infinitely many ele-
ments in a set.

element: Elements can be words, objects,
numbers, or sets (i.e., basically any-
thing).

empty set: The set with no elements. Also
called the null set.

null set: The empty set.
cardinality:The number of elements in a set.
size: The cardinality of a set.
subset: A is a subset of B if every element
of A is also an element of B.

proper subset: A is a proper subset of B
there is at least one element in B that is
not an element of A.

power set: The set of all subsets of A, de-
noted P(A).

set complement: If A ⊂ B, then A = B\A,
all the elements of B that are not in A, is
called the complement of A relative to B.

union: The union of sets A and B is a set
A∪B containing all the elements in A and
all the elements in B (with any duplicates
removed). The union of many sets Ai
contains all elements in the Ai (with any
duplicates removed).

intersection: The intersection of sets A and
B is a set A∩B containing every element
that is in both A and B. The intersection
of many sets Ai contains only elements
that are in all of the Ai.

disjoint: Two sets A and B are called dis-
joint if A∩B = /0.
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Cartesian product: The Cartesian product
of sets A and B is a set A × B contain-
ing all possible ordered pairs where the
first component is an element of A and
the second component is an element of
B. In other words, A×B = {(a,b) | a ∈
A and b ∈ B}. Likewise, the Cartesian
product A1 × A2 × ·· · × An is the set of
all n-tuples (a1,a2, . . . ,an) where ai ∈
Ai. The name Cartesian is derived from
René Descartes (1596–1650).

Venn diagram: A picture in which a big
box denotes the universe of things under
consideration and blobs represent sets.
Venn diagrams are used to show relation-
ships between sets. Named after John
Venn (1834–1923), whowrote influential
works on logic and probability/statistics.

statement: A sentence that is either true or
false; it is the basic component of logical
language. (To say that in a snooty way,
a statement has a truth value from the set
{true, false}.)

connective: A logical construction used to
combine statements.

truth table: A table that lists the truth val-
ues of a statement.

and: The verbal analogue to set intersec-
tion, so P-and-Q is only true if both P and
Q are true; denoted∧. The corresponding
truth table is shown in Figure 2.13.

or: The verbal analogue to set union, so P-
or-Q is true whenever either P or Q is
true; denoted ∨. The corresponding truth
table is shown in Figure 2.13.

xor: “Exclusive or” means that one state-
ment or the other is true, but not both.
The corresponding truth table is shown in
Figure 2.13.

not: This gives a statement its opposite
meaning; denoted by ¬, it makes a true
statement false and makes a false state-
ment true. The corresponding truth table
is shown in Figure 2.13.

implies: This means that one statement is
a consequence of the other; denoted ⇒.
The corresponding truth table is shown in
Figure 2.13.

if-then: A statement involving implication.

conditional: An if-then statement.

if and only if: “P if and only if Q” is de-
noted P ⇔ Q and means that the state-
ments P and Q are logically equivalent.
The corresponding truth table is shown in
Figure 2.13.

DeMorgan’s laws: The logical rules for
how not interacts with or and and.
Named after Augustus DeMorgan
(1806–1871).

iff: If and only if.

biconditional: An if-and-only-if state-
ment.

quantifier: Quantifiers such as “for all” and
“there exists” restrict the variables re-
ferred to in a statement.

implication:A statement of the form P ⇒ Q.

contrapositive: WhenP⇒Q is the original
statement,¬Q⇒¬P is the contrapositive
statement.

converse: When P ⇒ Q is the original
statement, Q ⇒ P is the converse state-
ment.

inverse statement: When P ⇒ Q is the
original statement, ¬P ⇒ ¬Q is the in-
verse statement.
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P Q P∧Q
T T T
T F F
F T F
F F F

P Q P∨Q
T T T
T F T
F T T
F F F

P Q P xor Q
T T F
T F T
F T T
F F F

P ¬P
T F
F T

P Q P ⇒ Q
T T T
T F F
F T T
F F T

P Q P ⇔ Q
T T T
T F F
F T F
F F T

Figure 2.13. The truth tables for and, or, xor, not, implies, and if and only if.

2.10 Bonus: Truth Tellers

One application of logical thinking is the class of truth-teller puzzles. The basic
format for these is that some statements are made, and each speaker either always
tells the truth or always lies. Your assignment is to figure out what’s going on
(either who is telling the truth or what the truth of the matter is). Such puzzles can
be unraveled using truth tables or simply by using logical reasoning. Here we will
give a few examples of how to use truth tables to resolve these puzzles.

Suppose you meet some ducks. It is known that a given duck either always
tells the truth or always lies. (This is theorized to be the origin of the common
expression “Ducks usually lie.” See [21].)

Example 2.10.1. One duck says, “I am a truth-telling duck.” Another duck quacks,
“I am a lying duck.” Can we determine anything about either duck’s nature? Let
us make a truth table to investigate. Let D represent the duck; it gets the value T if
it is a truth-telling duck and the value F if it is a lying duck. The statement “D tells
the truth” is true exactly when D is a truth-telling duck; the statement “D lies” is
true exactly when D is a lying duck.

D D tells the truth D lies
T T F
F F T

That’s the unvarnished truth of the situation. But, of course, a lying duck lies
(duh)… and our truth table doesn’t take that into account. So we modify the truth
table to reveal what each type of duck would say in each situation—we swap T
and F for the lying duck:
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D D tells the truth D lies
T T F
F /F T /T F

We can now see that either sort of duck would say that it tells the truth, so we
can determine nothing about the first duck. We also see that neither sort of duck
would say that it lies, so the second “duck” must not be a duck at all.

Example 2.10.2. A pair of ducks approaches. One quacks, “Exactly one of us is
a liar.” The other says, “Both of us tell the truth.” Huh! What is going on? Let’s
look at a truth table.

D1 D2 D1 xor D2 lies D1 ∧D2 tell the truth
T T F T
T F T F
F T T F
F F F F

Again, we modify the table to account for what lying ducks say, and remember
that D1 made the statement in the third column, whereas D2 made the statement in
the fourth column:

D1 D2 D1 xor D2 lies D1 ∧D2 tell the truth
T T F T
T F T /F T
F T /T F F
F F /F T /F T

Interestingly, we can only conclude that D2 is a liar—the statements are consistent
whether D1 is a truth teller or a liar!

Puzzle 1. Amy finds a present on hir doorstep. Ze suspects it was left by either
Rachel, Tess, or Nicol. Ze confronts each one.

Rachel: Not me! Tess knows you, and Nicol is your BFF.
Tess: I don’t know you, and besides, I’ve been on vacation in Europe
for the last several weeks. I didn’t leave you a present.
Nicol: It wasn’t me, but I did happen to see Tess and Rachel walking
along the river together last week. It must have been one of them.
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Let us assume that the present-giver is lying and the other two individuals are
telling the truth. Who left Amy the present?

Puzzle 2. In Math Curse [22], the main character has a strange experience at
dinner. “While passing the mashed potatoes, Mom says, ‘What your father says
is false.’ Dad helps himself to some potatoes and says, ‘What your mother says is
true.’ … Can that be true?” Figure out what is going on here… and if you have
not already done so, readMath Curse. Your local public library surely has it in the
picture-book section.

Project: You are walking about and see some tasty-looking berries. You also
meet a duck, which, like any duck, always lies or always tells the truth. You
may ask the duck exactly one question. Explain why you will not definitely
learn whether the tasty-looking berries are safe to eat by asking any of the
following questions:

Are these tasty-looking berries safe for a human to eat?

Do you tell the truth?

Do you tell the truth and are these tasty-looking berries safe for a human
to eat?

Do you tell the truth or are these tasty-looking berries safe for a human
to eat?

If you tell the truth, then are these tasty-looking berries safe for a human
to eat?

If these tasty-looking berries are safe for a human to eat, then do you
tell the truth?

Do you tell the truth if and only if you lie?

Design a single question to ask the unknown duck such that the answer will
tell you whether the tasty-looking berries are safe to eat.

If you want to play with many, many, many more puzzles of this sort, consult a
book by Raymond Smullyan. He has written lots of logic puzzle books—perhaps



2.11. Bonus Check-Yourself Problems 59

the first was What Is the Name of This Book?—and they are easy to find. If you
prefer an electronic playground, here are a few sources of logic puzzles:

http://demonstrations.wolfram.com/KnightsKnavesAndNormalsPuzzleGenerator/,
http://demonstrations.wolfram.com/KnightsAndKnavesPuzzleGenerator/,
http://demonstrations.wolfram.com/AnotherKnightsAndKnavesPuzzleGenerator/.

All generate collections of statements. You decide which speakers are knights
(who tell the truth) and which are knaves (who lie). The software has options
to translate each statement into logic notation and to reveal the solution to each
puzzle.

2.11 Bonus Check-Yourself Problems
Solutions to these problems appear starting on page 595. Those solutions that model a
formal write-up (such as one might hand in for homework) are to Problems 7 and 9.

1. On an October 2014 visit to the CVS
Minute Clinic, the check-in kiosk asked
the question, “If you have a copay for
today’s visit, will you be paying for it
with a credit or debit card?”

(a) Identify the formal logic quantifiers
and structure in this question.

(b) The visit in question was for a flu
vaccine, which does not require a
copay. The kiosk gave options of
Yes and No. How should the visitor
have answered?

(c) Can you find a simpler way to
word the question clearly? (In other
words, what should the kiosk ques-
tion ask?)

2. There was a recent campaign slogan
heard on the radio: Not just Blue Cross
Blue Shield of Massachusetts, but Blue
Cross Blue Shield … of you. Why is
this mathematically nonsensical for res-
idents of Massachusetts?

Q

R

S

Figure 2.14. A Venn diagram of mys-
tery.

3. Consider the Venn diagram in Figure
2.14.

(a) Express the shaded area as a set
using unions, intersections, and/or
complements of the sets Q, R, and S.

(b) LetQ= {k ∈Z | |k| ≤ 10}, R= even
numbers, and S = {n∈N | n is a per-
fect square}. List the elements of the
shaded area.

http://demonstrations.wolfram.com/KnightsKnavesAndNormalsPuzzleGenerator/
http://demonstrations.wolfram.com/KnightsAndKnavesPuzzleGenerator/
http://demonstrations.wolfram.com/AnotherKnightsAndKnavesPuzzleGenerator/
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4. Let A = multiples of 4, and B = multi-
ples of 6. Write A∩B as a set in the form
{ sets | conditions }.

5. Negate the statement ∀ n ∈ Z,∃ y ∈ 2N
such that n = y · k for some k ∈ Z. Is
either the statement or its negation true?

6. Prove that k ∈ Z is positive if and only
if k3 is positive.

7. Make a truth table for ¬(P ∧ Q) ∧
((P ∨ Q) ∧ R). Can you express this

statement (henceforth referred to as
aaaaaa!) more simply?

8. Let A = {0,1,2} and B = {1,3,5,7}.
(a) List the elements of

(A×B)∩ (B×A).
(b) List the elements of

(A\B)× (B\A).
9. Show that

(A×B)∪ (C×B) = (A∪C)×B.
10. Show that {2k | k ∈ N}∪{4k+ 1 | k ∈

W}∪{4k+3 | k ∈W}= N.

2.12 Problems about Sets and Logic

1. List the elements of {n ∈ N | n2 = 4}.

2. An excerpt from a 2010Blue Cross Blue
Shield survey: “Do not include care
you got when you stayed overnight in a
hospital. Do not include the times you
went for dental care visits … In the last
12 months, not counting the times you
needed care right away, how often did
you get an appointment for your health
care at a doctor’s office or clinic as soon
as you thought you needed?” What type
of needed care is the question asking
about? What is excluded? Can you
find a simpler way to word the question
clearly?

3. Another excerpt from a 2010Blue Cross
Blue Shield survey: “In the last 12
months, how often did your doctor or
health provider discuss or providemeth-
ods and strategies other than medica-
tion to assist you with quitting smoking
or using tobacco?” Analyze the connec-
tives in the question. Are any or all of

them used in the same way we use them
in mathematics?

4. Compute |{z ∈ Z | z >−10,z3 < 0}|.
5. Make a truth table for P∧ (¬P∨Q).

6. Write the set {1,2,4,8, . . .} without us-
ing dots.

7. Use Venn diagrams to indicate the even
numbers less than ten.

8. Let A = {1,2,3} and B = {2,3,4}. List
the elements of …

(a) … (A×A)∩ (B×B).
(b) … (A×B)∪ (B×A).
(c) … A× (A\B).

9. Using truth tables, verify that the contra-
positive and original statement are logi-
cally equivalent.

10. Again using truth tables, verify that the
converse and inverse statements are log-
ically equivalent.

11. Give a counterexample to the statement
|A∪B|= |A|+ |B|.
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12. Is the statement if the moon is made of
green cheese, then Aristotle is the Pres-
ident of Moscow true or false?

13. Draw a Venn diagram that indicates
(A∪B)\C.

14. Decide whether or not it is true that
(A×B)∪ (C×D) = (A∪C)× (B∪D).
If true, give a proof. If false, give a
counterexample.

15. Show that if A and B are sets, then if
A\B = /0, then B ̸= /0 (unless A = /0).

16. Suppose R is false but that (P ⇒ Q)⇔
(R∧S) is true. Is P true or false? What
about Q?

17. Could we rewrite the conditional
((c > 5 && b == a) || c >= 5)
in a simpler way? If so, what is it? (Sug-
gestion: use a truth table.)

18. Write this in English: ∀k ∈ 3Z,∃S ⊆
N, |S|= k. (Is it true?) What is the nega-
tion of this statement? (Is the negation
true?)

19. Prove that n ∈N is odd if and only if n2

is odd.
20. Prove that Z = {3k | k ∈ Z}∪ {3k + 1

| k ∈ Z}∪{3k+2 | k ∈ Z}.
21. Prove that there are infinitely many

prime numbers. (Suggestion: try using
contradiction.)

22. Show that n ∈ N is not divisible by 4 if
and only if the binary representation of
n ends in 1 or in 10. (Suggestion: use
the contrapositive.)

23. Express P ⇒ Q using ¬ and ∨ but not
⇒. (Suggestion: play around with truth
tables.)

24. Some of the pigeonhole principle proofs
in Chapter 1 are secretly proofs by con-
tradiction or proofs that use the contra-
positive. Which ones?

25. On route I-91 near Springfield, MA,
there was once a sign that said “WASH
YOUR BOAT” (pause) “AFTER USE”
(pause). Explain why you are comply-
ing with the sign if you do not own a
boat. How does this relate to truth ta-
bles?

26. Compute the cardinality of the set …
(a) … {wiggle,worm,wiggle worm}.
(b) … {wiggle,{wiggle},{worm},

worm}.
(c) … {{{wiggle,worm}}}.

27. Let A = {(2,5),(−3,1),(4,2),(1,1),
(0,1)}. List the elements in each of the
following sets (or write /0 if appropri-
ate).
(a) {(a1,a2) ∈ A | a1 < a2}.
(b) {a1 | (a1,a2) ∈ A and a1 > a2}.
(c) {a2 | (a1,a2) ∈ A and a2 = 0}.

28. Let the universe be U = {x ∈ N | x ≤
10}, and let A = {1,2,3,4,5}, B =
{5,6,7}, and C = {1,6,9}. List the el-
ements of …
(a) … A∪C.
(b) … (B\C)\A.
(c) … (A∩B)×C.

29. Write the negation of x is prime or x <
52. (Don’t say, “It’s not true that ….”)

30. Use a truth table to show that ((¬p)∧
q)∧ (p∨ (¬q)) is a contradiction.

31. Write the negation of for all integers
x and y, the number x−y

5 is an integer.
(Don’t say, “It’s not true that ….”)

32. Write each of the following statements
using formal logic notation.
(a) Even numbers are never prime.
(b) Triangles never have four sides.
(c) There are no integers a,b such that

a2/b2 = 2.
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(d) No square number immediately fol-
lows a prime number.

33. Write the contrapositive of if x2 > 100,
then y has a sister.

34. Carefully write out some of your re-
sults from Problem 4 of Section 2.4:
State DeMorgan’s laws for two sets us-
ing set notation, and prove them using
set-element notation. Now state De-
Morgan’s laws for n sets.

35. Carefully write out more of your results
from Problem 4 of Section 2.4: Prove
DeMorgan’s laws for two statements us-
ing Venn diagrams, being sure to in-
clude intermediate steps and complete
sentences. Now state DeMorgan’s laws
for n statements.

36. Prove that if a natural number n is even,
then n−1 is odd …
(a) … using a direct proof.
(b) … by proving the contrapositive.
(c) … using proof by contradiction.

37. Prove that x is even if and only if 4x2 −
3x+1 is odd.

38. Challenge: Try to rewrite this sen-
tence as a logical statement!! (That is,
write it as a collection of short state-
ments joined by logical connectives and
quantifiers.) Can you write a simpli-

fied version of the next statement? The
following two categories of charitable
organizations are not required to have
a “Certificate of Solicitation”: An or-
ganization that is primarily religious
in purpose and falls under the regula-
tions 940 CMR 2.00; or An organization
that does not raise or receive contribu-
tions from the public in excess of $5,000
during a calendar year or does not re-
ceive contributions from more than ten
persons during a calendar year, if all
of their functions, including fundrais-
ing activities, are performed by persons
who are not paid for their services and if
no part of their assets or income inures
to the benefit of, or is paid to, any offi-
cer or members (M.G.L. c. 68, s. 20).
(Source: http://www.mass.gov/ago/
doing-business-in-massachusetts/
public-charities-or-not-for-profits/
soliciting-funds/overview-of
-solicitation.html)

39. Write the set {. . . ,−8,−4,0,4,8, . . .}
without using dots.

40. Evaluate the statement A∩B = A\B. Is
it true? If so, prove it. If not, find a
counterexample and determine whether
it is always false or whether there exist
A,B for which the statement is true.

2.13 Instructor Notes

This chapter is written with the intent that students will read Sections 2.1, 2.2, and 2.3 and
attempt the Check Yourself problems before the first class of the week. You may look at
the amount of text/material in the chapter and think, “There’s no way we can get through
this much material in a week.” If you expect mastery from the students, then yes, there’s
no way. But if you expect that the students will get the gist of the material, with little
immediate recall and some details filled in over time, then a week is enough time (says the
author from experience). The point of dumping all this material on the students at once,

http://www.mass.gov/ago/doing-business-in-massachusetts/public-charities-or-not-for-profits/soliciting-funds/overview-of-solicitation.html
http://www.mass.gov/ago/doing-business-in-massachusetts/public-charities-or-not-for-profits/soliciting-funds/overview-of-solicitation.html
http://www.mass.gov/ago/doing-business-in-massachusetts/public-charities-or-not-for-profits/soliciting-funds/overview-of-solicitation.html
http://www.mass.gov/ago/doing-business-in-massachusetts/public-charities-or-not-for-profits/soliciting-funds/overview-of-solicitation.html
http://www.mass.gov/ago/doing-business-in-massachusetts/public-charities-or-not-for-profits/soliciting-funds/overview-of-solicitation.html


2.13. Instructor Notes 63

and quickly, is to de-emphasize background material while giving them surface familiarity
with the concepts; they can then develop deeper familiarity over time as they use sets and
logical thinking in other contexts. The practical effect is that students will need to look up
notation and terminology and facts/theorems/truth tables all week and for some weeks to
come.

Because set theory and logic involve so much new notation, and because different
sources use different notation, it is worth exposing students to variances. Examples in-
clude denoting such that as s.t. or | or :, denoting the set {1, . . . ,n} as [n], using − or \ for
set subtraction, noting that | can mean divides as well as such that, and denoting comple-
mentation by an overline versus a superscriptedC versus a prime. Whatever notation you
like to use, point it out to the students. Of course, you may not prefer the notation used in
this book, and students are likely to encounter other notations in their mathematical lives;
you may as well warn them now.

Such a discussion of notation is a good warmup for the first class of the week. There
is a lot of reading in Sections 2.2 and 2.3, so it makes sense to follow a short warmup
with a request for any questions over the reading or Check Yourself problems. After such
a discussion, break students into groups to work on Section 2.4. The DeMorgan’s law
exercise is likely to take them quite a while, so it is unlikely that they will complete these
problems in the remaining class time.

Ask the students to read Section 2.5 for the next class. You may want to devote some
class time to further work on Section 2.4 before embarking on the activity in Section 2.6,
and it’s always good to ask whether there are questions over the reading or the Check
Yourselfs. (Should those be pluralized as Check Yourselves?) It is likely that this activity
will take most of a class period, if not all of it. My experience is that much of a third class
meeting is needed to fully address all the problems.

A cheery warmup for a third day of class is to project the Greek alphabet (Google
Images will produce a table to your liking) and go through the pronunciations and uses of
the letters. Some are listed on page 641. Students like to share their prior knowledge as
part of this discussion.

If you choose to include the Bonus Section 2.10material in class, youmight show your
class aDoctorWho clip (from “The Pyramids ofMars”) containing a truth-tellers problem;
it is available at https://www.youtube.com/watch?v=W90s58LtYhk. (This tip courtesy of
Tom Hull!) Beware that this may provide savvy students with significant clues for solving
the final question of the Section 2.10 Project.

Finally, please remember that this chapter is an overview of set theory and logic and
proof techniques. Students will practice using these ideas throughout the course and need
not have mastered them just yet. Should you want to supplement this material with some
additional basic proof problems, a few are provided in Section TI.2.

https://www.youtube.com/watch?v=W90s58LtYhk
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Chapter 3

Graphs and Functions

3.1 Introduction and Summary

Wewill combine an introduction to graphs (sets of dots connected in various ways)
with a study of functions, taking as our primary example graph isomorphism. The
same graph can be drawn in lots of different ways, and sometimes it is hard to tell
that two drawings represent the same graph. A graph isomorphism is a function
that turns one representation of a graph into another. The idea of isomorphism is
ubiquitous in mathematics, so we will discuss how it is used with other mathemat-
ical objects as well.

We begin with basic material on functions, after which we link functions to
sets and counting and the pigeonhole principle (see Chapters 2 and 1). Then we
will do some exploratory exercises and follow this by playing some graph games.
(Yes, really.) You will definitely want a game-playing partner for those activities!

Graphs are cool. They are the focus of Chapters 10–13, as well as the focus of
the author’s (pure mathematics) research. Graphs come with lots of terminology,
not all of which is standard; this can be a bit tiresome, but graphs are fundamental
to computer science and applied mathematics, so the terminology is well worth
learning. This chapter gives common examples of graphs and investigates some
simple graph properties.

The introductory graph material is followed by an introduction to isomorphism
and then an activity on graph isomorphism. Finally, we explain the graph theory
behind the game played near the beginning of the chapter.

3.2 Function Introdunction

Most people have a general idea of what a function is; it’s like a machine where
one puts something in the hopper at the top and gets something out of the slot on

65
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the side. But that doesn’t help anyone figure out which mathematical items are
functions and which are not! Therefore, we need a definition.

Definition 3.2.1. We call f : A → B a functionwhen, given any element a of the set
A as input, the function f outputs a unique element f (a) = b ∈ B. We sometimes
say that f maps a to b and call f a map. In particular, a function is well defined: it
satisfies the criterion that if a1 = a2, then f (a1) = f (a2). (Sometimes people state
the contrapositive of this criterion, namely, that if f (a1) ̸= f (a2), then a1 ̸= a2; this
may be easier to conceptualize but quite difficult to use when proving something
is a function.)

The set A from which inputs are taken is called the domain and the set B from
which outputs are selected is called the target or target space. The element f (a)
is called the image of the element a. The range of a function is all the elements of
the target space that are mapped to by the function; that is, for f : A → B, the range
of f is Range( f ) = { f (a) | a ∈ A}. We may intuit from Figure 3.1 the origins of
these terms. A function is not just the rule for transforming elements of A into
elements of B but also includes what sets A and B are. For example, f : A → B is
a different function than f : C → B. If D ⊂ A and we want to talk about applying
f : A → B just to elements of D, we write f |D to indicate that we are restricting the
domain of f to D.

We sometimes need a word for a thing that given input, produces output, but is
not necessarily well defined; we will use the word gipo for this purpose. (Notice
that every function is a gipo, but not every gipo is a function.) All of the definitions
given in the previous paragraph apply to gipos as well as to functions.

Let us examine a few examples and nonexamples of functions. (A nonexample
is an example that does not fit the desired definition.) In Figure 3.1, we show
domains on the left and targets on the right, with each gipo rule indicated by arrows.
Notice that the input elements hang out in their domain and are sent by arrows
to their target. (It’s not literally the input elements in the target space—it’s their
images as seen through the lens of the gipo rule.)

Here are some aspects of the definition of function to which we should pay
special attention:

A function f on a domain A has to be defined on every single element of A.
If some of them are skipped, either it’s not a function after all or else it is a
function, but secretly defined on some subset of A.

It is not cool to have two outputs for one input. For example, consider a gipo
f defined on the set S of length-6 lists of binary digits, with target {−1,0,1}



3.2. Function Introdunction 67

a

b

c
d

e
g

i

j

a

b

c d

e

k

g

h
i

j

a

b

c

d
k

g h

j

a

b

cd

e

g

h
i

j

a

b

c
d

e

k

g

h

i

j

Figure 3.1. Exactly three of these are functions. Which three?

and gipo rule

f (s) =


−1 if s ends in (. . . ,1,1),
0 if s ends in (. . . ,0),
1 if s ends in (. . . ,1).

The element s0 = (0,1,0,1,1,1) has f (s0) =−1 and f (s0) = 1, so this gipo
is not a function.

These are not the main attributes of the definition, but it’s easy to get confused
about them. That’s why they’ve been highlighted.

There are two other properties that some functions (and gipos) have and some
do not. Zoomed-in bits of functions that do not have these properties are shown in
Figure 3.2.

k

h

e

i

Figure 3.2. Pieces of gipos are shown. Any gipo containing the bit on the left cannot be
one-to-one, while any gipo containing the bit on the right cannot be onto.



68 3. Graphs and Functions

Definition 3.2.2. A function is one-to-one, also called injective or 1–1 or into, if
whenever f (a1) = f (a2), then a1 = a2.

Notice that the condition for injectivity is the converse of well-definedness
(that defines a function). Three of the gipos shown in Figure 3.1 are one-to-one;
can you discern which three?

Definition 3.2.3. A function is onto, also called surjective, if for every b ∈ B, there
exists some a ∈ A such that f (a) = b.

Notice that if a function is onto, then its target and range are equal. Four of the
gipos shown in Figure 3.1 are onto; can you tell which four?

Definition 3.2.4. A function that is both one-to-one and onto is known as a bijec-
tion.

Here is another way to think of these definitions: in a surjection, every element
of the target space is mapped to at least once; in an injection, every element of the
target space is mapped to at most once; and in a bijection, every element of the
target space is mapped to exactly once.

It’s hard to know what terminology is best to use for functions. The only other
term for bijection is one-to-one correspondence, but that could be confused with
a function being one-to-one. And using bijection suggests using surjection and
injection for parallelness. However, surjection and injection are hard to remember.
Surjective is the same as onto, which seems to be a better term because onto refers
to the function mapping onto every element of the target. Injective is the same
as into, which is not frequently used. That’s a pity because it refers to a copy of
the domain landing in the target. (Every element of the domain lands on exactly
one corresponding element of the target, so one can recover the domain by going
backwards along the arrows.)

Example 3.2.5 (of a function that is one-to-one but not onto). Let f : Z → Z be
defined by f (k) = 2k. Notice that f is not onto because 3 ∈ Z is not the image
of any k ∈ Z. (If there were such a k, then k = 3

2 ̸∈ Z.) On the other hand, f is
one-to-one, and we’ll prove it: Let f (k1) = f (k2). Using the definition of f , this
becomes 2k1 = 2k2, and dividing through by 2 we obtain k1 = k2 as desired.

Example 3.2.6 (of a function that is onto but not one-to-one). Let g : N×Z2 →
W be defined by g(n,d) = n ·d. Notice that for any n ∈N, the element (n,0)maps
to 0. Therefore, g is not at all one-to-one. However, it is onto: any element ofW
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is either 0 or an element of N. We just saw that plenty of elements of N×Z2 map
to 0, so consider n ∈ N. Then g(n,1) = n, so given any w ∈W, we have found an
element (n,d) of N×Z2 such that g(n,d) = w.

Example 3.2.7 (of a bijection). We will modify Example 3.2.5 to produce a bijec-
tion. Let f : Z→ 2Z be defined by f (k) = 2k. Our proof of injectivity still holds,
so we just have to prove that this map is surjective. Consider any z ∈ 2Z. Then let
k = z

2 , so that f (k) = f ( z
2) = 2 z

2 = z. We’re done!

Example 3.2.8 (of a bijection proof). Let g : W×Z2 → Z be defined by

g((n, t)) =
{

−n−1 when t = 0,
n when t = 1.

We will show that g is a bijection.
First, we must show that g is injective.

Suppose g((n1, t1)) = g((n2, t2)). Then we have one of the following four cases,
depending on the values of t1, t2:

1. n1 = n2 (in which case we’re done).

2. −n1 −1 =−n2 −1, so that n1 = n2 (in which case we’re done).

3. −n1 −1 = n2, which is a contradiction because either n1 or n2 must be neg-
ative and there are no negative numbers inW; thus, this case can’t happen.

4. n1 =−n2 −1, which cannot happen for exactly the same reasons.

We conclude that g is one-to-one.
Second, we must show that g is surjective.

Consider z ∈ Z. If z < 0, then −z ∈ N so that −z− 1 ∈ W and g((−z− 1,0)) =
−(−z−1)−1 = z. If z = 0, then g((0,1)) = 0. If z > 0, then g((z,1)) = z. Thus
g is onto.

This all leads to a way of linking functions, sets, and counting.

Fact 1. If there is an injective function from A to B, then |A| ≤ |B|.

and

Fact 2. If there is a surjective function from A to B, then |A| ≥ |B|.



70 3. Graphs and Functions

You may recall the Fact given in Section 1.5; this can be restated as

Fact 3. If there is a bijective function from A to B, then |A|= |B|.

While we’re at it, let’s state the pigeonhole principle in terms of functions.
It is the contrapositive of Fact 1. First, though, you might want to visualize the
situation: think of the left blobs of Figure 3.1 as being pigeons who fly along the
arrows to their right-blob holes.

Hey. If |A|> |B|, there is no injective function from A to B.

Wait! How is that the pigeonhole principle? Let’s try again.

Hey Hey. If |A| > |B|, there is no injective function from A to B and so every
function from A to B must send at least two elements of A to a single element of B.

Hmm. Closer, but still not very clear.

Hey Hey Hey. If |A|> |B|, there is no injective function from A to B and so
every function from A to B must send at least two elements of A to a single
element of B. Let A represent pigeons and B represent pigeonholes, and now
we see that any function of pigeons to holes must place at least two pigeons
in some hole. Yeah.

We did not place any restrictions on the sizes ofA andB in the above discussion.
If we examine only finite sets, we have an interesting theorem with an informal
proof (because the formal proof is unenlightening).

Theorem 3.2.9. Let A,B be finite sets and let f be a function f : A → B. If
|A|= |B|, then f is one-to-one⇐⇒ f is onto.

Proof: As with any if-and-only-if proof, two subproofs are needed.

(⇒) Suppose f is one-to-one. Then there are at least as many elements in the range
of f as there are in the domain (and no more, because f is a function). Therefore
|Range( f )| = |A|, but also |A| = |B| and thus |Range( f )| = |B|. This means that
the range of f fills up the target space B, so f is onto.

(⇐) Suppose f is onto. We will proceed by contradiction, so also suppose that f
is not one-to-one. In other words, suppose at least two elements of A map to a
single element of B. But |A|= |B|, so there are the same number of elements in f ’s
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domain and f ’s range (which is also its target because f is onto). That means some
element of A isn’t in f ’s domain… so f isn’t a function after all… or some element
of A maps to two elements of B… and in this case f isn’t a function, either. Those
are both contradictions to the conditions of the theorem, and so our assumption
that f is not one-to-one must have been wrong. Thus f actually is one-to-one. �

A version of Theorem 3.2.9 also holds for infinite sets; see Bonus Section 15.8
for more.

Check Yourself

The sum principle reveals that what seem like three problems are in truth eight.

1. Here are some gipos that have domain N. For each gipo, determine whether it is a
function, whether the target space could be N, and whether it is one-to-one.

(a) f (n) = n
3 +1.

(b) f (n) = n.

(c) f (n) = n−1.

(d) f (n) = n2 −1.

2. Here are some functions that have domainZ and target spaceW. For each function,
determine whether it is one-to-one or onto.

(a) f (k) = 0.

(b) f (k) = | ⌊ k
2⌋ |. (The notation ⌊x⌋ is known as the floor function, as it returns

the integer equal to or just less than the input. Thus, ⌊ k
2⌋ returns

k
2 if k is even

and k−1
2 if k is odd.) (Oh, and there is a matching ceiling function, which

returns the integer equal to or just greater than the input.)

(c) f (k) = k2 +2.

For those functions that are not onto, what is the range? Are any of the functions
bijections?

3. Challenge: Write out proofs for Problems 1 and 2: that is, prove that the relevant
gipos are well defined, one-to-one, and onto, and for those that are not, give coun-
terexamples.
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3.3 Try This! Play with Functions and Graphs

There are three subsections of playing; try to spread your playtime equally among
them!

3.3.1 Play with Functions

Functions are related to counting, so let’s count functions.

1. List all the functions from {a,b} to {c,d,e}. Here’s a start on that list:

f1(a) = c, f1(b)= d.

f2(a) = d, f2(b)= d.

How many functions are in your list?

2. How many functions are there from {a,b,c} to {d,e}? Try to complete this
computation by reasoning rather than by listing.

3. Without making lists or drawing pictures … how many functions are there
from a two-element set to a ten-element set?

4. … from a ten-element set to a two-element set?

5. Generalize. That is, how many functions are there from an m-element set to
a q-element set?

3.3.2 Play with Graphs

We need to have a couple of definitions before we can dive into exploration.

Definition 3.3.1. A graph is a set of dots (drawn as • or ) called vertices and a
set of edges (drawn in any line- or curve-like way) that represent pairs of vertices.
Thus, G = (V,E), where V (or V (G)) is the vertex set and E (or E(G)) is the edge
set. Elements of E are e = {v1,v2} where v1,v2 ∈ V . (Sometimes we abbreviate
to v1v2.) The order of v1 and v2 does not matter (for now; see page 84 later).
Two vertices joined by an edge are adjacent and that edge is incident to each of
those vertices. The vertices adjacent to a vertex v are called v’s neighbors. A few
examples of graphs are shown in Figure 3.3.

Note. The word vertices is plural. The singular form is vertex. It is criminal to
leave the “s” off the plural form and use it as singular… so criminal, in fact, that
we cannot even type the offending “word” here. Just don’t do it.
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Figure 3.3. Three graphs.

In Figure 3.3, two of the graphs have vertices labeled (arbitrarily) and one does
not. Vertex g has a loop, or an edge {g,g}, as well as a multiple edge connecting
vertices b and h twice with multiplicity two. (In the case of multiple edges, our
usual set-theoretic notation fails us, as {b,h} and {b,h} should describe the same
edge… yet there are physically two different edges. One way around this is to
mark the copies of the edge as {b,h}1 and {b,h}2.) The degree of a vertex is the
number of edges that emanate from it; so, f has degree 1, 2 has degree 2, b has
degree 4, and g has degree 5 (because both ends of the loop are incident to g). Now
let’s explore.

1. Draw your own graph with

at least ten vertices,
an edge with multiplicity three,
at least three vertices that are all adjacent to each other, and
a vertex with five neighbors.

Draw this same graph again, but make sure that your second drawing has a
different number of edge crossings than your first drawing.

2. Determine the degree of each vertex in the graph you just drew. Add up the
numbers you get. How does this compare to the number of edges? Do the
same with the unlabeled graph of Figure 3.3.

3. You now have four examples to work with: conjecture a relationship be-
tween the sum of the degrees of a graph (with a finite number of vertices)
and the number of edges of that graph. Next, prove that your conjecture is
correct.

4. Count the number of vertices of odd degree in each of the four graphs (in-
cluding the one you created). For each graph, is the number even or odd?
Make a conjecture about the number of vertices of odd degree a graph has.
Can you prove it?
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Figure 3.4. Five vertices hanging out (left), and six vertices chillin’ (right).

3.3.3 A Dot Game

Let’s play a game! You’ll need two people, something to write on, and writing
implements of two colors. Each person writes in only one color. Start with either
five or six dots, no edges, as shown in Figure 3.4. Players alternate moves—a
move consists of drawing an edge (we don’t allow multiple edges or loops in this
game)—and the goal of the game is to force the other player to complete a triangle
in hir color. So, for example, the player who draws teal edges wants to force the
player who draws purple edges to complete a purple triangle. The game ends when
one player wins, or when all possible edges have been drawn (by the way, that’s
called a complete graph).

Play a few games so you can get the hang of how to strategize. Then try to
answer these questions (assuming that neither player makes mistakes in play):

Does the game always have a winner and a loser? Or, can it sometimes end
in a draw?

How does the game on five vertices differ from the game on six vertices?

What if you start with fewer vertices? More?

Make some conjectures as to what is going on here, and try to prove them.
If you want to play the dot game by yourself later, you can do so at http://

www.dbai.tuwien.ac.at/proj/ramsey/.

(This space inserted to encourage you not to look at the hints below until you’ve
genuinely thought about what’s going on with the dot game!)

Hints. If you have six dots, after the game is played, there are five edges coming
out of each dot. Those edges come in two colors. How do they have to be split
up between the colors? And what happens if you try to avoid making triangles in
each color, starting from those edges? (How is the situation different if you have
five dots?)

http://www.dbai.tuwien.ac.at/proj/ramsey/
http://www.dbai.tuwien.ac.at/proj/ramsey/
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3.4 Functions and Counting

Hey! You! Don’t read any further unless you have worked through the problems
in Section 3.3.1. I mean it!

You probably discovered in Section 3.3.1 that the number of functions from an
m-element set to a q-element set is qm. We can denote a function by an ordered
m-tuple, with the jth component corresponding to the image of the jth domain
element. There are q choices for the image of each of the m domain elements, so
a total of q ·q · · · · ·q = qm possible functions. (If this reminds you of the product
principle from Chapter 1, you are correct and astute!)

Now imagine for a moment that we want to count only the injective (or one-
to-one, or 1–1) functions. This is a significant restriction because we are not al-
lowed to use any target space element more than once. So, we have q choices
for the image of the first domain element, but only q− 1 choices for the image
of the second domain element. If there are m domain elements, then there are
q · (q−1) · · · · · (q− (m−1)) possible functions. Notice that if m > q, we have a
problem! Then there are no 1–1 functions (by the pigeonhole principle). This is
secretly a preview of one type of counting addressed in Chapters 6 and 7. Count-
ing surjections is more difficult; you may investigate it in Problem 24 at the end
of Chapter 6.

There is also a meta-relationship between counting and functions: bijections
are frequently used to reframe counting problems. Instead of directly counting
elements of a set S, we create a bijection to a set T that we find conceptually easier
to manage (and therefore count). Wemight, for example, count grey-spotted ducks
by finding a bijection between ducks and set elements such that grey-spotted ducks
are in correspondence with those elements that are divisible by 3. Then, we would
count set elements that are divisible by 3 to obtain the number of grey-spotted
ducks. We will use this technique in Chapters 6–9.

3.5 Graphs: Definitions and Examples

Hey! You! Don’t read any further unless you have worked through the problems
in Section 3.3.2. I mean it!

There are lots and lots of terms to use when discussing graphs—we saw vertex
and edge above. Here are more. Imagine walking on a graph and you’ll believe
that a walk is encoded by a list of vertices alternating with edges. Both ends of
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Figure 3.5. Two more graphs.

the list must be vertices; you can’t just end a stroll mid-edge. A walk where no
vertices repeat is a path, and a cycle is a walk whose only repetition is the first/last
vertex. The length of a path or cycle is the number of edges it has. For example,
in Figure 3.5 one walk of length 3 is l-4- j-1-m-2- j; it is not a path, but k-3-m-5-l
is a path and j-2-m-1- j is a cycle of length 2. The distance between two vertices
of a graph is the length of the shortest path between those vertices. A graph that
is nothing but a path is called Pn; it has n vertices and length n−1. A graph with
n vertices that is nothing but a cycle is called Cn. Some cycle and path graphs are
shown in Figure 3.6. Any two vertices in a connected graph can be joined by some
walk. A graph with no cycles is a forest, and a connected graph with no cycles is
a tree (Really! Find one in Figure 3.3), and a leaf is a vertex of degree 1 (such as
k in Figure 3.5).

Despite the large amount of terminology (it’s all in the index, and listed in
Section 3.11, for when you need to look it up later), we are now just touching on
the basics of graphs, which will be the focus of Chapters 10–13. Later we have an
entire chapter (Chapter 10) devoted to trees, and we will investigate special sorts
of walks in Chapter 12.

A first result about graphs, which you have likely already discovered from
Section 3.3.2, is known as the handshaking lemma. Wait, we’d better say that
more officially.

Figure 3.6. CyclesC1,C2,C3,C4, andC5 (top); paths P1, P2, P3, and P4 (bottom).
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Lemma 3.5.1 (the handshaking lemma). Because each edge is incident to two
vertices, the sum of the degrees of the vertices of a graph must be twice the
number of edges (and thus a multiple of two (i.e., even)).

To visualize this, imagine that an edge in the graph is like two vertices shaking
hands. Each edge has been counted twice, once for the vertex on each end/hand.
This technique—overcounting and then tracking howmuch we overcounted—will
be studied in more depth in Chapter 6 and used regularly thereafter.

It follows from Lemma 3.5.1 that the number of vertices of odd degree must
be even. If not (notice the signal that we’re about to do proof by contradiction),
the number of vertices of odd degree is odd. Then, the sum of the degrees is
(odd+ · · ·+ odd)+ (even+ · · ·+ even), which simplifies to odd+ even because
the sum of an odd number of odd numbers is odd. Of course, odd+even= odd…
but that’s a contradiction, because the sum of the degrees should be even.

Here is another basic term. A simple graph has no loops or multiple edges.
Many people and textbooks mean that a graph (with no adjectives in front of
the word) is simple unless otherwise specified. Around here, we like multiple
edges and loops and so we generally allow them, though one challenge for you,
the reader, is to figure out when loops or multiple edges cause problems but we,
the author, haven’t mentioned it. (For example, we are about to restrict ourselves
to simple graphs for a while, but we won’t say so.) This is good practice for being
in the rest of the world….

A simple caution. Sometimes “graph” means “simple graph” and sometimes it
doesn’t. This depends on who is speaking/writing and on the situation, so be aware
that you may have to figure out whether the presence (or absence) of loops and/or
multiple edges makes any difference.

When you are trying to make a conjecture about graphs in general, it is a good
idea to check your conjecture on several common classes of graphs, including
trees, cycles, paths, and the graphs we are about to introduce in the next four para-
graphs.

The complete graph with n vertices, called Kn (you know, K for komplete)
has every possible edge; that is, every vertex is adjacent to every other vertex.
Examples of complete graphs are shown in Figure 3.7.

Figure 3.7. Complete graphs K1, K2, K3, K4, and K5.
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Figure 3.8. Two different drawings of the same bipartite graph.

There are two ways to think of a bipartite graph. One is to start with two piles
of verticesV1 andV2, called parts, then draw some edges between the parts, but no
edges within either part. This is a constructive way to produce a bipartite graph,
but not every graph that is bipartite looks that way. Given a graph, it is bipartite if
the vertices can be split into two parts so that neither part has internal edges. One
common way of pointing out which vertices correspond to which part is coloring
the vertices—V1 gets one color and V2 gets the other color. Both perspectives are
illustrated in Figure 3.8.

A complete bipartite graph has all possible edges, so every vertex in V1 is
adjacent to every vertex in V2. If |V1| = m and |V2| = n, then we denote the cor-
responding complete bipartite graph by Km,n. We can extend these notions to tri-
partite graphs (with three parts V1,V2,V3) and multipartite graphs (with n parts
V1,V2, . . . ,Vn). Examples are given in Figure 3.9.

Every vertex of Kn has degree n−1. Every vertex of a cycle Cn has degree 2.
Such graphs, where every vertex has the same degree, are called regular. Thus, Kn
is (n−1)-regular and Cn is 2-regular. The degree sequence of a graph is a list of
the degrees of the vertices in increasing order. For example, the degree sequence
of the first graph shown in Figure 3.3 is (1,3,4,4,4,4,5,5), and the degree se-
quence of Cn is (2,2,2, . . . ,2). The best graph of all is the Petersen graph, which

Figure 3.9. The complete bipartite graph K3,3 and the complete tripartite graph K2,2,3.
Indicated by a dotted oval is part of this complete bipartite graph.
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Figure 3.10. Your friend and mine, the Petersen graph.

is 3-regular, pictured in Figure 3.10, and either an excellent example of or a quick
counterexample to almost every theorem and conjecture in graph theory. It is your
friend.

Check Yourself

Try these ten quickies.

1. Find the degree sequences of the graphs in Figure 3.5.

2. Look through the graphs pictured so far; identify one that is simple and one that is
not simple.

3. For each graph in Figures 3.3 and 3.5, decide whether or not the graph is connected.
Is any of the graphs a tree? A forest?

4. Find the longest possible path in the middle graph of Figure 3.3 and in the left-hand
graph of Figure 3.5.

5. What is the largest cycle in any graph shown in Figures 3.3 and 3.5? How about
the smallest?

6. There is at least one bipartite graph pictured in Section 3.3. Identify one; is it
complete?

7. Draw K7,C8, and P10.

8. Draw two 2-regular graphs on ten vertices, one of which is connected and one of
which has two components.

9. What is the length of a smallest cycle in the Petersen graph?

10. Draw a bipartite graph with nine vertices.



80 3. Graphs and Functions

1
ab

23 c

d
4

5

e
f

6

Figure 3.11. Are these two drawings of
the same graph?
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Figure 3.12. How about these?

3.6 Isomorphisms

We need a notion of when two graphs are the same. This will generalize to other
types of mathematical objects as well, but we will begin with graphs. Should the
graphs in Figure 3.11 be considered the same? How about in Figure 3.12?

The information encoded by a graph is only which vertices are adjacent. There
is nothing in the definition of a graph that says how long or short or curly or straight
the edges should be, whether or not they cross, what colors they might be, etc. So
whatever definition of “sameness” we have, it should definitely include adjacency
and exclude color.

Definition 3.6.1. Two graphs G,H are isomorphic if there exists a bijection φ :
V (G)→ V (H) such that {v1,v2} is an edge in G if and only if {φ(v1),φ(v2)} is
an edge in H.

Basically, Definition 3.6.1 says that two graphs are isomorphic if two vertices
are adjacent in one graph exactly when the corresponding vertices form an edge in
the other graph. And even more basically, it says that two graphs are isomorphic
if the vertices can be labeled in such a way that one graph can be redrawn to look
exactly like the other.

Example 3.6.2 (of graph isomorphism). Consider the two graphs in Figure 3.13.
Dragging vertex b to the left of vertex a (or, alternatively, dragging vertex 5 to the
right of vertex 6) demonstrates that these are two different drawings of the same
graph.

d

5

c

ba 6

7
8

Figure 3.13. Each of these graphs is isomorphic to P4.
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Figure 3.14. An arbitrary graph drawn in GeoGebra.

What one wants, in order to be able to determine whether two graphs are iso-
morphic, is to be able to draw a graph and then drag the vertices around and have
the edges follow, to see if it can be made to look like another graph. Hurray! Tech-
nology exists to enable this! The free software GeoGebra can be used to draw and
fiddle with graphs. Go to www.geogebra.org and choose GeoGebra Geometry or
GeoGebra Classic. Click on the point icon—it stays selected—and place a pile
of vertices on the screen. Then click on the segment icon, and draw in edges by
clicking on their respective vertices. A sample result is shown in Figure 3.14. Fi-
nally, click on the pointer-arrow icon to enable the dragging of vertices all over
the place. Go to town with this! It’s fun.

The notion of graph isomorphism is a specific example of the more general
notion of isomorphism between two mathematical objects A and B. For our def-
inition, we will need new notation: ⋆A represents an operation defined on A and
⋆B represents an operation defined on B. For example, ⋆N might be addition in N
and ⋆Z might be addition in Z. (The notation could also indicate multiplication in
either of those cases.) When A and B are graphs, ⋆A and ⋆B represent adjacency of
vertices, so that a1 ⋆A a2 can return either true or false.

www.geogebra.org
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Figure 3.15. The two nonisomorphic (left) and three distinct (right) subgraphs ofK2. (See
Section 3.7.1 for the definition of subgraph.)

Definition 3.6.3. Letφ : A→B be a function; φ is an isomorphism if it is a bijection
and preserves every operation defined onA, that is, ifφ(a1⋆A a2)=φ(a1)⋆B φ(a2).
If there is an isomorphism mapping A to B, we say A and B are isomorphic and
write A ∼= B.

Example 3.6.4. The two graphs in Figure 3.13 of Example 3.6.2 are isomorphic
because the function a 7→ 6,b 7→ 5,c 7→ 7,d 7→ 8 is an isomorphism. It is one-to-
one and onto, and the edges {a,c},{a,d},{b,d} map to the edges {6,7},{6,8},
{5,8}; no other pairs of vertices correspond to edges in either graph.

Isomorphisms preserve just about any property you can think of. For example,
two isomorphic graphs have the same number of vertices and the same number of
edges; either they both have triangles or neither has any triangles.

The opposite of isomorphic is nonisomorphic, and this is not the same as dis-
tinct. For example, two copies of the same graph are distinct and also isomorphic;
see Figure 3.15.

Youmay bewondering about the word “isomorphism.” The particle iso-means
“same” and the root -morph- means “shape.” Throughout mathematics, isomor-
phisms are used to determine when two objects that seem different are secretly the
same in some shape-like way.

Check Yourself

Test your understanding with these three brief problems.

1. Pick a graph from Figures 3.3 and 3.5 and draw it so that it looks different but is,
in fact, the same graph.

2. List all nonisomorphic subgraphs of C4. (See Section 3.7.1 for the definition of
subgraph.)

3. Label the vertices of the graphs in Figure 3.8 and define a function between them
that shows the graphs are isomorphic. (A GeoGebra file of Figure 3.8 is available
for your playing pleasure at http://www.toroidalsnark.net/dmwdlinksfiles.html.)

http://www.toroidalsnark.net/dmwdlinksfiles.html
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v
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Figure 3.16. The triangle H is a subgraph of G8 = K2,2,3 but not of G9. Note that the
smallest cycle in G9 has length 4.

3.7 Graphs: Operations and Uses

Just like sets can have subsets and we can take unions and complements of sets,
we can define similar structures and operations on graphs.

3.7.1 Sets and Graphs Have Some Things in Common

A subgraph H of a graph G is a graph such that V (H)⊂V (G) and E(H)⊂ E(G).
(That wasn’t so bad, was it? See Figure 3.16 for an example.) While technically
the empty graph (no vertices) is a subgraph of every graph, in practice we ignore
it. For graphs G1 and G2 (with disjoint vertex sets), the graph union G1 ∪ G2
is another graph G3 with V (G3) = V (G1)∪V (G2) and E(G3) = E(G1)∪E(G2).
(That was probably not a surprise.) Notice that the union of two connected graphs
will not be a connected graph—essentially, taking the union of two graphs consists
of drawing them close to each other. Each individual connected piece of the union
(or of any graph) is called a component.

Just as we could remove a subset from a set (see page 30), so too we can
remove a subgraph from a graph. The graph G \ e (or G− e) is G but with the
edge e removed and e’s vertices left intact. The graph G\v (or G−v), on the other
hand, is G but with the vertex v and all its incident edges removed. This extends
to a subgraph H of G, so that G\H (or G−H) removes H and all edges incident
to any vertex in H. Examples of these three removals are given in Figure 3.17.

Figure 3.17. From left to right, K2,2,3 \ v, K2,2,3 \ e, and K2,2,3 \H. (These refer to the
same v, e, and H as labeled in Figure 3.16.)
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Figure 3.18. At left, K2,2,3, and at right, K2,2,3.

We also have a notion of graph complement. This is not quite analogous to
the notion of set complement: First, G and its complement G have the same set of
vertices. Then, the complement of G is always taken relative to Kn, in the sense
that overlaying G and G produces Kn. To form G, we remove the edges of G from
Kn, so that G has exactly the edges of Kn that G itself does not have. Figure 3.18
shows an example. For an interactive example, see http://www.mathcove.net/
petersen/lessons/get-lesson?les=37; there, you draw some vertices/edges and the
graph complement is produced in real time.

3.7.2 How Are Graphs Useful?

Graphs are stand-ins for networks of many kinds: roads, cell-phone towers, friend-
ships, circuitry, neurons, species, etc. For example, the vertices might represent
cities, and the edges might represent roads between them. In such cases there are
often numbers marked on the edges, called weights, that indicate the distance be-
tween the relevant cities when traveling along the given road. Or, vertices may
represent cell-phone towers, with an edge present whenever two towers are able
to communicate with each other. One can find graphs of the internet backbone,
with vertices representing major servers and edges representing physical cables.
Vertices could represent neurons in the brain, with edges representing which ax-
ons talk to which dendrites. Evolutionary biologists use graphs to indicate which
species are evolutionary descendants of which others. Chemists use graphs to en-
code protein interactions. Teams in an informal Ultimate Frisbee tournament can
be represented by vertices, with edges between teams that play each other. The
edges can be directed after the tournament is over to indicate which team won
each game, and from the resulting directed graph one can sometimes deduce who
won the tournament. (In a directed graph, we write an edge as an ordered pair
e = (v1,v2) and draw it as an arrow →.) So far, these applications are simply
of graphs as models for other situations; mathematical theory is used in varying

http://www.mathcove.net/petersen/lessons/get-lesson?les=37
http://www.mathcove.net/petersen/lessons/get-lesson?les=37
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Figure 3.19. A graph to be stored.

amounts depending on the application, and we will see more applications of graph
theory in later chapters (when we know some theory to apply).

As you might expect, graphs are not stored in computers as the pictures we
draw. There are many ways of encoding graphs for computer use, but we will only
indicate three here. First, we can store a graph as a pair of lists, where the first list
is of the vertices and the second is of the edges as pairs of vertices. In this way,
the graph in Figure 3.19 could be stored as

{{1,2,3,4,5,6,7},{{1,3},{3,4},{2,4},{1,4},{1,4},{6,7}}}.

Second, we can store a graph as an adjacency matrix, where each column and row
corresponds to a vertex and each entry is the number of edges between the column
vertex and row vertex. Using the same numbering as in our vertex/edge list, the
graph in Figure 3.19 would have adjacency matrix

0 0 1 2 0 0 0
0 0 0 1 0 0 0
1 0 0 1 0 0 0
2 1 1 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0 1 0


.

(For more examples, see http://www.mathcove.net/petersen/lessons/get-lesson?
les=8; as you draw the graph vertex by vertex and edge by edge, this applet pro-
duces the corresponding adjacency matrix.) Finally, we could store a graph as a
list of lists, where each list consists of a vertex and all of its neighbors. In this case,
the graph in Figure 3.19 would be stored as

{{1,3,4,4},{2,4},{3,1,4},{4,1,1,2,3},{5},{6,7},{7,6}}.

http://www.mathcove.net/petersen/lessons/get-lesson
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Check Yourself

Here are a few more quickies.

1. Draw P2 ∪C3.

2. What are K5 \v, K5 \e, and K5? (Note that the symmetry of K5 means that it doesn’t
matter which vertex is chosen to be v or which edge is chosen to be e.)

3. Choose one of the graphs pictured in this chapter (other than the one in Figure 3.19)
and encode it using vertex/edge lists, as an adjacency matrix, and using vertex/adja-
cency lists.

3.8 Try This! More Graph Problems

These problems are about graph structure and isomorphism. GeoGebra files for
Figures 3.21, 3.22, 3.23, and 3.24 are available for your use at http://www.
toroidalsnark.net/dmwdlinksfiles.html.

1. If you stick a vertex in the middle of an (n− 1)-vertex cycle Cn−1 (where
n−1 is at least three) and connect it to all vertices on the cycle, you obtain
the wheel graph, denoted Wn. (It has that extra vertex, see.) A few wheels
are shown in Figure 3.20. (Note thatW4 is alsoK4 but differently drawn than
in Figure 3.7.) Let n ≥ 4. Find and prove a formula for the number of edges
of the wheelWn.

2. Are the two graphs shown in Figure 3.21 isomorphic? If so, exhibit the iso-
morphism. If not, find a property that should be preserved by isomorphism
for which the two graphs differ.

3. Let G be a graph with v vertices and e edges. In terms of v and e, how many
edges does G have?

Figure 3.20. WheelsW4, W5, andW6.

http://www.toroidalsnark.net/dmwdlinksfiles.html
http://www.toroidalsnark.net/dmwdlinksfiles.html
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Figure 3.21. Two potentially isomorphic
graphs.

Figure 3.22. Two potentially nonisomor-
phic graphs.

4. Prove thatC5 ∼=C5. Can any other cycle graph be isomorphic to its comple-
ment? Justify your answer with example(s) or proof.

5. Are the two graphs shown in Figure 3.22 isomorphic? If so, exhibit the iso-
morphism. If not, find a property that should be preserved by isomorphism
for which the two graphs differ.

6. Draw the seven nonisomorphic subgraphs of K3 and the 17 distinct sub-
graphs of K3.

7. Are the three graphs shown in Figure 3.23 isomorphic? (Are any two of
them isomorphic?) If so, exhibit the isomorphism. If not, find a property
that should be preserved by isomorphism for which the graphs differ.

8. Are the two graphs shown in Figure 3.24 isomorphic? If so, exhibit the iso-
morphism. If not, find a property that should be preserved by isomorphism
for which the two graphs differ.

Figure 3.23. Three unruly graphs.

Figure 3.24. Two pointy graphs.
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Figure 3.25. This 2-edge-colored K5 has no monochromatic triangle.

3.9 Ramseyness

Hey! You! Don’t read any further unless you have played the game in Section 3.3.3
and thought about the associated problems a lot. I mean it!

Hopefully you have discovered by coloring the edges of some complete graphs
that if you start with five dots, you cannot force a win or loss and may have a
draw, but that if you start with six dots, one player can always force the other to
complete a triangle in hir color. Let’s prove it! First, we will exhibit a K5 with a
draw; the colors in Figure 3.25 are black and teal. Now consider a single vertex
(any vertex will do) of K6. It has degree 5, so one of the two colors (let’s say teal)
must eventually be used on at least three of those edges. (If only one or two of the
edges are teal, then the other four or three must be black and we could swap colors
globally.) This situation is shown at left in Figure 3.26. Now assume the teal player
makes no teal triangle, as otherwise we have a monochromatic triangle. Then each
of the three pairs of teal edges must eventually be connected by a black edge (see
Figure 3.26). But, ah! Those three black edges form a triangle. So if there is no
teal triangle, there must be a black triangle; therefore, one player will always be
forced to make a monochromatic triangle. (Here is the underlying structure of this
proof: We want to show that A or B is true, where A,B represent player must make
monochromatic triangle. Then if A is true the statement holds, so we prove that if
A is not true, B must be true.)

Figure 3.26. At least three edges from a vertex are teal; then we need to avoid a teal
triangle.
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Instead of thinking of this as a game, we can rephrase the situation: AnyK6 that
has edges colored using exactly two colors must have a monochromatic triangle.
However, a 2-edge-colored K5 need not have a monochromatic triangle. Similarly,
neither a 2-edge-colored K4 nor a 2-edge-colored K3 necessarily has a monochro-
matic triangle. Therefore, six is the smallest number n such that a 2-edge-colored
Kn must have a monochromatic triangle. In shorthand, we say R(3,3) = 6.

What?!? What wackiness is this? It’s Ramseywackiness! TheRamsey number
R(k,m) is the smallest number n such that a 2-edge-colored Kn must have either a
Kk of one color or a Km of the other color. In the case of R(3,3), we must have a
K3 in one color or the other, which we’ve already referred to as a monochromatic
triangle. Now read the fourth sentence of this paragraph aloud, twice. It’s a darned
complicated definition.

Relative to the infinitely many possibilities for k and m, not many Ramsey
numbers are known. (There are upper and lower bounds for many of them.) More-
over, the idea of Ramsey numbers can be extended to using more than two colors
for the edges of Kn; these are called multicolor Ramsey numbers. They are part of
an area of graph theory research (unsurprisingly) called Ramsey theory, which is
part of a larger area known as extremal graph theory.

Check Yourself

Please do both of these problems.

1. What is R(2,2)?

2. Given three particular numbers k,m,N, what are the two ways you could show that
R(k,m) ̸= N?

3.10 Where to Go from Here

Did you find this chapter challenging? Exciting? Overwhelming? Fascinating?
You might feel more mathematically grounded if you reread Section 2 of the stu-
dent preface.

We are going to discuss certain aspects of graph theory in detail in Chapters 10–
13. But there is so much more! Graph theory is a large subdiscipline of mathe-
matics and is, in fact, one of the areas of mathematics in which the most papers are
published. Graphs can be applied anywhere that networks are useful: for example,
one modern research project revealed power relationships between committees of
the US Congress; another tracked genes involved in a particular cancer.
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You can take an undergraduate upper-level graph theory course at some insti-
tutions. Sometimes graph theory is half of the content in a combinatorics course
(Yes, that doesn’t make sense—why not call it Advanced Discrete Mathematics in
that case? But it’s often hard to change a course title), so ask instructors in your
locality about what is offered that will give you more graph theory. Graph the-
ory also plays a big role in computer science courses on networks and algorithms,
and the study of network flows is central in the optimization area of operations
research. Every computer algebra system (such as Maple, Mathematica, or Sage)
has its own way of entering/displaying/manipulating graphs; and, there are many
pieces of specialized graph theory software that have their own ways of storing
graphs. These are interesting both from a mathematical point of view of investi-
gating graphs and from a computer science point of view of understanding storing
and manipulating the structure of a graph.

Should you wish to learn more about graph theory in general, an excellent
place to start is Introduction to Graph Theory (which used to have the better title
Dots and Lines) by Richard J. Trudeau [24]. Another lovely book, though more
advanced, is Introduction to Graph Theory by Gary Chartrand and Ping Zhang [7].
Introduction to Graph Theory by Robin Wilson [25] is also readable. (Do you
notice a theme in these book titles?) Probably the definitive reference on graph
theory is Doug West’s Introduction to Graph Theory.

To learn more about Ramsey theory and other parts of extremal graph theory,
it is necessary to first understand general graph theory; at that point, you may
look for books with titles like Ramsey Theory and Extremal Graph Theory. If you
are interested in similar graph games, check out Chapter 20 in Pearls of Discrete
Mathematics by Martin Erickson.

There are two different directions that you can take with functions. They are
studied throughout higher mathematics in linear algebra, abstract algebra, topol-
ogy, and real analysis courses. The algebraic classes focus on functions that pre-
serve operations (as we introduced here), and the analytic classes focus on contin-
uous functions. Seriously, you can’t go wrong in learning more in both directions!
Because different aspects of functions are emphasized in different contexts, there
is no general source or text to suggest for reading more about functions as a whole.
Within this very text, we will address some function properties on infinite sets in
Chapter 15.

Credit where credit is due: Section 3.3.2 was inspired by [3]; Section 3.3.3 was inspired by
Josh Greene and Ari Turner. The exposition of Section 3.12 was inspired by [4]. Finally,
the problems in Section 3.8 were adapted from Richard Trudeau’s Dots and Lines [24].
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3.11 Chapter 3 Definitions

function: We call f : A → B a function
when, given any element a of the set A
as input, the function f outputs a unique
element f (a) = b ∈ B.

map: As a noun, map is a synonym for
function; as a verb, it expresses the action
of a function, as in “ f maps a to b.”

well defined: The property of a function
that if a1 = a2, then f (a1) = f (a2).

domain: The set A from which function in-
puts are taken.

target: The setB fromwhich outputs are se-
lected. Also called the target space.

image: The element f (a) is called the im-
age of the element a.

range: All the elements of the target space
that are mapped to by the function; that
is, for f : A → B, the range of f is
Range( f ) = { f (a) | a ∈ A}.

gipo: A thing that given input, produces
output, but is not necessarily well de-
fined. (Notice that every function is a
gipo, but not every gipo is a function.)

one-to-one: Whenever f (a1) = f (a2),
then a1 = a2. Every element of the target
space is mapped to at most once. Also
denoted 1–1.

injective: One-to-one.

into: One-to-one.

onto: For every b ∈ B, there exists some
a ∈ A such that f (a) = b. Every element
of the target space is mapped to at least
once.

surjective: Onto.

bijection: A function that is both one-to-
one and onto. Every element of the target
space is mapped to exactly once.

one-to-one correspondence: A bijection.
floor function: The floor function returns
the integer equal to or just less than the
input.

ceiling function: The ceiling function re-
turns the integer equal to or just greater
than the input.

vertex: A dot, usually drawn as • or ,
that can represent some object in a set of
items.

vertices: Plural of vertex.
edge: A pair of vertices e = {v1,v2}
(sometimes abbreviated as v1v2) that is
usually represented by a line or curve be-
tween the dots representing v1 and v2.

graph: A pair G = (V,E), where V is a
set of vertices and E is a set of pairs of
vertices.

adjacent: Two vertices joined by an edge
are adjacent.

incident: An edge is incident to each of its
endpoint vertices.

neighbor: Any vertex adjacent to a vertex
v is a neighbor of v.

loop: An edge joining a vertex to itself.
multiple edge: More than one edge joining
the same two vertices.

multiplicity: The number of edges in a mul-
tiple edge.

degree: The number of edges that emanate
from a vertex.
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degree sequence: A list of the degrees of
the vertices in increasing order.

walk: A list of vertices alternating with
edges, with both the start and end of the
list vertices (not edges).

path: A walk where no vertices repeat.

cycle: A walk whose only repetition is the
first/last vertex.

length: The number of edges of a path or
cycle.

distance: The length of the shortest path
between two vertices.

connected: A graph in which any two ver-
tices are joined by some walk.

forest: A graph with no cycles.

tree: A connected graph with no cycles.

leaf: A vertex of degree 1.

simple graph: A graph that has no loops or
multiple edges.

complete graph: A graph where every ver-
tex is adjacent to every other vertex.

bipartite graph: A graph whose vertices
can be separated into two piles, called
parts, with edges between the parts, and
no edges within either part.

complete bipartite graph:A bipartite graph
with all possible edges; that is, if the parts
are V1,V2, then every vertex in V1 is ad-
jacent to every vertex in V2.

wheel graph: If you stick a vertex in the
middle of an (n − 1)-vertex cycle Cn−1
(where n−1 is at least three) and connect
it to all vertices on the cycle, you obtain
the wheel graph, denotedWn.

regular graph: A graph where all vertices
have the same degree.

Petersen graph:

The best and most awesome graph, fre-
quently a counterexample, named after
Peter Christian Julius Petersen (1839–
1910), who did more work outside of
graph theory than in it and who was not
the first to use the Petersen graph (appar-
ently Kempe was; see page 427). Don’t
spell it Peterson or Pedersen or Petersön
or Petersøn.

isomorphic graphs: Two graphs G,H are
isomorphic if there exists a bijection φ :
V (G) → V (H) such that {v1,v2} is an
edge in G if and only if {φ(v1),φ(v2)}
is an edge in H.

isomorphism: A gipo φ : A→B that is well
defined, one-to-one, onto, and preserves
every operation defined on A (that is, if
φ(a1 ⋆A a2) = φ(a1) ⋆B φ(a2)). In other
words, an isomorphism is an operation-
preserving bijection.

subgraph: A subgraph H of a graph G
is a graph such that V (H) ⊂ V (G) and
E(H)⊂ E(G).

graph union: For graphs G1 and G2 (with
disjoint vertex sets), the graph G1 ∪ G2
is another graph G3 (not connected) with
V (G3) = V (G1) ∪V (G2) and E(G3) =
E(G1)∪E(G2).

graph component: An individual con-
nected piece of a graph.
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graph complement: Let G have n ver-
tices; to form G, we remove the edges
of G from Kn, so that G has exactly
the edges of Kn that G itself does
not have.

weights: Numbers marked on the edges (or
vertices) of a graph to indicate informa-
tion such as distance or traffic capacity
or population.

adjacency matrix: A matrix representing a
graph, where each column and row cor-
responds to a vertex and each entry is
the number of edges between the column
vertex and row vertex.

Ramsey number: The Ramsey number
R(k,m) is the smallest number n such
that a 2-edge-colored Kn must have ei-
ther a Kk of one color or a Km of the other
color.

3.12 Bonus: Party Tricks

This is a classic problem: Mei-Ting and Ri Zhao had a dinner party and invited
four couples. Before sitting down at the table set for ten, there were formal intro-
ductions and people who did not know each other shook hands in greeting. After
indicating that everyone should sit, Mei-Ting announced, “I have just noticed that
no two of you shook hands the same number of times.” Dear reader, how many
times did Ri Zhao shake hands?
Pause. Any clue how to solve this problem? Think about it for at least one minute
before proceeding.

Solution. To solve this problem, we will start by modeling the situation as a graph.
Each of the ten dinner guests is a vertex, and two vertices are adjacent if (and only
if) the two dinner guests shook hands.

Pause. What are the possible degrees for the vertices in this graph? Think about
it for at least 30 seconds before proceeding.

Solution. For a given guest, there are nine possible other people with whom to
shake hands. (No one needs to shake hir own hand.) And the guests arrived as
couples, so no one needed to shake hands with hir partner; therefore, the maximum
degree of a vertex is 8. Someone might have known everyone already, so it is also
possible to have the minimum vertex degree of 0. Thus, the nine possibilities are
0,1,2,3,4,5,6,7,8. We know there are nine people who Mei-Ting believes shook
different numbers of hands. So, ignoringMei-Ting’s vertex, there are nine vertices
with different degrees.

Consider the vertex of degree 8 and call the associated person Eight (and like-
wise with the other vertices). There is only one other person with whom Eight
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did not shake hands, so that person must be hir partner. We also know that the
vertex of degree 8 is not adjacent to the vertex of degree 0, so therefore Zero must
be the only person who did not shake hands with Eight. If we continue our rea-
soning in this fashion, we discover that Seven must be the partner of One because
Seven didn’t shake hands with two others; Zero is one of those two and One shook
hands with Eight, so One didn’t shake hands with Seven and must be Seven’s part-
ner. Keeping on, we see that Six must be partnered with Two, and Five must be
partnered with Three, and Four must be partnered with… hmm… oh, it must be
Mei-Ting. So Four must be Ri Zhao, as we had left Mei-Ting out of it all.

NowMei-Ting and Ri Zhao have a less formal party. They simply invite some
friends so that there are ten people at their house; some hang out in the house itself
and others chat in the garden. Mei-Ting remarks that each person is friends with
at least five other people at the party.

Short activity:

1. Model this situation as a graph. What do the vertices represent? Fill in
the blank: two vertices are adjacent if and only if .

2. What does Mei-Ting’s observation tell you about the degrees of the
vertices in the graph?

3. True or false (and explain): If there is always someone inside and al-
ways someone outside, then someone in the garden has a friend in the
house.

4. Generalize the party to having 2n guests, each of whom is friends with
at least n other guests. Describe your graphical model in this general
party case; if there is always someone inside and always someone out-
side, then is it true that someone in the garden has a friend in the house?
Explain.

3.13 Bonus 2: Counting with the Characteristic Function

The following seemingly silly function is ubiquitous in mathematics. Given a set
S and a subset A, the characteristic function χA : S →{0,1} is defined as

χA(s) =
{

1 if s ∈ A,
0 if s ̸∈ A.
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Pause. Here is a quickie exercise to make sure you understand this definition.
Let S = {0.5,1,1.5,2,2.5,3} and let A = {0.5,2,2.5}; evaluate χA(0.5), χA(1),
χA(1.5), and χA(3).

How can we use the characteristic function to count? Check this out: Consider
the power set of {1,2, . . . ,n} (see page 30), and name it Pn. Also, consider the
set of all functions from {1,2, . . . ,n} to {0,1} and call that set Fn.

Pause. What the heck? The power set is one thing, but the set of functions from
one set to another? Wack. List four different elements ofFn. Then compute |Fn|.
If you have trouble with that last bit, go to Section 3.3.1 and look again at the
problems there.

Now, we are going to do something wackier still. Define a function F : Pn →
Fn by F(A) = χA. This makes sense because F takes a subset as input and returns
a function as output.

Short activity:

1. How does |Fn| compare to |Pn|?

2. Forget the previous question. Instead, prove that F is a bijection; recall
that this means you have to show that F is one-to-one and onto.

3. Explain how this gives yet another proof of Theorem 1.5.2.

This is an early example of a combinatorial theme: instead of counting some-
thing directly, exhibit a bijection f and count f (something).

3.14 Bonus Check-Yourself Problems
Solutions to these problems appear starting on page 598. Those solutions that model a
formal write-up (such as one might hand in for homework) are to Problems 4, 6, and 9.

1. Let S = {s1,s2, . . . ,sn}. How many
functions are there with domain Z3 and
target S? Of those functions, how many
are one-to-one? How many are onto?

2. Draw all connected 3-regular graphs
with four vertices.

3. Are the two graphs in Figure 3.27 iso-
morphic? Justify your response.

2

6 1

34

5

a b

f

c

e

d

Figure 3.27. Two potentially isomor-
phic graphs.
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Figure 3.28. Some finger-finger graphs: F1,4, F2,2, F3,5, and F7,3.

A

B

C

D

Figure 3.29. Who is who here?

4. Is the function f : Z → Z defined by
f (n) = ⌊sin(n)⌋ a one-to-one function?
Prove or disprove.

5. Is it possible to draw a graph with
six vertices of degrees 2, 2, 3, 3, 4,
and 4? If so, draw one. If not, explain
why not.

6. A finger-finger graph is denoted by Fm,n
and has m fingers, from each of which
grows n fingers; see Figure 3.28. Con-
jecture and prove formulas for the num-
ber of vertices and the number of edges
of a finger-finger graph.

7. What can you say about the number of
vertices of a 3-regular graph?

8. The following statement is true: any cy-
cle Cn with n ≥ k has complement Cn
containing a triangle. Determine k and
prove the statement.

9. Consider the map g : (N×N)→ N de-
fined by g((a,b)) = ab. Is this one-to-
one? Onto? Give proofs.

10. Shown in Figure 3.29 are four infinite
graphs in pairs A,B and C,D. One of
these pairs is isomorphic and the other
nonisomorphic. Which is which? Jus-
tify your response.

3.15 Problems about Graphs and Functions
Some of the graph theory problems may seem at first like busywork rather than problems
that enrich your cognition. However, a lot of gruntwork is necessary in order to develop
good intuition about graphs. It’s easy to bemisled into thinking that the apparent simplicity
of graphs indicates that they are straightforward to understand.
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1. Try these three minis:
(a) Draw the union of K4 andC3.
(b) How many vertices and how many

edges does the Petersen graph have?
(c) DrawW6.

2. How many simple 3-regular graphs are
there with five vertices? Prove that you
have found them all.

3. Let f : {2,4,6,8,10}→{1,3,5,7,9} be
an onto function. Prove that f is one-to-
one.

4. Give an example of a graph that is 4-
regular but neither complete nor com-
plete bipartite. (While you’re at it,
give examples of 4-regular complete
and complete bipartite graphs.)

5. Prove that f : W → Z defined by
f (k) = ⌊ k+1

2 ⌋(−1)k is a bijection.
6. Find all …
(a) … cycles that are also complete

graphs.
(b) … cycles that are also wheels.
(c) … wheels that are also complete

graphs.
(d) … cycles that are also paths.
(e) … paths that are also complete

graphs.
In each case, explain why your list is
complete.

7. Let S = {s1,s2, . . . ,sn}. How many
functions are there with domain S and
target Z2? Of those functions, how
many are one-to-one? How many are
onto?

8. Draw all nonisomorphic simple graphs
with four vertices. (There are 11.) Ver-
ify that the handshaking lemma holds
for each graph.

9. Do it again for graphs with five vertices.
How many graphs did you find?

10. Examine Figure 3.11. Either show
that the two graphs are isomorphic
(by giving a bijection between their
vertex labels that preserves adjacency)
or explain why they are not isomor-
phic. Repeat this process with the
two graphs in Figure 3.12. (Geo-
Gebra files of Figures 3.11 and 3.12
are available for your playing plea-
sure at http://www.toroidalsnark.net/
dmwdlinksfiles.html.)

11. Consider the Cartesian product A × B,
where A,B are finite nonempty sets,
each with cardinality greater than 1.
There are two functions with domain
A × B, called projections, with map-
ping rules p1(a,b) = a and p2(a,b) = b.
What is the target space of p1? Of p2?
Are either of p1, p2 one-to-one? Onto?

12. Let A= {0,1,2,3,4}×{0,1,2}, let B=
{n | n is a positive factor of 144}, and
let f : A → B with f (a1,a2) = 2a1 ·3a2 .
Is f one-to-one? Onto?

13. Perhaps keeping pigeons in mind, show
that if a simple graph has at least two
vertices, then two of its vertices must
have the same degree.

14. Draw a graph with degree sequence
(1,1,2,2). Now draw one with de-
gree sequence (1,1,1,1,1,1). Can you
find more graphs with these degree se-
quences?

15. Think of at least two different proofs
that Kn has n(n−1)

2 edges.
16. Consider a cube, andmake a graph from

it by assigning a vertex to each corner of
the cube and an edge to each edge of the
cube.

http://www.toroidalsnark.net/dmwdlinksfiles.html
http://www.toroidalsnark.net/dmwdlinksfiles.html
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(a) What are all the possible distances
between two distinct vertices of the
cube?

(b) How many different length-3 paths
go from one corner of the cube to the
opposite corner? Why?

(c) What is the average distance be-
tween any two distinct vertices of
the cube? Explain.

17. The complete bipartite graph Km,n …
(a) … has m+n vertices. Prove it.
(b) … has m ·n edges. Prove it.

18. How many vertices and edges does the
complete tripartite graph Km,n,p have?
Prove your conjecture.

19. To what graph is K5 \ K3 isomorphic?
How about K6 \K3? (Any conjectures?)

20. The star graph on n vertices has one ver-
tex adjacent to all other vertices (and
no other adjacencies). Conjecture and
prove a formula for the number of edges
of the star graph on n vertices.

21. Two labeled infinite graphs are shown
in Figure 3.30.

Figure 3.30. Two possibly isomorphic
infinite graphs.

Show that they are isomorphic by defin-
ing a gipo between them and verifying

that the gipo is an isomorphism, or show
that they are not isomorphic by finding
a property that holds for one but not the
other. (Note that if you want to show
that the graphs are isomorphic, it will
not be enough to just give a relabeling—
that would only take care of finitely
many vertices. You would need to give
a rule for relabeling and show that this
rule satisfies the properties of an iso-
morphism.)

22. Notice that many of the previous prob-
lems involve counting. Where did you
use the sum principle? The product
principle?

23. Some of the previous problems asked
for proofs. What proof techniques did
you use? Contradiction? Direct proof?

24. Encode K5 as vertex/edge lists, as ver-
tex/adjacency lists, and as an adjacency
matrix. Do the same with P5. How do
the different storage methods compare
for these two graphs? Does this suggest
any general guidelines to you?

25. We showed that R(3,3) = 6 in Sec-
tion 3.9. Certainly, it would be awe-
some if R(4,4) were easy to guess—
show that R(4,4) ̸= 8. (It turns out that
R(4,4) = 18.) You might find it helpful
to experiment with different 2-colorings
of the edges of various complete graphs
at http://demonstrations.wolfram.com/
GraphsAndTheirComplements/.

26. Check out the graph G shown in Fig-
ure 3.31:

(a) Draw G\ v4 (a.k.a. G− v4).

(b) Now draw G\ e (a.k.a. G− e).

http://demonstrations.wolfram.com/GraphsAndTheirComplements/
http://demonstrations.wolfram.com/GraphsAndTheirComplements/
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e

v4

v1 v3v2

Figure 3.31. I’m G!

27. Consider g : {0,9,8,7,6,5} → {4,3,
2,1}. Is it possible for g to be one-to-
one? Onto?

28. Draw a connected graph with six ver-
tices such that at least two vertices have
degree 3 and at least one vertex has de-
gree 1.

29. Delete things!
(a) To what graph is Kn \ v isomorphic?

Explain.
(b) To what graph isCn \ e isomorphic?

Explain.
30. Let A = {2,4,6,8,10,12,14,16,18,

20} and let B = {−1,0,1}.
(a) How many functions can be defined

f : A → B? How many of those are
one-to-one?

(b) How many functions can be defined
f : B → A? How many of those are
one-to-one?

31. Consider a function f defined on the set
of finite graphs G by f (G) = |V (G)|.
What is the range of f ?

32. What is the length of the shortest walk
you can take on the Petersen graph?
What is the length of the longest path in
the Petersen graph? Is K3 a subgraph of
the Petersen graph? Explain.

33. Let X = {1,2,3,4,5} and let Y = {1,2,
3,4,5,6}.

(a) How many one-to-one functions are
there from X to Y?

(b) How many one-to-one functions f :
Y → X are there?

(c) How many injective functions are
there from X → X?

34. True or false: any two graphs with the
same degree sequence are isomorphic.
If true, provide proof; if false, provide a
counterexample.

35. How many edges does a forest with n
trees and v vertices (and vi vertices in
the ith tree) have?

36. Floors:
(a) Let a function from the real numbers

to the integers be defined by f (x) =
⌊x⌋. Is f one-to-one? Is f onto?
Explain why or why not in each
case.

(b) Let f : Z→ Z be defined by f (x) =
⌊x⌋. Is f one-to-one? Is f onto?
Explain why or why not in each
case.

37. Ceilings:
(a) Let a function from the real num-

bers to the integers be defined by
c(x) = ⌈x− 2⌉. Is c one-to-one? Is
c onto? Explain why or why not in
each case.

(b) Let c : Z→ Z be defined by c(x) =
⌈x+2⌉. Is c a bijection?

38. Consider the map f : W → N defined
by f (x) = 2x+1. For every n∈N, there
exists somew∈W (letw= n−1). Does
this mean that f is onto? Explain.

39. Consider the zero map z : A → 0, de-
fined by z(a) = 0. Under what condi-
tions is z one-to-one? Onto? A bijec-
tion?
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40. Consider the Cartesian product A×B,
where A,B are finite nonempty sets,
each with cardinality greater than 1.
There are two functions called in-
clusions, with mapping rules i1(a) =

(a,b0) and i2(b) = (a0,b). What is the
domain of i1? Of i2? How about the tar-
get space of i1 and i2? Are either of i1, i2
one-to-one? Onto?

3.16 Instructor Notes

It is tough for students to absorb all the material in this chapter well over a single week of
class, so you may wish to tailor your emphasis or expectations accordingly.

Assign the students to read Sections 3.1 and 3.2 and do the Check Yourself problems
as preparation for the week. Start the first class of the week by having them work on the
problems in Section 3.3. Collectively, these comprise a full class—so ask the students to
work for a limited amount of time on each subsection, perhaps 10minutes for Section 3.3.1
(students have a tendency to lollygag here) and 15 minutes for Section 3.3.2. Then, have
students describe their results and take questions over the reading. Be sure to leave 10–15
minutes in class to describe the Section 3.3.3 dot game, have two students play it publicly
at the front of the room, let the students loose to explore, and compile conjectures from
the class.

As preparation for the next class meeting, assign students to think more about the
dot game, read Sections 3.4–3.7, and do the associated Check Yourself problems. They
often have trouble with the categorical notion of isomorphism, so it can be productive
to begin class with a short lecture on isomorphisms in general that specializes to graph
isomorphisms. While asking for questions over the reading, ask the students also what
progress they have made in thinking about the dot game. It is likely that a student will
produce a draw for the five-dot game, and possible that a student will contribute reasoning
for why a win/loss is forced for the six-dot game. Remaining time can be used to work on
problems from Section 3.8. Assign the students to read Section 3.9 as preparation for the
third class.

A great warmup for the third class of the week is to interactively prove that every tree
(with more than one vertex) has a leaf. (Besides, later in the course students will need this
result.) Start by writing this theorem on the board and asking the students what it means.
(If your classroom has a window, some students may puzzledly point outdoors; they need
to recall what trees and leaves are in a graph-theoretic context.) Encourage students to
contribute ideas for the proof and for what proof technique to use. They will often give
the idea that one should walk along the graph until one runs into a leaf but be unable to
formalize this into a proof by contradiction; help them realize that they cannot guarantee
that they will run into a leaf without using the theorem they are trying to prove. Once they
are able to conceptualize that an inability to find a leaf corresponds to walking along some
cycle, they are usually able to close the deal on the proof.
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It is also a good idea to review the proof that a win/loss is forced for the six-dot game
if this did not arise in the previous class. Remaining class time would be used excellently
by students working on and presenting solutions to the problems in Section 3.8. Use of
GeoGebra will speed up their work on the visual problems—the author has GeoGebra files
premade for these exercises, available at http://www.toroidalsnark.net/dmwdlinksfiles.
html.

Finally, be aware that students may find the problems in Section 3.15 significantly
harder than those in Chapters 1 and 2 because they use new terminology in conjunction
with practicing earlier proof techniques. In addition, students are likely to still be pro-
cessing concepts from earlier chapters. They will continue to work with these ideas over
the semester. Some less challenging, but still proof-oriented, problems are presented in
Section TI.2 for the purposes of supplementation.

http://www.toroidalsnark.net/dmwdlinksfiles.html
http://www.toroidalsnark.net/dmwdlinksfiles.html
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Chapter 4

Induction

4.1 Introduction and Summary

This proof technique is more complicated than the previous techniques, so it merits
a chapter of its own. But there’s only somuch to say about mathematical induction,
and then you just have to practice this proof technique for yourself. The basic idea
is to reduce a theorem to a smaller case of the same theorem, and then to a smaller
case, and so on to a small case you can deal with manually. Example 4.2.4 is
particularly important, first because it shows why one must reduce to a previously
known case (rather than building up from a known case), and second because it is
a result we will use regularly in Chapters 10–13.

Unlike the previous topics addressed in this book, there are no everyday ap-
plications of induction. It instead applies to most of mathematics and computer
sciences—as a proof technique, it arises frequently in each field at all levels.

4.2 Induction

Wewill begin with an example of a proof by induction using only basic arithmetic,
then describe induction in general, and then give an extended example of a proof
by induction about sets.

Example 4.2.1. Do you believe that if n > 0, then 2n > n? Let’s check to see
whether this statement holds for a few values of n.

When n = 1, we see that 21 = 2, and 2 > 1.
When n = 2, we see that 22 = 4, and 4 > 2.
When n = 423, we see that 2423 = 14,134,776,518,227,074,636,666,380,005,

943,348,126,619,871,175,004,951,664,972,849,610,340,958,208 and that is cer-
tainly greater than 423.

Yes, the statement if n > 0, then 2n > n seems to be true. We have checked it
for small values of n, which are known as base cases.

103
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To prove the statement, we will first suppose that when n is less than or equal
to some indeterminate k (but greater than 0), 2n > n. This is called the inductive
hypothesis.

If we can show that this assumption allows us to prove that 2k+1 > k+1, then
wewill have proved that 2n > n for all n> 0. This process is known as the inductive
step. We will complete it as follows.

Consider 2k+1. This can be rewritten as 2k+1 = 2 · 2k. We note that k ≤ k, so
the inductive hypothesis holds and we can use the fact that 2k > k. Multiplying this
inequality by 2, we have 2 · 2k > 2 · k. We can rewrite again so that 2 · k = k+ k,
and as long as k > 1, we have k + k > k + 1. Stringing this work together, we
now see that when k > 1,2k+1 > k+1, which is what we wanted to prove. (Well,
except that we wanted k > 0. That’s okay, because we checked the case for n = 1
separately.)

Notice what we did in the inductive step: The inductive hypothesis covers val-
ues of the index up to k, so we look at the index-(k+1) version of the statement.
Wemanipulate the index-(k+1) statement so that we have found the index-k state-
ment within it. Then, we apply the base case and the inductive hypothesis to show
that the index-(k+ 1) version of the statement is true. (We will often use index
values lower than k, such as k−1 or k−2, as well.)

So what is going on with inductive proof? First, we want to prove some state-
ment that has a variable n in it, and that variable takes values in N. That’s pretty
important—induction only works when the statement you’re trying to prove is in-
dexed by the natural numbers. (We’ll see why in a page or two.) Then, a proof by
induction has three parts.

How to do a proof by induction:

Base case: Check to make sure that whatever you want to prove holds
for small natural numbers, like 1, 2, or 3.

Inductive hypothesis: Assume that whatever you want to prove is true,
as long as the variable in the statement is smaller than or equal to k;
here, k is a specific (but unknown) value.

Inductive step: Consider the statement with k+1 as the variable. Use
your knowledge that the statement is true when the variable is less than
or equal to k in order to show that it’s still true for k+1. (That is, use
the base case(s) and inductive hypothesis.)
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A1 A2

A1

A2

A3

A1

A2

A3

A1 A2

Figure 4.1. The left diagrams show (A1 ∪A2 ∪·· ·∪An) for n = 2,3, whereas the right
diagrams show A1 ∩A2 ∩·· ·∩An for n = 2,3.

The inductive step shows that given any upper limit on n, that upper limit can
be increased by one. Thus we can increase the possible values of n repeatedly to
see that our statement is true for all n ∈ N.

We turn now to a statement that uses sets rather than numbers. You have al-
ready proven the following theorem in the special case of just two sets—it is one
of DeMorgan’s laws—and here we extend the law to n sets.

Theorem 4.2.2 (DeMorgan’s Laws for n sets). LetA1,A2, . . . ,An be n sets. Then
for any n ∈ N,

(A1 ∪A2 ∪·· ·∪An) = A1 ∩A2 ∩·· ·∩An
and

(A1 ∩A2 ∩·· ·∩An) = A1 ∪A2 ∪·· ·∪An.

Proof: We will prove the first of DeMorgan’s Laws here, and leave the other as
an exercise (Problem 8 in Section 4.12).
(Base case) We begin by checking n = 2 and n = 3, using Figure 4.1. You can see
that the teal-shaded areas on the left are the same as the multiply-hatched areas
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on the right. Unfortunately, Venn diagrams become increasingly difficult to draw
and interpret as the number of sets increases, and there is no reasonable way to use
Venn diagrams for an indeterminate number of sets. We will need to use symbols
in order to generalize.

In symbols, our base cases are (A1 ∪A2) = A1 ∩A2 and (A1 ∪A2 ∪A3) = A1 ∩
A2 ∩A3.
(Inductive hypothesis) As long as n ≤ k, (A1 ∪A2 ∪·· ·∪An) = A1 ∩A2 ∩ . . . ∩ An.
(Inductive step) Consider (A1 ∪ A2 ∪ ·· · ∪ Ak+1). We can also express this as
(A1 ∪ A2 ∪ ·· · ∪ Ak ∪ Ak+1), and we can add some parentheses to write
((A1 ∪A2 ∪·· ·∪Ak)∪Ak+1). If we rename the combined set in the new paren-
theses as (A1∪A2∪·· ·∪Ak) = B, then (A1 ∪A2 ∪·· ·∪Ak+1) becomes (B∪Ak+1).
That’s just two sets, so our Venn-diagram-proved base case tells us that (B∪Ak+1)

= B∩Ak+1. Let us resubstitute for B in order to obtain (A1 ∪A2 ∪·· ·∪Ak)∩Ak+1.
We can now use the inductive hypothesis on (A1 ∪A2 ∪·· ·∪Ak) because there are
only k sets involved in that expression. Therefore, (A1 ∪A2 ∪·· ·∪Ak)∩Ak+1 =
(A1 ∩A2 ∩ ·· · ∩Ak)∩Ak+1. Linking all of our statements together, we have that
(A1 ∪A2 ∪·· ·∪Ak+1) = A1 ∩A2 ∩·· ·∩Ak ∩Ak+1.

Because we have shown that (A1 ∪A2 ∪·· ·∪An) = A1∩A2∩·· ·∩An for n ≤ k
implies that (A1 ∪A2 ∪·· ·∪Ak+1) = A1 ∩ A2 ∩ ·· · ∩ Ak ∩ Ak+1, we know that
(A1 ∪A2 ∪·· ·∪An) = A1 ∩A2 ∩·· ·∩An for all n (including those larger than k).�

It’s time for another example.

Example 4.2.3. We have the sets {1},{1,2},{1,2,3}, . . .{1,2,3, . . . ,k}, . . . and so
on. We want to show that the set of the first n natural numbers has 2n subsets. (Yes,
we already know this as a special case of Theorem 1.5.2. But it’s always good to
have more than one proof of a theorem!)
(Base case) The subsets of {1} are {} and {1}. There are two of them, which is 21.
Excellent.

(We’re done, but if you feel insecure, note that the subsets of {1,2} are {},
{1}, {2}, {1,2}, and there are four of them, or 22.)
(Inductive hypothesis) We assume that a set containing the first n counting numbers
has 2n subsets, as long as n ≤ k.
(Inductive step) Examine the set {1,2, . . . ,k+1}. We would like to show that it has
2k+1 subsets. We need to understand how the subsets of {1,2, . . . ,k+1} are related
to the subsets of {1,2, . . . ,k}. (If there’s no relationship, we can’t use induction.)
Every subset of {1,2, . . . ,k+1} has one of two properties: either (a) k+1 is not an
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Figure 4.2. The tree with one vertex (left) and every single tree with two vertices, all one
of them (right).

element or (b) k+1 is an element. All the subsets with property (a) are also subsets
of {1,2, . . . ,k}, and so we know there are 2k of them by the inductive hypothesis.
If we take each of the property (a) subsets and stick the element k+ 1 in, we get
all the subsets with property (b). So there are the same number of them, and there
are 2k subsets with property (b). In total, we have 2k +2k = 2 ·2k = 2k+1 subsets,
and we’re done.

Here’s the important example promised in Section 4.1.

Example 4.2.4. We will prove using induction that any tree with n vertices has
n−1 edges. (Recall that a tree is a connected graph with no cycles. It looks kind
of like a tree in the sense that it branches.)
(Base case) We exhibit every tree with n = 1,2 vertices in Figure 4.2. Notice that a
tree with one vertex has zero edges and that a tree with two vertices has one edge,
in accordance with the desired result.
(Inductive hypothesis) For any n ≤ k, we assume that any tree with n vertices has
n−1 edges.
(Inductive step) Consider some tree, any tree really, with k+1 vertices. We would
like to show that it has k edges. Close your eyes, stick out your hand, and grab
an edge of the tree; hang the edge over a nail, and you’ll have something like
Figure 4.3. Let’s call the tree T and the chosen edge e so that we can remove it
by considering T \ e. Notice that T \ e = S1 ∪ S2, where S1 and S2 are the two
subtrees shown in Figure 4.3. Also notice that S1 and S2 are trees themselves, and

S1

S2

Figure 4.3. Choosing an edge of a tree separates it into two subtrees.
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each has fewer than k+1 vertices, so that |V (S1)| ≤ k and |V (S2)| ≤ k. Hey! That
means we can apply the inductive hypothesis to S1 and S2! Doing so tells us that
|E(S1)| = |V (S1)| − 1 and |E(S2)| = |V (S2)| − 1. Now consider S1 ∪ S2. By the
sum principle, |V (S1 ∪ S2)| = |V (S1)|+ |V (S2)| = k+ 1. Likewise, |E(S1 ∪ S2)|
= |E(S1)|+ |E(S2)| = (|V (S1)| − 1)+ (|V (S2)| − 1) = (k + 1)− 2 = k − 1. The
relationship between S1 ∪ S2 and T is that T has one more edge… so put it back,
showing that |E(T )|= |E(S1∪S2)|+1 = (k−1)+1 = k. Awesome. We’re done.

Often, induction is presented as like climbing a ladder. A base case is like
getting onto the ladder, near the bottom. The inductive hypothesis is like assuming
you can get to the kth rung. Crucially, the inductive step tells you how to climb
from the kth rung to the (k+ 1)st rung. After all, what do you need to know in
order to climb a ladder? You need to know how to get on and how to get from
one rung to the next. That’ll take you as high as you need to go. The fact that you
know how to get from rung k to rung k+ 1 means you can insert any values you
like for k and you can get to (let’s say) rung 10 by going rung 1 to rung 2, rung 2
to rung 3, rung 3 to rung 4, rung 4 to rung 5, rung 5 to rung 6, rung 6 to rung 7,
rung 7 to rung 8, rung 8 to rung 9, and rung 9 to rung 10.

There’s only one problem with this analogy. (Okay, there might be more than
one problem. But there’s one big problem.) It only works for simple things, like
Example 4.2.3 above. What happens if there’s more than one way to get from
rung k to rung k+1? Or worse, suppose there are lots of different interpretations
of the statement to be proved that all are described by the positive integer k? An
example here would be all the internal computer networks that have five hubs
and some number of channels connecting them. There are lots of ways to take a
network with five hubs and create one with six hubs… way too many ways….

The correction to the ladder analogy is to think of the ladder as branching at
every rung. And it doesn’t just branch into two ladder paths, but a lot of ladder
paths. And it happens at every rung, so that there are bunches of rungs at each
level of the ladder. It’s hard to imagine what that would look like, let alone how
one would decide how to climb such a ladder. (A simplified version is shown in
Figure 4.4.) Luckily, there’s a way out of this problem.

When we do proofs by induction, we don’t build up from the k case to the k+1
case. What we do in practice is start with the k+ 1 case and find a k case from
which it came. So instead of climbing up from a k-level rung to a (k+ 1)-level
rung, we take some (k+1)-level rung and look just below it to see the k-level rung
(or a (k−1)-level rung, etc.). That’s much easier. And then, in order to climb to a
particular spot on our multi-branching ladder, we mark that spot, look downwards
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Figure 4.4. An ordinary ladder (left) and a simplified branching ladder (right).

to see what sequence of rungs leads to it, and use that sequence to climb to our
particular spot. So an induction proof, in ladder terms, looks like this:
(Base case) Make sure that we can get onto the ladder.
(Induction hypothesis) Assume that if we happen to be on a k-level rung, we know
how we got there.
(Induction step) From a (k+1)-level rung, figure out how to get back to a k-level
(or lower) rung, so we’ll know where we are.

This tells us why induction works for statements indexed by N only, not for
those indexed by Z or other sets. Induction tells us how to climb down and up
a ladder, but we can only climb down to a base case—not to arbitrary negative
values of the index.

Finally, a note on writing: Every mathematician has slightly different pref-
erences about how proofs by induction should be written. As a beginning proof
writer, you should follow the format given here until you can consistently write
correct proofs by induction. Then you can loosen up a bit, make your exposition
more brief, and allow your own voice to come through.

4.2.1 Summation Notation

It can get pretty tiring to write out long sums, so we use compact notation for
them. (We bring it up now because many proofs about sums use induction.) For
example, we turn 1+1+1+1+1+1+1+1+1 into ∑9

j=1 1. This can be read as,
“Add, from 1 to 9, the number 1.” Of course, the result is 9. It is more common to
involve variables, as with ∑4

j=1( j− 2) = −1+ 0+ 1+ 2 or with ∑7
j=3(−1) j+5 =

1−1+1−1+1.
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Summation notation always has three parts:

1. The summation sign ∑.

2. The function to be summed (above, this was 1 in the first example and
( j − 2) in the second example); the function’s variable is indicated in a
subscript to the summation sign (in the examples above, the variable was j).

3. The index set, which can be a particular range of numbers (such as 3 to 8) or
an indefinite range of numbers (such as 2 to n) or a set of elements (such as
the vertices of a graph). If the index set is a set of elements, it is indicated in
a subscript of the summation sign; if it is a range of numbers, the smallest
number is indicated in a subscript and the largest number is indicated in a
superscript of the summation sign.

The in-a-paragraph compact ∑n
j=m is usually written by hand as

n

∑
j=m

.

Here are a few other instances of summation notation.

Example 4.2.5. Let f be a function whose domain includes N. Then

7

∑
j=1

f ( j) = f (1)+ f (2)+ f (3)+ f (4)+ f (5)+ f (6)+ f (7).

The sum of the first n natural numbers, except for 1, is

n

∑
j=2

j = 2+3+4+ · · ·+n.

The sum of the degrees of the vertices of K3 (a triangle) is

2+2+2 = ∑
v∈V (K3)

deg(v).

The sum of the squares of the integers is

∑
k∈Z

k2 = · · ·+36+25+16+9+4+1+0+1+4+9+16+25+36+ · · · .

And, here is a proof by induction using summation notation.

Example 4.2.6. Let us prove that ∑n
j=1 2 j = n+n2.
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(Base case) When n = 1, we have ∑1
j=1 2 j = 2 ·1 and 1+12 = 2, so the statement

is true. It’s a little bit weird to compute sums without having any actual addition,
so let’s check for n = 2 as well: ∑2

j=1 2 j = 2+4 = 6, and 2+22 = 6. That’s better.
(Inductive hypothesis) We assume that when n ≤ k, ∑n

j=1 2 j = n+n2.
(Inductive step) Consider∑k+1

j=1 2 j. (What are we trying to show? Plug k+1 in for n
in our inductive hypothesis to see what we seek.) We will separate out the last term
by writing∑k+1

j=1 2 j =∑k
j=1 2 j+2(k+1). Nowwe can use the inductive hypothesis

on ∑k
j=1 2 j and substitute, getting ∑k

j=1 2 j+2(k+1) = k+k2+2(k+1). Algebra
shows that k+ k2 +2(k+1) = k2 +3k+2 = k+1+ k2 +2k+1, which factors to
(k+1)+(k+1)2, and putting it all together we see that ∑k+1

j=1 2 j = (k+1)+(k+
1)2—the result we desired.

4.2.2 Induction Types and Styles

You may notice that other books make a distinction between plain old induction
and strong induction. It turns out that they are logically equivalent, so we will use
whichever form of induction we please and just call it “induction.”

Another thing: while in this book we do our proofs by induction full out, in
more advanced texts and mathematics papers it is rare that the inductive hypoth-
esis will be explicitly stated and sometimes the base case is not mentioned. It is
expected that the reader can state the inductive hypothesis for hirself. Certainly
the writer has checked appropriate base cases, but it is also expected that the reader
will check base cases for hirself if ze has any doubt.

Check Yourself

These simpler problems will prepare you for the challenges that lie ahead.

1. If the statement you want to prove is made in terms of n, should your inductive step
be done using n or using k (or some other variable)?

2. Prove by induction that the path graph Pn has n−1 edges.

3. Write 2!+4!+6!+8!+10! in summation notation. (Knowing what 2!,4!,6!, etc.
means is not necessary for completing this problem.)

4. Write ∑6
j=0

3 j−1
2 out in full.

5. How is ∑5
j=1 j2 − j related to ∑4

j=1 j2 − j? Try writing ∑5
j=1 j2 − j in terms of

∑4
j=1 j2 − j. More generally, how is ∑5

j=1 q( j) related to ∑4
j=1 q( j)? And even

more generally, how is ∑k+1
j=1 q( j) related to ∑k

j=1 q( j)?
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Figure 4.5. Some mysterious dots.

4.3 Try This! Induction

It’s time to practice induction for yourself (and with others). These problems vary
substantially in difficulty—just so you’re warned.

1. The star graph on n vertices has one vertex adjacent to all other vertices (and
no other edges). Show, using induction, that the star graph on n vertices has
n−1 edges.

2. This problem is about adding the odd numbers; consider in particular 1+
3+5+7+ · · ·+(2n−1).

(a) Write the above expression in summation notation.
(b) What does Figure 4.5 have to do with this problem?
(c) Find a formula for the sum you rewrote in part (a).
(d) Now prove by induction that your formula is correct.

3. Prove that ∑v∈V (G) deg(v) = 2|E(G)|, using induction. (In case you did not
recognize this expression, it is the handshaking lemma!)

4. Show that if a letter requires postage of more than seven cents, one can apply
exact postage using only three-cent and five-cent stamps. (Suggestion: use
induction!)

5. Trees are the focus of this problem.

(a) Draw a tree that has nine vertices, and label the vertices.
(b) Redraw the tree so that it is clear that the tree is bipartite.
(c) Mark the bipartitely drawn tree so that it is a tree with eight vertices

connected to a tree with one vertex.
(d) Mark (another copy of) the bipartitely drawn tree so that it is a tree

with five vertices connected to a tree with four vertices.
(e) Show by induction that every tree is bipartite.
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4.4 More Examples

Here are three final examples of induction, two numerical and one geometric.

Example 4.4.1. Let us show that if n > 1, then 3n > 3n.
(Base case) When n = 2, we see that 32 = 9, and 9 > 6 = 3 ·2.
(Inductive hypothesis) For any 2 < n ≤ k, 3n > 3n.
(Inductive step) Consider the case n = k + 1. We may rewrite 3k+1 as 3 · 3k. By
the inductive hypothesis, 3k > 3k, so 3 ·3k > 3 ·3k. Now, 3 ·3k = 9k = 3k+6k =
3k+ 3+(6k− 3) > 3k+ 3 = 3(k+ 1). We know that 6k− 3 > 0 because k ≥ 2.
Combining the above statements, we have 3k+1 > 3(k+1) as desired.

Example 4.4.2. We will prove by induction that for n ≥ 2, 2n ≤ 2n+1 −2n−1 −2.
(Base case) Because we are constrained to n ≥ 2, we will examine the base case of
n = 2. We know 22 = 4 and 23 −21 −2 = 8−2−2 = 4; because 4 ≤ 4, all is well
with the base case.
(Inductive hypothesis) For any n ≤ k, 2n ≤ 2n+1 −2n−1 −2.
(Inductive step) Wewould like to show that 2k+1 ≤ 2k+2−2k−2. Consider the left-
hand side of the statement. We know that 2k+1 = 2 ·2k. The inductive hypothesis
applies to that 2k, so we have 2k+1 = 2 · 2k ≤ 2 · (2k+1 − 2k−1 − 2). Multiplying
out gives the expression 2k+2 − 2k − 4. Now… that’s not far off from what we
want to prove! Check this out—we know that −4 ≤ −4+ 2 = −2. Therefore,
2k+1 ≤ 2k+2 −2k −4 < 2k+2 −2k −2 and we’re done.

The trick used in Example 4.4.2, seen regularly in mathematics, is that if a < b
then c+ a < c+ b. For that matter, it is also true that if a ≤ b and d ≤ e, then
a+d ≤ b+ e.

Example 4.4.3. Start with a circle and choose any n≥ 3 points on it. Now join con-
secutive points with line segments to form a polygon with n sides (see Figure 4.6).

Figure 4.6. Forming a polygon inside a circle using n = 8 points on the circle.
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Figure 4.7. An indeterminate number k+1 of points are chosen on a circle, as indicated
by the dotted lines (left). Consider the polygon formed by k of them (right).

We claim that the sum of the interior angles of this polygon is (n− 2) · 180◦, no
matter which n points are chosen on the circle. Induction says…

(Base case) Let n = 3. Then the polygon is a triangle, and every triangle has interior
angle sum 180◦.

(Inductive hypothesis) A polygon formed by any 3 ≤ n ≤ k points on a circle has
interior angle sum (n−2) ·180◦.

(Inductive step) Pick any k+ 1 points on a circle. We would like to show that the
interior angle sum of the polygon formed by these points is (k−1) ·180◦. To reduce
to the case of k points so we can use the inductive hypothesis, pretend one of the
k+1 chosen points isn’t there and look at the polygon formed by the k other points;
see Figure 4.7. The inductive hypothesis applies to this polygon, so it has interior
angle sum (k − 2) · 180◦. If we glue on the triangle formed by the pretend-it’s-
not-there point and the two points next to it on the circle, then we get our original
polygon. The sum of the interior angles of the original polygon is the sum of the
interior angles of the triangle (180◦) plus the sum of the interior angles of the k-
point polygon ((k−2) ·180◦), so we have 180◦+(k−2) ·180◦ = (k−1) ·180◦ as
desired.

Check Yourself

Doing these exercises will assure that you understand the ideas behind these examples.

1. Use direct proof to show that 2n ≤ 2n+2 +5.

2. Show, by induction, that a polygon formed by n arbitrarily chosen points on a circle
has exactly n edges.
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Figure 4.8. A single duck is grey. Well, technically it is a Blue Swedish duck, but Blue
Swedish ducks are slate grey.

4.5 The Best Inducktion Proof Ever

Hopefully you are starting to feel like you are getting the hang of induction. This
proof is for the consideration of advanced induction studiers; it is subtle in its
loveliness.

Theorem 4.5.1. All ducks are grey.

Proof: In order to prove the theorem by inducktion, we must restate it so that it
has an index in the natural numbers. All ducks are grey is equivalent to saying All
ducks in a set of n ducks are the same color, and that color is grey. We proceed by
inducktion.
(Base case) Certainly it is true that a set with one duck has all ducks of the same
color, and Figure 4.8 shows a grey duck.
(Inducktion hypothesis) Suppose that any set of n ducks is the same color (grey), as
long as n ≤ k.
(Inducktion step) Consider a set of k+1 ducks. We don’t know what color they are,
or even whether they are all the same color. Choose a duck arbitrarily and set it
in the nearby water so it can swim about. This leaves us with k ducks. Aha! The
inducktive hypothesis applies, so all of them are grey. Using a duck call, retrieve
the swimming duck (of unknown color). Send one of the grey ducks to the water
(in a different direction, so that there is no confusion between ducks.) Now we
have k−1 grey ducks and one duck of unknown color, but together they are a set
of k ducks and so the inducktive hypothesis holds—so all k of them are grey. Now
recall the swimming grey duck, and see that all k+ 1 ducks are grey. Voilá! All
ducks are grey. �



116 4. Induction

Check Yourself

Because this is the best inducktion proof ever, it is worth considering carefully.

1. Go through the inducktive step of the proof for the case n = 5 ducks to see how the
subsets of ducks interact.

2. Rewrite this proof for the statement all owls are teal, noting that whereas ducks
swim about, owls fly and perch in trees.

3. Do you believe that all ducks are grey? Many students claim that they have seen
white ducks, but Section 4.5 proves that all ducks are grey. (A “white” duck is
very pale grey.) Remember, a correct proof compels assent—so either you believe
a correct proof or you believe that the given proof is problematic. Try to find an
error in the proof, or justify completely that all ducks are grey.
Do not try looking this up (e.g., on the internet). That would spoil your fun! In-
stead, think through the details of the proof. Does the base case make sense? Is
the inducktive hypothesis correctly stated? How does the inducktive step hold up
under scrutiny?

4.6 Try This! More Problems about Induction

Just in case you have finished solving the problems in Section 4.3, here are a few
2n-themed problems for you!

1. Compute 2, 2 + 22, 2 + 22 + 23, and 2 + 22 + 23 + 24. Use your data to
conjecture a simple formula for ∑n

j=1 2 j. Now use induction to prove that
your conjectured formula is correct.

2. Consider a 2n × 2n grid with the upper-right-hand square missing; two are
shown in Figure 4.9.

(a) Can you always tile it with 3-square L-shaped tiles (no gaps and no
overlaps, as shown in Figure 4.10)?

Figure 4.9. Example 22 ×22 and 23 ×23 grids, each with the upper-right corner missing.
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+

Figure 4.10. How to tile a 21 ×21 grid with the upper-right corner missing with a three-
square L-shaped tile.

(b) If not, give a counterexample; if so, give a proof by induction.

3. Prove that 2n < n! for n ≥ 4 by induction. (We write n! as shorthand for
n · (n−1) ·(n−2) · · · · ·3 ·2 ·1.)

4.7 Are They or Aren’t They? Resolving Grey Ducks

Hey! You! Don’t read this unless you have carefully read the proof given in Sec-
tion 4.5. I mean it!

In the face of much clamor, we must regretfully admit that not all ducks are grey. So what
is the flaw in the proof? Consider a pair of ducks.

If we try to consider the pair of ducks as a base case, we may have two ducks
of the same color. Or we may have two ducks of different colors (see, for
example, the duck heads in Figure 2.1 on page 29). Lesson: make sure to
verify a nontrivial base case (even if you end up not using it in your final
proof).

If we try to consider the pair of ducks as an instance of the inductive step,
we set a duck afloat and are left with a single grey duck; then, we set the
grey duck afloat and consider the remaining duck of an indeterminate color.
And it’s still of indeterminate color because there are no other ducks with
which to use the inductive hypothesis! In set-theoretic terms, the problem
is that when there are fewer than n = 3 ducks, the subsets of size n− 1 do
not intersect. Lesson: make sure that the inductive step is not limited to
certain values of n or k (unless these are restrictions placed on the theorem
or resolved by checking sufficiently many base cases).

Check Yourself

1. Prove that 3 j2 < 2 j3. Be sure to use a base case of j = 1.
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4.8 Where to Go from Here

Y’know, this would be a great point in the course to go back and reread Section 5
of the student preface, on tips for writing mathematics.

We have given a fairly comprehensive introduction to induction as a proof
technique, but if you are interested, there is more. (There is always more…) You
may want to learn about the seeming differences between strong and weak induc-
tion; many texts describe this, and Richard Hammack’s Book of Proof is a good
source. You may want to try dramatically more complicated induction proofs with
more than one index—this uses double induction. Sadly, no good reference for
double induction seems to be available. It appears that the most comprehensive
source for proofs by induction is the recently published Handbook of Mathemat-
ical Induction: Theory and Applications by David S. Gunderson. At about 700
pages, it must go into more detail than it seems possible to desire.

If you enjoyed tiling the 2n ×2n grid with L-shaped tiles, you will also enjoy
http://www3.amherst.edu/~nstarr/puzzle.html, which has applets that allow you
to tile 8×8 and M×N grids with L-shaped tiles.

Induction is used regularly by professional mathematicians and computer sci-
entists in proofs, which is why so many undergraduate courses include induction
as a topic. Of course, the statements used in research papers are much more so-
phisticated than those we use here, and the inductive steps are more subtle. We
will see later (Chapter 8) that induction is intimately related to recursion, which is
a common theme in computer science.

Credit where credit is due: Example 4.4.3 was inspired by [1]. Figure 4.14 was donated
by Tom Hull. In Section 4.12, Problems 36 and 37 were donated by Karl Schaffer, and
Problem 31 was inspired by work of Tom Leighton and Ronitt Rubinfeld.

4.9 Bonus: Small Crooks

The technique presented here is a very slick variant on proof by contradiction.
Sometimes it is called proof by smallest counterexample, but it is also sometimes
called a minimal criminal argument. (Yes, as you desire, Minimal Criminal is a
band name: see http://www.minimal-criminal.com/. One of their songs is called
“Graverobber from Outer Space.” Rarely does one have this sort of satisfaction in
mathematics.)

Here is the idea: You have some proposition that you hope is true, and it is
indexed by N in some way (e.g., the number of vertices of a graph). You attempt
a proof by contradiction by supposing the proposition is false. Therefore, there
is a counterexample. And among all counterexamples, one must have the small-
est index. Check that one out. Try to show that this counterexample implies the

http://www3.amherst.edu/~nstarr/puzzle.html
http://www.minimal-criminal.com/
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existence of an even-smaller-index counterexample. But that’s a contradiction—
you started with a counterexample that was smallest. Or, obtain a contradiction by
showing that your smallest counterexample complies with the constraints of your
proposition. So your proposition is true.

We start with a silly example.

Example 4.9.1. We claim that all natural numbers are interesting. Suppose not;
then, there must be a smallest uninteresting natural number k. Ah, but k is inter-
esting because it is the smallest uninteresting natural number! Thus, it is not the
smallest uninteresting natural number. Contradiction.

A more serious example follows.

Example 4.9.2. Let us show that every natural number greater than 1 has a fac-
torization into primes. Suppose not; then, there is some smallest natural number
k > 1 that does not have a factorization into prime numbers. This k must not be
prime, as otherwise it would be its own factorization into primes, and therefore
k = ℓ ·m for some smaller natural numbers ℓ and m. Because ℓ,m < k, they have
factorizations into prime numbers. Thus ℓ ·m = k has a factorization into prime
numbers, so k is not the smallest natural number that does not have a factorization
into prime numbers—contradiction.

This proof uses a variant on the minimal criminal technique.

Example 4.9.3. We claim that every tree with at least one edge has at least two
leaves. Given a tree T , look at the set of all paths in a tree and choose a path P of
longest length. We claim that both ends of P are leaves. Suppose not; then, at least
one end of P has degree 2 and so we can extend P to a longer path. This contradicts
the longest-ness of P. (Okay, so maybe this should be called a maximal criminal
argument ….)

Short activity:

1. Can you prove that a tree T with |V (T )| vertices has |V (T )|−1 edges
using the minimal criminal technique?

2. Show that every connected graph has a walk that begins and ends at the
same vertex and crosses every edge twice.

3. Consider a connected graph G where every vertex’s degree is the aver-
age of the degrees of its neighbors. Prove that G must be regular.
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4.10 Bonus 2: An Induction Song

By Induction
Max W. Chase, 2005

(sung to the tune of “Frère Jacques”)

Take the base case,
Take the base case,
n is one,
n is one,
This is good to start with,
This is good to start with,
We’re not done,
We’re not done.

Now consider,
Now consider,
n less one,
n less one.
If we prove it for n,
If we prove it for n,
Then we’re done,
Then we’re done.

For all n,
For all n,
Now you see,
Now you see,
Our conjecture is true,
Our conjecture is true,
Q.E.D.,
Q.E.D.

4.11 Bonus Check-Yourself Problems
Seriously, do all of these problems by induction. That’s what they’re here for: induction
practice. Solutions to these problems appear starting on page 600. Those solutions that
model a formal write-up (such as one might hand in for homework) are to Problems 2, 7,
and 8.
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1. Prove that ∑n
j=1 3+5 j = 1

2 (11n+5n2).

2. Prove that n4 < 3 ·8n.

3. Show that every convex polygon can be
decomposed into triangles.

4. Show by induction that Km,n has mn
edges.

5. Prove that ∑n
j=0( j+1)( j−2)

= 1
3 (n−3)(n+1)(n+2).

6. Prove (2(n!))2 < 2(n!)2 for sufficiently
large values of n.

7. Use induction to prove the sum princi-
ple for n finite sets.

8. Take a piece of paper and fold it—not
necessarily in half, but definitely with
a single straight crease somewhere in
the paper. Fold the (still folded) paper
again. In fact, fold it n times, wherever
you like. Now unfold it completely.
Prove by induction that you can always
color the paper with two colors (teal and
purple) so that no fold line has the same
color on both sides.

9. For what values of n is 5n+2 < 6n?
Prove it.

10. Prove that any natural number n≥ 2 can
be written as the product of prime num-
bers.

4.12 Problems That Use Induction
Recall from Section 4.6 that n! = n · (n−1) ·(n−2) · · · · ·3 ·2 ·1.

1. Prove that
n−1

∑
j=0

3 = 3n.

2. Prove that 25n > 6n using induction.

3. Show that
n−5

∑
j=−5

4 = 4(n+1).

4. Compute 1, 1+2, 1+2+3, and 1+2+
3 + 4. Draw these as dot diagrams (a
row of one dot, with a row of two dots
beneath, etc.). Use your data to conjec-
ture a simple formula for ∑n

i=1 i. Now
use induction to prove that your conjec-
tured formula is correct.

5. Using induction, prove that 10n< n2 for
n ≥ 11.

6. Prove that any set with n elements has
2n subsets, using induction. The proof
in Example 4.2.3 for the subsets of
{1, . . . ,k} may inspire you.

7. Show that
n

∑
k=0

3k =
3n+1 −1

2
.

8. Prove the other of DeMorgan’s laws
for sets: Let A1,A2, . . . ,An be n
sets. Prove that for any n ∈ N,
(A1 ∩A2 ∩·· ·∩An)=A1∪A2∪·· ·∪An.

9. Show by induction that Kn has n(n−1)
2

edges.

10. Prove that

3
n−1

∑
j=0

j( j−1) = n(n−1)(n−2).

11. Show that ((n + 1)!)n ≤ 2! · 4! ·
· · · · (2n)!.

12. Show using induction that for n ∈ N,
n

∑
i=1

1
i · (i+1)

=
n

n+1
.

13. Prove that n! < nn as long as n ≥ 2.
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14. We know that 1 = 1. It turns out that
2+ 3+ 4 = 1+ 8 and that 5+ 6+ 7+
8+ 9 = 8+ 27 and that 10+ 11+ 12+
13+14+15+16 = 27+64. Does this
generalize? Write out a general form for
the pattern this follows, and then either
give a counterexample or a proof.

15. Which two of the previous problems
give different ways of counting the
same quantity?

16. Use induction to prove the product prin-
ciple for n finite sets.

17. Show that every tree is bipartite using
induction. Why yes, that is one of the
Try This! problems—it’s worth writing
up carefully.

18. Prove that
n

∑
j=1

j3 =

(
n

∑
m=1

m

)2

.

19. Prove that
n

∑
j=1

j · j! = (n+1)!−1.

20. Show that the sum of the interior angles
of any n-gon (a polygon with n sides)
is π(n− 2). Notice that such polygons
may be wildly irregular and even non-
convex.

21. Write the equation 1+3+6+10+ · · ·+
n(n+1)

2 = n(n+1)(n+2)
6 using summation

notation. Prove that the equation is true
for all positive integers n by using in-
duction.

22. Suppose you have a 500-piece jigsaw
puzzle showing the Ànec of Catalonia.
To put it together, youmust fit the pieces
together. At any point, you either fit
a new piece onto an existing chunk of
puzzle or you fit two chunks together
along a puzzle seam. Prove that no mat-
ter what order the pieces are placed in,

there are exactly 499 piece/chunk fit-
tings to solve the puzzle.

23. Show that a 2n × 2n grid missing any
square can be tiled with L-shaped tiles,
as in the second problem of Section 4.6.

24. Draw three overlapping circles. Color
the resulting regions using two colors,
so that no two regions that share a curve
get the same color. (This is known as
2-coloring the regions. Grey and white
are popular colors for experimenters
who use pencil on white paper.) Now
draw two pairs of overlapping circles
and a single circle overlapping none of
the others; 2-color this configuration.
Using the understanding gained from
these experiments, prove that n circles
drawn in the plane can be 2-colored, us-
ing induction.

25. Challenge: Analyze the proof you gave
for the previous problem. Would it work
for n overlapping squares? Triangles?
What about for spheres in space?

26. Write the equation (1 ·3)+(2 ·4)+(3 ·
5)+ · · ·+n(n+2) = n(n+1)(2n+7)

6 using
summation notation. Now prove that
the equation is true for all natural num-
bers n ≥ 1 by using induction.

27. Let’s dig into Problem 22 about the
500-piece jigsaw puzzle. Suppose the
last step in solving the puzzle joined a
chunk of 133 pieces with a chunk of 367
pieces. How many piece/chunk fittings
did each of those two chunks require?
What can you prove about an n-piece
jigsaw puzzle? Do that proof.

28. Prove the second statement in Exam-
ple 1.4.6, namely that ∑n−1

i=1 i = n(n−1)
2 .

29. Prove that n(n+1)(n+2) is a multiple
of 3 for any natural n.
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30. Prove that n(n+1)(n+2) is a multiple
of 6 for any natural n.

31. Think through the following proof: We
will show that any simple graph where
every vertex has degree at least 1 is con-
nected. As a base case, we have two ver-
tices connected by a single edge. Now,
suppose that for n ≤ k, a simple graph
with n vertices, each of which has de-
gree at least 1, is connected. Consider
a simple graph G with k vertices, each
of which has degree at least 1. By the in-
ductive hypothesis, it is connected. Add
a vertex v toG so that we haveG-with-v,
which has k + 1 vertices; in order that
every vertex has degree at least 1, we
also have to add an edge to v. But an
edge in a simple graphmust connect two
vertices, so the other end of the edge
must be incident to a vertex of G. Thus,
G-with-v is connected. What’s wrong
with this proof? It can’t be right—
consider the graph in Figure 4.11.

Figure 4.11. A graph that has all ver-
tices of degree 1 but is not connected.

Figure 4.12. A 6-pin pinwheel graph.

32. Conjecture and prove by induction a
formula for the number of edges of an n-
pin pinwheel graph. (A 6-pin pinwheel
graph is pictured in Figure 4.12.)

33. Conjecture and prove by induction a
formula for the number of edges of an n-
bubble bubblepath graph. (A 4-bubble
bubblepath graph is pictured in Fig-
ure 4.13.) Note that both ends of the
bubblepath are always bubbles.

Figure 4.13. A 4-bubble bubblepath
graph.

34. Here is a sketch of a flawed proof: We
will prove by induction that every graph
with n vertices is bipartite. Our base
case is two vertices connected by a sin-
gle edge. For the inductive step, con-
sider a generic (k+1)-vertex graph and
remove a vertex. The inductive hypothe-
sis applies to this k-vertex graph, so the
result is bipartite. The deleted vertex is
in the other part from its neighbors, so
when we restore the vertex we see the
original (k + 1)-vertex graph is bipar-
tite. Where is the flaw?

35. Here is a sketch of a flawed proof: We
will prove by induction that every graph
with n vertices and at least one leaf is
bipartite. Our base case is two ver-
tices connected by a single edge. For
the inductive step, consider a generic
(k+1)-vertex graph with a leaf and re-
move that leaf. The inductive hypothe-
sis applies to this k-vertex graph, so the
result is bipartite. The deleted vertex is
in the other part from its only neighbor,
so when we restore the vertex we see the
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original (k+1)-vertex graph that had at
least one leaf is bipartite. Where is the
flaw?

36. Let’s play a pile game! Start with a
pile of n small teal stones. Divide this
into two (nonempty) piles of sizes j and
n − j. Write down the product of the
two pile sizes j(n − j). Now repeat
the process: at each step, divide a pile
with more than one small teal stone into
two smaller piles, and write down the
product of the two pile sizes. When all
that’s left is a whole bunch of one-stone
piles, add all the products you wrote
down. Prove that no matter how the
piles of stones were divided, the sum of
the products is ∑n−1

i=1 i.
37. Challenge: Here’s another pile game—

again, start with a pile of n small teal
stones. Again, divide this into two
(nonempty) piles of sizes j and n − j.
This time, write down the sum 1

j +
1

n− j .
Now repeat the process: at each step, di-
vide a pile with more than one small teal
stone into two smaller piles, and write
down the sum of the reciprocals of the
two pile sizes. When all that’s left is a

whole bunch of one-stone piles, take the
product of all the sums you wrote down.
Let the result be denoted by ps(n). Is
ps(n)well defined? If so, find a formula
for ps(n) and prove that it is correct. If
not, find two sequences of pile divisions
that give different results.

38. Draw n straight lines in the plane. Prove
that the resulting regions can be colored
using two colors, as in Figure 4.14, so
that no two regions that share a line seg-
ment get the same color.

Figure 4.14. A 2-coloring of plane re-
gions in teal and white.

39. Prove that 8n − 1 is a multiple of 7 for
all n ≥ 1.

40. Prove by induction that for m > 1,
K2,m \ e has 2m−1 edges.

4.13 Instructor Notes
I don’t know about your students, but mine always need a couple of class periods to deal
with induction—even when they’ve seen it before in other classes. Assign Sections 4.1
and 4.2 as reading before the first class. The first two examples were chosen because they
use scenarios with which students are familiar (counting, and one of DeMorgan’s laws) and
no new concepts (except, of course, for induction). Then begin with a general review of
the inductive process, take questions over it, and give a simple sample proof by induction
(doing one of the examples from the text is fine). If there is enough time, get students
started on the problems in Section 4.3.

If your students seem to be grasping induction well, leave about ten minutes of class to
introduce your favorite version of the Section 4.5 proof that all ducks are grey. (Otherwise,
leave this until the second class.) After this introduction, solicit student reaction. Here are
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some of the objections students will raise: “But I have a brown duck!” Response: You can’t
have a brown duck, because all ducks are grey. We just proved it. Objection: “There’s
some problem with the inductive step.” Response: Oh, really? What is it? Students may
claim that “it doesn’t work” or some such, but what they identify as flaws are usually
aspects of most induction proofs. That’s one reason this is such a great example—it draws
out the doubts students have about the structure of inductive proof. Often students will
ask you to repeat the inductive step for clarity. (If you are running out of time, you can let
them know that a version of this proof is in the book.)

Sometimes a student will notice the flaw in the proof quickly, that when n = 2 every-
thing falls apart and so an additional base case should have been checked. Students can
also correctly claim that the inductive step doesn’t work if we have k + 1 = 2, because
then there’s no intersection between the two sets of k ducks. This is true and is equivalent
to saying that the base case wasn’t good enough.

Then assign Section 4.4 as reinforcing and enhancing reading for the second class. (If
you presented the all ducks are grey proof at the end of the previous class, assign Sec-
tion 4.5 as well.) Start the second class by asking for questions over the reading; then, ei-
ther present your favorite version of the all ducks are grey proof or ask for student thoughts
on it, and try to get the students to dig deeply into the workings of the “proof.” Then have
them work on problems from Section 4.3 in groups; be sure to leave ten or so minutes
at the end of class to have students share their work publicly so everyone is on the same
page.

If at the start of the third class no student has found the flaw in the all ducks are grey
proof, walk the class through the proof again and point out the flaw. There will likely be
a question or two. Use the remaining time to have students continue work on problems
from Section 4.3 and, if there is time, work on problems from Section 4.6. Again, leave
some time at the end of class to discuss the problems students have done and point out
what they have learned from these problems. Assign Section 4.7 as reinforcing reading.

If you would like to foreshadow modular arithmetic while also placing students in
groups for Try This! work, here’s one way to do it: Number your students aloud and ask
them to remember their numbers. With n students, choose a number k so that k

n is close
to the group size you like best. Then define a ≡ b (mod k) and ask students to work with
their classmates who have equivalent-to-them-mod k numbers. (This was suggested by
David Cox.)

Proof clinic? Some instructors have found that their students benefited from devoting
a review session or class period to basic proof writing after completing Chapters 1–4.
Problems that might be useful for such an activity are given in Section TI.2. One way to
conduct a classwide proof clinic is to post statements to be proven around the classroom
and have students work in groups to write and share proofs publicly. (Excellent idea, Dana
Rowland!) While students will still be processing induction, at this point they should be
getting a better handle on other basic proof techniques so that they can be successful in
practicing them in the context of discrete mathematics problems over the remainder of the
term.
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Chapter 5

Algorithms with Ciphers

5.1 Introduction and Summary

An algorithm is simply a list of instructions for completing a task. Algorithms
form the core of computer science and are used regularly in all kinds of discrete
mathematics. They even function as a proof technique—an algorithm can give a
constructive proof of existence! The primary examples we will use in exploring
algorithms are simple ciphers. Ciphers are ways to encode messages so that they
are not easily read by people other than the intended recipient(s). In particular, we
will investigate the shift cipher and the Vigenère cipher. Shift ciphers can be bro-
ken by hand, and the Vigenère with not much more work, but they are essentially
the only ciphers that are understandable with the level of mathematics presented in
this chapter. (Another interesting cipher is described in Section 16.10, but you’ll
need to digest most of Chapter 16 to understand it.) All of these ciphers use mod-
ular arithmetic, so our goals in this chapter are to learn some modular arithmetic,
figure out how it is used in the shift and Vigenère ciphers, and understand what
algorithms are used to encipher and decipher messages using these ciphers.

5.2 Algorithms

Before discussing algorithms, we’d better define them.

Definition 5.2.1. An algorithm is a finite list of unambiguous instructions to be
performed on one or several inputs; some instructions may refer to others. If an
algorithm produces an output and ends after executing a finite number of instruc-
tions, then we say that the algorithm terminates.

One of the best-knownmathematical algorithms in the Unites States multiplies
two multidigit integers.

127
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Example 5.2.2. How to multiply two integers:

1. Label the two integers A and B with digits b1b2 . . .bn.

2. Multiply A by bn and name the resultCn.

3. Multiply A by bn−1 and write the result Cn−1 under Cn but shifted so the
last digit ofCn−1 is directly under the second-to-last digit ofCn.

4. Repeat this process until A has been multiplied by b1 and the resultC1 has
been written, shifted to the left, underC2.

5. Add the shifted results together to obtain D.

In Example 5.2.2, the inputs are A and B and the output is D. Because there are
finitely many digits in each of A,B and finitely many instructions in the algorithm,
the algorithm does terminate.

Our definition of algorithm differs from those in many texts; often, authors re-
quire an algorithm to terminate in order to truly be an algorithm. However, given
that one of the most common questions asked about a proposed algorithm is, “Does
that algorithm terminate?” we are convinced that in practice people consider non-
terminating sets of instructions to be algorithms (just poor ones). Besides, if ter-
mination was required by definition, the answer to this common question would
always be “yes” and no one would need to ask.

The hallmarks of an algorithm are clarity and precision. (Hey, those are hall-
marks of proofs, too! Hmm….) There are lots of lists of instructions one could
make that would not count as algorithms because they do not truly convey what is
to be done.

Example 5.2.3. Consider this laundry nonalgorithm:

1. Put clothes in washer.

2. Turn washer on.

The inputs to the procedure should be clothes, and the desired output is clean
clothes. The biggest problem here is that most washers have lots of settings, and
some machines will not start the wash cycle after simply being turned on. But ad-
ditionally, howmany clothes are put in the washer—what if you have more clothes
to wash than will fit? Then you can attempt to put them all in, but the washer may
not turn on. (Notice also that the procedure does not address detergent.)

Here is another problematic example.
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Example 5.2.4. How to (not necessarily) find the roots of a polynomial:

1. Set polynomial equal to zero.
2. Factor polynomial.
3. Read off the roots.

This list of instructions is ambiguous. What if the polynomial does not factor into
linear terms? Then you cannot read the roots from the linear factors, so what do
you do?

CVS corn removers (sublabel: for the removal of corns (yes, really)) have in-
structions for use. In summary, they say to put a salicylic-acid-impregnated sticky
disc on the corn and cover it with a bandage. The penultimate instruction is, “After
48 hours, remove disk.” However, what if you take a shower after 24 hours? Then
the bandage will become wet and likely fall off. Should you replace the bandage?
The instructions are not clear.

Then, there is a significant difference between clarity and precision for human
interpretation and for machine interpretation. Consider this real-life algorithm,
printed on bottles of Suave Naturals Shampoo.

To Use:

1. Massage through wet hair and scalp.
2. Rinse well.

A human knows what “Rinse well” means, but a computer would need a specific
criterion that terminates rinsing (as in, “Rinse until the sulfate sensor reads below
0.001”).

An algorithm is called correct if it does what it should do. The algorithm
given in Example 5.2.2 is correct for multiplication but not correct for addition or
division. There is a difference between an algorithm and its implementation (how
an algorithm is made into executable code)—an algorithm may be correct while
a poor implementation may not be. In practice, it is important to make sure both
algorithms and their implementations are correct for all possible inputs.

Example 5.2.5 (of how to eat and not eat potato chips). Consider the following
algorithm, with input a bag of potato chips.

1. Examine bag contents; if there are no chips, crumple bag and say “Curses!”
Otherwise, proceed to step 2.
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2. Pick up a chip.

3. Put it back in the bag.

4. If you are hungry, return to step 1. Otherwise, seal the bag.

This algorithm does not terminate when the executor starts hungry because no
eating occurs nor does the bag’s chip number change. We will try again.

1. Examine bag contents; if there are no chips, crumple bag and say “Curses!”
Otherwise, proceed to step 2.

2. Pick up a chip.

3. Throw it away.

4. If you are hungry, return to step 1. Otherwise, seal the bag.

This algorithm terminates but does not do what we wish it to do, as (again) no
eating occurs. We can do better.

1. Examine bag contents; if there are no chips, crumple bag and say “Curses!”
Otherwise, proceed to step 2.

2. Pick up a chip.

3. Eat it.

4. If you are hungry, return to step 1. Otherwise, seal the bag.

Ah, yes. This is the expected algorithm for eating potato chips; it terminates
and it is correct. Healthy eaters tend to use the following variant algorithm.

1. Examine bag contents; if there are no kale chips, crumple bag and say
“Cruciferous!” Otherwise, proceed to step 2.

2. Pick up a kale chip.

3. Eat it.

4. If you are hungry, return to step 1. Otherwise, seal the bag.

5.2.1 Conditionals and Loops

A conditional is a statement within an algorithm that places conditions on an in-
struction. Example 5.2.5 uses a conditional in each algorithm. Here are three
common styles of conditional:
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if-then-else, which usually takes the form “if (conditions), then (action set
1), else (action set 2)” and is read/understood as “If (conditions) are met,
then do (action set 1); otherwise, if (conditions) are not met, then do (action
set 2)”;

until, which takes the form “do (action set) until (conditions)” or “until (con-
ditions), (action set)” and is read/understood as “Do (action set) until (con-
ditions) are met and then go to the next instruction”;

while, which takes the form “do (action set) while (conditions)” or “while
(conditions), (action set)” and is read/understood as “Do (action set) while
(conditions) hold, and when (conditions) are no longer met, go to the next
instruction.”

The syntax used for each conditional varies from computer language to computer
language, so we will simply use them English-wise here. Notice that algorithm
conditionals extend the idea of implication (the logical conditional, see page 76)
by giving the additional information of what to do when the if conditions are not
met.
Example 5.2.6. Most medicines are labeled with conditionals as part of their al-
gorithms for usage. They are not stated as conditionals, but that’s what they are.
Here’s a sample dosage table:

for adults ages 12 and over take 2 tablets
for children ages 6 to 12 take 1 tablet

This can be written as, “If you are age 12 or over, take 2 tablets; otherwise, if you
are between ages 6 and 12, take 1 tablet; otherwise, seek the advice of a physician.”
In fact, this is a nested conditional, with one if-then-else within another.

Example 5.2.7. This algorithm sorts a single marble using conditionals.

1. Pick up a marble.
2. If it is red, place it in the left-hand pile. If it is green, place it in the
right-hand pile. If it is neither red nor green, discard it.

Notice that the second instruction is one big ol’ nested conditional, of the form if
(red), then (left), else (if (green), then (right), else (if (neither) then (discard))).

That’s a pretty useless algorithm, though. Who wants to sort a single marble?
It would be much better to have an algorithm that sorts a pile of marbles. For this
we need a loop, which gives an instruction to perform some set of actions more
than once.
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1. first instruction

2. second instruction

3. third instruction

...

m. if (something), then go to step 3; else, continue.

m+1. another instruction

Figure 5.1. A fake algorithm containing a loop.

Example 5.2.8. This algorithm sorts a bag of marbles using conditionals in a loop.

1. Pick up a marble.
2. If it is red, place it in the left-hand pile. If it is green, place it in the
right-hand pile. If it is neither red nor green, discard it.

3. If marbles remain in the bag, go to step 1.

The third instruction has an implied “else” of being done with the task.

As you can see in Example 5.2.8, a loop earns its name because the instructions
repeat, forming a string of instructions into a loop of instructions (see Figure 5.1).
The process of repeating instructions is known as iteration. There is a danger
inherent in loops: sometimes they go ’round and ’round forever, and this prevents
an algorithm from terminating. So, it is important to consider how a loop can stop
looping. Generally, this is accomplished by including a conditional in the loop
that provides for an exit or by specifying the number of times the loop should be
executed. Frequently, we wish to carry information from one iteration into the next
iteration, such as the number of times a loop has been executed so far or a partial
calculation. The usual way to do this is to set an iterating variable (e.g., k) with an
initial value and then change the value of the variable during an iteration, e.g., by
saying, “replace k with k+1.” This means we should think of the variable k as a
container that holds a value; the container is labeled “k,” and when we change the
value of the variable we stick the new value (k+1) in the container but leave the
label on the container as it was (“k”).

Example 5.2.9. We give three different algorithms that show how iterating vari-
ables are used.
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1. Let k = 1 and let value = 0.
2. Replace k with k+1.
3. If k = 10, output value; otherwise, go to step 2.

In this algorithm, the computer counts to ten in its head and just responds “0.”

1. Let k = 1 and let value = 0.
2. Replace k with k+1.
3. Output value and go to step 2.

This is a terrible algorithm. It does not terminate, so the computer counts to
itself indefinitely and responds “0 0 0 0 0 0 ….”

1. Let k = 1.
2. Output k.
3. Replace k with k+1.
4. If k = 10, output k, and stop; otherwise, go to step 2.

At least this algorithm is slightly more interesting; it counts to ten out loud.

Example 5.2.10 (of an algorithm including conditionals and iteration). Let us sup-
pose that we have a large supply of Jelly Babies but a limited supply of aliens (n
aliens, to be precise).

1. Let alien= 1.
2. Face the alienth alien.
3. Pick up a Jelly Baby. Say, “Would you like a Jelly Baby?” to the alien in
front of you.

4. If the alien responds positively, then hand it the Jelly Baby; otherwise, if
the alien responds negatively, then shrug and eat the Jelly Baby yourself;
otherwise, if the alien is impassive, then shake your head and continue.

5. If alien= n, return to your companions. Otherwise, continue.
6. Replace alien with alien+1.
7. Go to step 2.

This algorithm includes a nested conditional; step 4 has the form if A, then B, else
(if C, then D, else (if E, then F)). Note that the innermost if-then does not need
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an “else” because the only possibility left at that point is impassivity. (Well, okay,
there might be some trouble in deciding whether an alien’s response is positive,
negative, or impassive, but those really are the only options.)

This algorithm also includes iteration. Steps 1, 5, and 6 collectively form a
loop, by giving an initial value (step 1), iterating (step 6), and giving a condition
on which we exit the loop (step 5).

The following examples are of practical mathematical interest, Example 5.2.11
because it is used by many computers and Example 5.2.12 because it has spawned
an area of mathematics research.

Example 5.2.11 (of Russian-style multiplication). Believe it or not, this algorithm
multiplies natural numbers! The input numbers areA andB. Recall fromChapter 3
that the floor function ⌊x⌋ returns the greatest integer less than or equal to x.

1. Let Astep = A and let Bstep = B.
2. Start a column by writing 0 at the top.
3. If Astep is odd, then write Bstep in the column; otherwise, continue.
4. Replace Astep with ⌊Astep

2 ⌋.
5. Replace Bstep with Bstep+Bstep.
6. If Astep = 1, then write Bstep in the column and go to step 7; otherwise,
go to step 3.

7. Sum the column.

We explore how this algorithm produces the desired result (ordinary multipli-
cation) in Problem 24 of Section 5.11.

Example 5.2.12 (the 3n+1 algorithm). Check this algorithm out. The input is some
n ∈ N.

1. If n is odd, replace n with 3n+1; otherwise, replace n with n/2.
2. If n = 1, output n; otherwise, go to step 1.

The Collatz conjecture states that the 3n+ 1 algorithm always terminates. How-
ever, as you might guess by the use of the word “conjecture,” the truth of this
statement is yet unknown. (It has been verified for all n ≤ 1018.) We explore the
behavior of the 3n+1 algorithm in the Check Yourself problems at the end of this
section.
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5.2.2 Efficiency

An important issue, but one that we will not discuss in any depth here, is efficiency
of algorithms. (For more detail, see Chapter 17.) In a practical sense, the amount
of time an algorithm takes to run and the resources required to run it depend on the
particular implementation of that algorithm. Thus, in mathematics and theoretical
computer science, the efficiency of an algorithm is determined from its abstract
description rather than from any implementation. For simple algorithms, it can be
intuited whether an algorithm is efficient or inefficient.

Example 5.2.13. Both of these algorithms have as input n ∈N, and each performs
the same task. Which algorithm is more efficient? The first algorithm …

1. Let k = 1.

2. Let sum = 0.

3. Replace the value of sum with sum+ k.

4. If k = n, output sum; otherwise, replace the value of k with k+1.

5. Go to step 3.

The second algorithm …

1. Let k = 1.

2. Let sum = 0.

3. Replace the value of sum with sum+ k.

4. If k < 2n, replace the value of k with k+ 1 and go to step 3; otherwise,
continue to step 5.

5. Let secondsum = 0.

6. Let m = n+1.

7. Replace the value of secondsum with secondsum+m.

8. If m < 2n, replace the value of m with m+1 and go to step 7; otherwise,
continue to step 9.

9. Output sum− secondsum.

Each algorithm computes ∑n
j=1 j; the first does so directly, whereas the second

sums the first 2n natural numbers and subtracts ∑2n
j=n+1 j. The second algorithm

does additional and unnecessary work, so the first algorithm is more efficient.
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5.2.3 Algorithms and Existence Proofs

Back in Section 1.5 we described existence proofs—proofs that show something
exists—in the context of the generalized pigeonhole principle. These were non-
constructive existence proofs because they showed that items existed while not
producing any examples of the desired items. Algorithms have outputs, and if the
output of an algorithm is an object, then that algorithm functions as a construc-
tive proof that the desired object exists; it gives us instructions for how to find or
construct the object.

Example 5.2.14. We will now prove that there are n2 functions from Z2 →
{1, . . . ,n}. The following algorithm provides a list of these functions.

1. Let k = ℓ= m = 1.

2. Write (m) f (0) = k, f (1) = ℓ on a list.

3. If ℓ ≥ n, then continue; otherwise, replace ℓ with ℓ+ 1, replace m with
m+1, and go to step 2.

4. If k ≥ n, then stop; otherwise, let ℓ = 1, replace k with k+ 1, replace m
with m+1, and go to step 2.

Notice that the algorithm does not create any maps that are not well defined, so
each item in the generated list is a function. It also exhausts all possibilities for the
image of 0 and for the image of 1, so every function from Z2 → {1, . . . ,n} is on
the list. Moreover, because the algorithm has a nested loop in which each variable
(k, ℓ) ranges from 1 to n, the list contains n2 items. This completes the proof.

We will use algorithms to create constructive existence proofs in Chapters 10
and 12.

Check Yourself

There are only three of these, so please do them all.

1. Try performing the 3n+1 algorithm given in Example 5.2.12 for n= 3, n= 4, n= 7,
n= 8, and n= 13. Howmany iterations are required for each of these numbers? Do
any of the sequences generated appear within any of the others (and if so, which)?

2. Translate the instruction replace t with t/2 while t is even into plain English.



5.3. Modular Arithmetic (and Equivalence Relations) 137

3. What does this list of instructions do? Comment on whether it forms an algorithm,
and if so, whether it terminates and/or is correct.

1. Let n = 2.
2. Replace n with n+4.
3. If n is even, go to step 2; otherwise, continue.
4. Output n.

5.3 Modular Arithmetic (and Equivalence Relations)

Modular arithmetic is essential for discrete mathematics, as you will soon see.

Definition 5.3.1. Let a,b ∈ Z and n ∈ N. The expression a ≡ b (mod n) means
that when a is divided by n, it leaves the same remainder as when b is divided by
n. This condition is equivalent to a− b having remainder zero when divided by
n. If (a−b)/n ∈ Z, then we say that n divides (a−b) and write this as n|(a−b).
Similarly, n|(a−b) also means (a−b) = kn for some k ∈ Z. (This last version is
the most useful in writing proofs.) We verbalize a ≡ b (mod n) by saying that a
and b are congruent modulo n or by saying that a is congruent to b modulo n. The
set of different remainders obtainable by dividing integers by n is called the set of
integers modulo n.

Notice the distinction between the similar symbols / and |; the former means
“divided by” and indicates an action, whereas the latter means “divides” and gives
a description of an expression. That is, / is used when the result of division is
wanted, and | is used to give information about the expression following it.

Example 5.3.2 (of some modular arithmetic calculations). One of our favorite sets
isZ2 = {0,1}. This is the integers modulo 2 (and sowe unconsciously usemodular
arithmetic all the time in discrete mathematics!). Every even number is congruent
to 0 (mod 2), and every odd number is congruent to 1 (mod 2). For example,
91,305,743,890 ≡ 0 (mod 2), 4,589 ≡ 1 (mod 2), and 547,392 ≡ 0 (mod 2).
In conversation, we might say, “What’s 4,378 (mod 2)?” (pronounced “What’s
4,378 mod 2?”), with the answer, “Oh, it’s zero.”

In our daily lives, we usually compute time modulo 12. For example, if at
10 a.m. a friend says, “See you at 2 p.m.,” you know that’s four hours away because
2−10 =−8 ≡ 4 (mod 12).
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Figure 5.2. Modular arithmetic envisioned as arithmetic on a circle.

You can think of modular arithmetic as regular arithmetic done on a circle with
n marks instead of as done on an infinite number line. Counting and adding are
done clockwise, and subtracting is done by counting counter-clockwise. This is
directly analogous to our usage of analog clocks, as shown in Figure 5.2.

We are able to operate on both sides of the ≡ sign in much (but not quite)
the same way we operate on both sides of an equals sign. For example, we know
that if a = b then b = a, and if additionally b = c then a = c. Similarly, if a ≡ b
(mod n), then b ≡ a (mod n); and, if a ≡ b (mod n) and b ≡ c (mod n), then
a ≡ c (mod n). (These are called the symmetric and transitive properties, respec-
tively.) Witness the following result.

Theorem 5.3.3. Let a,b,c ∈ Z and n ∈ N. If a ≡ b (mod n), then ac ≡ bc
(mod n).

Proof: Because a ≡ b (mod n), we know that n|(a−b). This means that (a−b)
= nk for some k ∈ Z. We multiply through by c to get (a− b)c = (ac− bc) =
nkc. Renaming kc as q, we see that (ac− bc) = nq for some q ∈ Z. Therefore,
n|(ac−bc) and ac ≡ bc (mod n). �

Example 5.3.4 (of modular arithmetic properties exhibited on actual integers).
20 ≡ 12 (mod 8) and also 12 ≡ 20 (mod 8). Each of 20 and 12 has a remain-
der of 4 when divided by 8. 20 ≡ 12 (mod 8) and 12 ≡ 4 (mod 8), so 20 ≡
4 (mod 8). 12 ≡ 4 (mod 8), so 3 ·12 ≡ 3 ·4 (mod 8) or 36 ≡ 12 (mod 8); both
36 and 12 reduce to 4 (mod 8) as 36 = 4 ·8+4 and 12 = 8+4. 5 ≡ 11 (mod 3),
so 4 ·5 ≡ 4 ·11 (mod 3), or 20 ≡ 44 (mod 3) as 20 = 6 ·3+2 and 44 = 14 ·3+2.
22 ≡ 4 (mod 6) because 22 has a remainder of 4 when divided by 6.
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Likewise, 40 ≡ 4 (mod 6), and 40 ≡ 22 (mod 6), … and 40 ≡ 745,408 (mod 6)
as well.

Theorem 5.3.3 lets us multiply at will. In contrast, the converse is not true—
division doesn’t always work.

Example 5.3.5. 18 ≡ 24 (mod 6), so 9 · 2 ≡ 12 · 2 (mod 6). However, 9 ̸≡ 12
(mod 6) because 9 ≡ 3 (mod 6) but 12 ≡ 0 (mod 6).
36 ≡ 24 (mod 12), but while 4 ·9 ≡ 4 ·6 (mod 12), notice that 9 ̸≡ 6 (mod 12).
(For the reader interested in more modular arithmetic, note that 9 ≡ 6 (mod 3) . . .
what might be going on there?)

On the other hand, there are certain conditions under which division is possible.
We will explore this in Problem 19 of Section 5.11.

Congruence modulo n is defined on Z; it is a specific example of a general
idea.

Definition 5.3.6. An equivalence relation defined on a set S must satisfy

the symmetric property (if s1 ∼ s2, then s2 ∼ s1),

the reflexive property (s ∼ s), and

the transitive property (if s1 ∼ s2 and s2 ∼ s3, then s1 ∼ s3).

Here, the symbol ∼ acts as the verb “is equivalent to,” just as ≡ represented
“is congruent to.” We noted just before Theorem 5.3.3 that congruence modulo n
is symmetric and transitive; of course a ≡ a (mod n), so congruence modulo n is
also reflexive. Therefore, it is an equivalence relation.

Let us develop this idea further using the most discrete of all sets, Z2, also
known as the integers modulo 2. Because all odd integers are congruent to 1
(mod 2), we can write the odd integers as the set {1+2k | k ∈Z}. We will refer to
this set as [1]. Similarly, the even integers can be written as {0+2k | k ∈ Z}= [0].
The notation [a] means “all the elements equivalent to a using some equivalence
relation,” so inZ2 we could also refer to [1] as [3] (though this would be less evoca-
tive). In set notation, [a] = {s ∈ S | s ∼ a}, and hopefully when you see [a] you
will know from context which equivalence relation is meant. The sets [a] and [b]
are called equivalence classes.

For example, we could consider the equivalence relation of people who have
the same favorite Doctor. (Who?) Certainly someone has one favorite doctor, and
so is equivalent to hirself (reflexive); if I have the same favorite Doctor as you, then
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you have the same favorite Doctor as me (symmetric); if I have the same favorite
Doctor as you, and you have the same favorite Doctor as Madame Vastra, then I
have the same favorite Doctor as Madame Vastra (transitive). There are currently
13 Doctors, so 14 equivalence classes (we add one for people who dislike all of
the Doctors). Here is another example.

Example 5.3.7. The integers modulo 4, or Z4, can be represented as follows:

{. . . ,−8,−4,0,4,8, . . .}= {0+4k | k ∈ Z}= {z ∈ Z | z ≡ 0 (mod 4)}
= [0] = [12].

{. . . ,−7,−3,1,5,9, . . .}= {1+4k | k ∈ Z}= {z ∈ Z | z ≡ 1 (mod 4)}
= [1] = [5].

{. . . ,−6,−2,2,6,10, . . .}= {2+4k | k ∈ Z}= {z ∈ Z | z ≡ 2 (mod 4)}
= [2] = [18].

{. . . ,−5,−1,3,7,11, . . .}= {3+4k | k ∈ Z}= {z ∈ Z | z ≡ 3 (mod 4)}
= [3] = [−9].

An equivalence relation splits a set up into distinct chunks. We have seen that
Z = [1]∪ [0] because every number is odd or even. Additionally, [1]∩ [0] = /0.
These are the two criteria required for…

Definition 5.3.8. A partition of a set A is a set of subsets A1,A2, . . . ,An such that
A1 ∪A2 ∪·· ·∪An = A and Ai ∩A j = /0 for all i ̸= j.

Figure 5.3 shows some sets of subsets that are and are not partitions. No-
tice that a set of subsets can fail to be a partition in two different ways: some
subsets may overlap, or the union of the subsets may not be the entire set. In Ex-
ample 5.3.7, the four equivalence classes [0], [1], [2], [3] partition the set Z, as do
the four equivalence classes [12], [5], [18], [−9] and the four equivalence classes
[563560], [867157], [−95814], [459551].

More generally, we have…

Theorem 5.3.9. If a set S has an equivalence relation∼, then the equivalence
classes of ∼ partition S.

Proof: In accordance with the definition, we must show that
∪

s∈S[s] = S and that
for s1,s2 ∈ S, we have [s1] = [s2] xor [s1]∩ [s2] = /0. First things first: for ev-
ery s ∈ S, we can examine [s], which certainly contains the element s. Thus,
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Figure 5.3. A set (upper left), with two nonpartitions (upper right and lower left) and a
partition (lower right).

S =
∪

s∈S s ⊂
∪

s∈S[s]. Also, [s] only contains elements from S, so
∪

s∈S[s] ⊂ S.
Therefore,

∪
s∈S[s] = S. Now notice that [s1] = [s2] if and only if s1 ∼ s2, because

that is how [s1] and [s2] are defined; they are each composed from elements that
are equivalent under ∼. We can conclude that if [s1] ̸= [s2], then s1 ̸∼ s2. In this
case, let’s look at [s1]∩ [s2]. We hope it has no elements. But, suppose it does
have some element s3. (Notice: proof by contradiction coming up!) Then s3 ∈ [s1]
and s3 ∈ [s2], so s3 ∼ s1 and s3 ∼ s2. By the symmetric property of equivalence
relations, we also know s1 ∼ s3, and that allows us to apply the transitive property
of equivalence relations to see that s1 ∼ s2. Hey! That contradicts our assumption
that s1 ̸∼ s2! Therefore, [s1]∩ [s2] = /0 and we are done. �

We can do arithmetic on equivalence classes modulo n in exactly the way we
can do arithmetic on integers modulo n.

Example 5.3.10. Suppose a ≡ b (mod n) and c ≡ d (mod n). By substituting ap-
propriately in each expression, a+ c ≡ b+ c ≡ b+ d (mod n). We could restate
the situation: Suppose [a] = [b] and [c] = [d]. Then it is true that [a+c] = [b+c] =
[b+d]. A more concrete version of this same example is that 2 ≡ 5 (mod 3) and
11 ≡ 8 (mod 3), so 2+11 ≡ 5+11 ≡ 5+8 ≡ 1 (mod 3). We could also say that
modulo 3, [2] = [5] and [11] = [8], so [2+11] = [5+11] = [5+8] = [1].

What’s interesting about the arithmetic shown in Example 5.3.10 is that equiv-
alence classes are sets, but in this context they act like numbers. It turns out that
[a] + [b] = [a+ b] and also that [a] · [b] = [ab]. The proofs of these facts require
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mathematical sophistication of a level beyond this text. For more mathematics of
this sort, please investigate your nearest abstract algebra course. Most of the time
in this text, we will work using≡ (mod n) notation rather than the [a] notation of
equivalence classes in modular arithmetic.

Check Yourself

These problems take very little time. So do them!

1. True or false:

(a) 2 ≡ 10 (mod 12).
(b) 2 ≡−10 (mod 12).
(c) 22 ≡ 10 (mod 12).
(d) −2 ≡ 10 (mod 12).

2. What is the set [2] if we are working modulo 3?
3. Show that = is an equivalence relation.
4. Is {1,2},{2,3},{3,4},{4,5,6} a partition of {1,2,3,4,5,6}?
5. Create a partition of {1,4,2,7,9,14,89,246}.
6. Challenge: We know that = has the property that if a = b, then ac = bc; Theo-

rem 5.3.3 says that this property also holds for≡ (mod n). Think of another prop-
erty that holds for = in ordinary arithmetic, and test to see whether that property
holds for ≡ (mod n).

5.4 Cryptography: Some Ciphers

The field of cryptography is concerned with making communication secure from
anyone other than the sender and the recipient. We will study some elementary
methods of encryption (the process of taking messages and converting them to
forms that are not directly readable) and decryption (converting the received text
to readable messages) that use modular arithmetic. These substitution ciphers en-
crypt via letter-by-letter substitutions. We refer to a readable message as plaintext,
a message encrypted with a known cipher as ciphertext, and a communication we
cannot read as wacktext. (Say it three or four times: wacktext, wacktext, wacktext,
wacktext.)

To use modular arithmetic in encryption/decryption, we first need to convert
messages into numbers. For the moment, we will ignore case (capital vs. small
letters) and punctuation. The simplest way to do the conversion is as follows.
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Letter a b c d e f g h i j k l m
Number 0 1 2 3 4 5 6 7 8 9 10 11 12
Letter n o p q r s t u v w x y z
Number 13 14 15 16 17 18 19 20 21 22 23 24 25

Using this translation, “duck” becomes 3 20 2 10.
Now, you might think it would be simpler to convert a to 1, b to 2, and so on

to z becoming 26. However, that is problematic for use with modular arithmetic,
so it turns out to be less simple. (We will see why shortly.)

5.4.1 Shift Ciphers

A shift cipher encrypts by shifting each number by some fixed amount. The classi-
cal example (literally!) of a shift cipher is the Caesar cipher; it uses shift 1. (Well,
rumor has it that Augustus Caesar used a shift of 1. Apparently Julius Caesar
preferred a shift of 3, again according to internet rumor.)

Example 5.4.1 (of Caesar ciphers and ducks). The message duck converts to 3 20
2 10. We shift each number by 1, obtaining (3+ 1) (20+ 1) (2+ 1) (10+ 1), or
4 21 3 11. This converts to the encrypted message evdl. Now, suppose we receive
the message ifo. To decrypt this, we first convert it to 8 5 14; then, we shift each
number by−1, obtaining (8−1) (5−1) (14−1), or 7 4 13. This, in turn, converts
to hen.

Now we will see why modular arithmetic is necessary by considering the mes-
sage zebra; it converts to 25 4 1 17 0. This then encrypts to 26 5 2 18 1. Wait
a minute! How do we convert this back to letters? We have nothing in our table
that corresponds to the number 26… so we must do our shifting modulo 26. In
other words, we compute (25+1 (mod 26)) (4+1 (mod 26)) (1+1 (mod 26))
(17+1 (mod 26)) (0+1 (mod 26)) so that our ciphertext is 0 5 2 18 1, or afcsb.

Similarly, on receipt of the ciphertext tobaaz, we convert to 19 14 1 0 0 25 and
then shift by −1 (mod 26) as follows: (19 − 1 (mod 26)) (14 − 1 (mod 26))
(1 − 1 (mod 26)) (0 − 1 (mod 26)) (0 − 1 (mod 26)) (25 − 1 (mod 26)) be-
comes 18 13 0 −1 −1 24. Uh-oh. We have no letter that corresponds to −1.
However, because the underlying set is Z26, we know that every integer is in an
equivalence class that can be represented by a number from 0 to 25. We note that
−1 ≡ 25 (mod 26), and now our message is 18 13 0 25 25 24, or snazzy.

Example 5.4.1 shows why the use of modular arithmetic prohibits converting
a to 1, b to 2, and so on; in order to have 26 letters, we need to operate in Z26 by
computing modulo 26, and one of those numbers is certainly 0.
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A different example of a shift cipher is ROT13, popularized with the advent
of Usenet (this is a pre-World Wide Web system, kiddos). It was beloved for
sending encrypted punchlines to jokes, and the favored cipher because encryption
and decryption are the same operation: add 13 (mod 26). (Notice that −13 ≡ 13
(mod 26).)

Example 5.4.2 (of ROT13 in use). Question: Why did the duck cross the road? An-
swer: Gb yrnq ure qhpxyvatf gb gur Choyvp Tneqra.

First we convert the ciphertext to numerals, to wit: 6 1 24 17 13 16 20 17 4
16 7 15 23 24 21 0 19 5 6 1 6 20 17 2 7 14 24 21 15 19 13 4 16 17 0. Then we
decrypt by adding 13 (mod 26) to each letter. Here are the first few: 6+13 ≡ 19
(mod 26);1+ 13 ≡ 14 (mod 26);24+ 13 ≡ 37 ≡ 11 (mod 26);17+ 13 ≡ 30 ≡
4 (mod 26). (Conveniently, this also corresponds to simply switching numerical
rows in the number/letter conversion table.) In full, the decrypted text is 19 14 11
4 0 3 7 4 17 3 20 2 10 11 8 13 6 18 19 14 19 7 4 15 20 1 11 8 2 6 0 17 3 4 13.

You are invited to convert this to appropriate letters in order to read the riddle’s
answer.

Shift ciphers are not very secure because a frequency analysis (determining
which letters are used most frequently) allows a person who has intercepted the
ciphertext to guess that it is a shift cipher and by how many positions the text is
shifted.

5.4.2 The Vigenère Cipher

Slightly more secure is the Vigenère cipher. Instead of shifting each letter by a
fixed amount, the Vigenère cipher shifts each letter by an amount determined by
alignment with a key word.

Example 5.4.3. We will encrypt the message cake is delicious. As usual, we first
convert the message to numbers: 2 0 10 4 8 18 3 4 11 8 2 8 14 20 18.

Let the key word be duck, or 3 20 2 10. We repeat the key word over the
length of the message, so that the first letter of the message will be shifted by 3,
the second letter shifted by 20, the third letter shifted by 2, the fourth letter shifted
by 10, the fifth letter shifted by 3, the sixth letter shifted by 20, and so forth and so
on. Writing the key in a row below the plaintext message, we have

2 0 10 4 8 18 3 4 11 8 2 8 14 20 18
3 20 2 10 3 20 2 10 3 20 2 10 3 20 2
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Now, we add modulo 26 to obtain

5 20 12 14 11 12 5 14 14 2 4 18 17 14 20,

or fumo lm foocesrou.
Now, suppose we have received the message cyev kj xayx vir voq, and we know

that the key word is quack. We first convert to numbers and lay out the key word
as we did before…

2 24 4 21 10 9 23 0 24 23 21 8 17 21 14 16
16 20 0 2 10 16 20 0 2 10 16 20 0 2 10 16

… but this time we subtract the repeated key word from the message, working
number by number and modulo 26. This gives us

12 4 4 19 0 19 3 0 22 13 5 14 17 19 4 0,

and you can convert this to letters to see the secret message.

While the repeated use of a key word is what most people mean when referring
to a Vigenère cipher, it is not exactly what Blaise de Vigenère (1523–1596) himself
proposed. What Vigenère did was start encrypting with a single copy of a key
word, and then, instead of repeating the key word, he started using the letters of
the plaintext itself, or of the ciphertext as it was generated from the key word (and
then from itself). This sounds as though it would produce undecryptable ciphertext
(i.e., wacktext), but not so: one can decrypt as many letters as are in the key word,
and thereby obtain the next “key” letters to use in the decryption.

Example 5.4.4. This time, we will encrypt the message cake is delicious, again
using the key word duck, but using the original version of the Vigenère cipher.
Example 5.4.3 gives the conversion of the message and key word to numbers:

2 0 10 4 8 18 3 4 11 8 2 8 14 20 18
3 20 2 10 2 0 10 4 8 18 3 4 11 8 2

Notice that the second row of numbers begins with the converted duck and is
followed by the text of the message. We then add modulo 26 to obtain

5 20 12 14 10 18 13 8 19 0 5 12 25 2 20,

or fumo ks nitafmzcu.
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Decrypting is slightly more complicated in this instance. Suppose we have
been sent the message watk ygawums vxiznt bcddgg bus lal vvl and that we know
the key word is egg. We will just decrypt the first three words, and we will start
by converting them to numbers:

22 0 19 10 24 6 0 22 20 12 18 21 23 8 25 13 19

Now, we write egg (as 4 6 6) underneath the first three numbers because it is
the key word. But that’s all we can do—the remainder of the “key word” has to
come from the message itself.

22 0 19 10 24 6 0 22 20 12 18 21 23 8 25 13 19
4 6 6

We subtract the key word numbers from the message, modulo 26, to obtain

22 0 19 10 24 6 0 22 20 12 18 21 23 8 25 13 19
4 6 6
18 20 13

Hmm… 18 20 13 is sun. In any case, we write our three plaintext numbers under
the next three ciphertext numbers:

22 0 19 10 24 6 0 22 20 12 18 21 23 8 25 13 19
4 6 6 18 20 13
18 20 13

Then we subtract modulo 26 to obtain three more plaintext numbers,

22 0 19 10 24 6 0 22 20 12 18 21 23 8 25 13 19
4 6 6 18 20 13
18 20 13 18 4 19

which convert to set. Hmm. We continue in this fashion, writing our new plaintext
numbers underneath the next ciphertext numbers

22 0 19 10 24 6 0 22 20 12 18 21 23 8 25 13 19
4 6 6 18 20 13 18 4 19
18 20 13 18 4 19

and subtracting modulo 26 to obtain more plaintext numbers.
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22 0 19 10 24 6 0 22 20 12 18 21 23 8 25 13 19
4 6 6 18 20 13 18 4 19
18 20 13 18 4 19 8 18 1

We leave the remainder of the translation to you.

Back in the days when people wrote messages by hand (when was that? Oh,
that still happened in the 1980s, but here we’re talking about the 1550s), a shift
table was devised to make manual Vigenère encryption/decryption faster. The top
row of this shift table is the usual alphabet, as is the left column. The second row
and column are shifted-by-one copies of the alphabet, beginning with B and end-
ing with A. The third row and column are shifted-by-two copies of the alphabet,
beginning with C and ending with B. The remainder of the shift table is filled in
the same fashion. This way, when encrypting manually one can choose a plain-
text letter from the top row and a key word letter from the left column; the letter
underneath the plaintext letter and in the row selected by the key word letter is the
ciphertext letter. To decrypt manually, one would find the row corresponding to
the key word letter and find the ciphertext letter in that row; then, one would zip
upwards to find the corresponding plaintext letter in the top row.

5.4.3 Decryption and the Real World

Substitution ciphers are only the tip of the iceberg when it comes to encryption, and
amessage encrypted using a substitution cipher can easily be read by someone who
intercepts it. It is easy to obfuscate by breaking a message into blocks of uniform
length and leaving the ciphertext in numerical form. Also, using an alphabet of a
length other than 26 (by allowing some punctuation or paying attention to case)
makes decryption more difficult. And in reality there is an additional layer of
security beyond any individual cipher—there are so many encryption methods that
only an expert can recognize which type has been used on a given message. Still,
no method described here is a match for an even mildly experienced computer
hacker.

The sciences of creating and cracking encryption schemes are incredibly im-
portant in commerce, finance, and national security. As a result, there are aca-
demic, governmental, and industrial research jobs specifically tasked with the
hardware, software, and theory of cryptography. On the creation side, unbreak-
able encryption is needed for banks to communicate internally and externally so
that account transactions cannot be altered or fabricated, and for businesses to
accept credit card information over the internet without leaving customers vulner-
able to identity theft (a commonmethod for this is described in Section 16.10), and
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for governments to communicate with intelligence personnel (spies!) in the field.
The flip side of that last need is the desire of governments to crack encryption
schemes used by terrorists so that their nefarious plans can be uncovered. During
times of war, it has been (and is, and will be) crucial to intercept and understand
enemy communications about troop movements and bombing targets. The twin
necessities of inventing and breaking new methods of encryption will always be
in tension.

Check Yourself

Do a representative sampling of these problems to be sure you understand how to use the
various ciphers presented in this section.

1. Encrypt the message lemon drops using a Caesar cipher.

2. Decrypt the message pvaanzba ohaf using ROT13.

3. Encrypt the message quilt blocks using a shift cipher with shift 7.

4. Decrypt the message bdpja lxxtrnb, which was encrypted using a shift of 9.

5. Encrypt the message lions tigers and bears oh my using a Vigenère cipher and key
word zoo.

6. Decrypt the message wwrfw aiw wowl, which was encrypted with a standard Vi-
genère cipher using key word ears.

5.5 Try This! Encryptoequivalent Modulalgorithmic
Problems

Please have fun with these problems.
1. Consider the symbols ab . . .xyzAB . . .XYZ.

(a) Let α ∼1 β if the symbols α and β represent the same letter. Is ∼1 an
equivalence relation? If so, what are the equivalence classes?

(b) Let α ∼2 β if the symbols α and β are the same case (upper or lower).
Is∼2 an equivalence relation? If so, what are the equivalence classes?

(c) Now assign a 7→ 0, b 7→ 1, …, z 7→ 25, A 7→ 26, …, Z 7→ 51. Notice
this converts our symbols to elements of Z52. If we apply ∼1, what
are the corresponding equivalence classes in Z52? What happens if we
instead apply ∼2?

(d) Challenge: Examine the equivalence classes of Z52 under each of ∼1
and ∼2. Do the classes themselves correspond to other familiar sets?
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2. Before proceeding, review the formal definition of congruence modulo n.

(a) Prove (using the definition of congruence mod n) that if a≡ b (mod n)
and c ≡ d (mod n), then ac ≡ bd (mod n).

(b) Prove that if a ≡ b (mod n), then ak ≡ bk (mod n).
(c) Is 9257 ≡ 657 (mod 43)? Explain.

3. Describe three different algorithms you use in everyday life. Write them as
lists of instructions in human-readable form. What changes would need to
be made for these instructions to be specific enough for a machine to follow?

4. Create a plaintext message and encrypt it using a shift cipher. Copy the
ciphertext onto a separate piece of paper and note the amount of the shift
you used. Trade ciphertexts with a partner and decrypt the ciphertext you
receive.

5. Write an algorithm for encrypting with the Caesar cipher that is precise
enough for a computer to follow.

6. Create a plaintext message and encrypt it using a Vigenère cipher, either
the standard sort or Vigenère’s original cipher. Copy the ciphertext onto a
separate piece of paper and note the key word you used. Trade ciphertexts
with a partner—but do not disclose which variety of Vigenère cipher you
used—and decrypt the ciphertext you receive. Try to figure out whether
your partner used original or standard Vigenère. How might you decide?

5.6 Where to Go from Here

The study of algorithms leads more deeply into computer science and also more
deeply into mathematics. We will use algorithms in Chapter 8 to solve certain
recurrence relations, and in the context of graph theory in Chapters 10 and 12. In
computer science, there are entire courses on algorithm design and implementation
and how to determine the efficiency of algorithms. The analysis of algorithms is
highly mathematical, so we address it in Chapter 17.

The Collatz conjecture (Example 5.2.12) is one of the easiest-to-state open
problems in mathematics. It has generated a lot of research. For a summary of the
history, current state of knowledge, and related generalizations of the Collatz con-
jecture, see http://mathworld.wolfram.com/CollatzProblem.html. For information
on how the Collatz conjecture has been verified for all n≤ 1018 (and perhaps larger

http://mathworld.wolfram.com/CollatzProblem.html
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n by the time this textbook is printed!), check out the website “Computational Ver-
ification of the 3x+1 Conjecture” at http://sweet.ua.pt/tos/3x+1.html.

Modular arithmetic is but the beginning of a branch of mathematics called
elementary number theory, which is a subbranch of number theory (of course). If
you want to learn some number theory, read Chapter 16; if you want to learn even
more number theory, consult the references given there.

To automate encryption/decryption for shift ciphers, use http://www.dcode.
fr/shift-cipher, and to automate encryption/decryption for the standard Vigenère
cipher, use http://www.dcode.fr/vigenere-cipher.

The original work in which Blaise De Vigenère suggested the ciphers that bear
his name is Traicté des chiffres from 1586. An interesting analysis of this work is
contained in “Blaise De Vigenère and the ‘Chiffre Carre,’” by Charles J. Mendel-
sohn in the Proceedings of the American Philosophical Society, Vol. 82, No. 2
(1940).

Youwill need to learn a large chunk of number theory in order to study practical
cryptography. A start on this is given in Chapter 16. In Section 16.10 we give an
introduction to the RSA algorithm for encryption, which is used widely on secure
websites.

It is worth noting that cryptography research includes designing algorithms,
implementing algorithms in software, and designing hardware with specific cryp-
tographic functions. This means that there are many directions in which a study
of cryptography can proceed—there are both mathematics courses and computer
science courses in cryptography, as well as graduate programs and industrial work-
shops.

The concept of equivalence classes can be seen in the context of abstract al-
gebra, where it leads to the idea of quotient objects. To learn more about abstract
algebra and quotients, see Visual Group Theory by Nathan Carter, as well as Con-
temporary Abstract Algebra by Joe Gallian.

Credit where credit is due: Some of the commentary on algorithms in this chapter was
inspired by [1] and [5]. Example 5.4.2 was inspired by [19]. Section 5.9 was inspired
by [4]. The Doctors on page 139 are those from the long-running television show Doctor
Who. My colleagues at the Centre for Textiles and Conflict Studies provided inspiration
for Bonus Check-Yourself Problems 2 and 4. Bonus Check-Yourself Problem 10 includes
a quote from Jane Austen. Bonus Check-Yourself Problem 1 was suggested by Tom Hull.
In Section 5.11, Problem 2 refers to the Cake Wrecks blog (see www.cakewrecks.com) and
Problem 15 refers to the SuperFriends cartoon from the 1980s (in which theWonder Twins
took shapes of an animal and water, respectively). Regarding Problem 40 in Section 5.11,
Susan is a resident of Sesame Street, and themessage is, of course, a line from that excellent
show’s theme song.

http://sweet.ua.pt/tos/3x+1.html
http://www.dcode.fr/shift-cipher
http://www.dcode.fr/vigenere-cipher
www.cakewrecks.com
http://www.dcode.fr/shift-cipher
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5.7 Chapter 5 Definitions

algorithm: A finite list of unambiguous in-
structions to be performed on one or sev-
eral inputs; some instructions may refer
to others.

terminate: An algorithm terminates when it
produces an output and ends after execut-
ing a finite number of instructions.

correct algorithm: An algorithm that does
what it should do.

conditional: A statement within an algo-
rithm that places conditions on an in-
struction.

if-then-else: A conditional that usually
takes the form “if (conditions), then (ac-
tion set 1), else (action set 2)” and is
read/understood as “If (conditions) are
met, then do (action set 1); otherwise, if
(conditions) are not met, then do (action
set 2).”

until: A conditional that takes the form
“do (action set) until (conditions)” or
“until (conditions), (action set)” and is
read/understood as “Do (action set) un-
til (conditions) are met and then go to the
next instruction.”

while: A conditional that takes the form
“do (action set) while (conditions)” or
“while (conditions), (action set)” and is
read/understood as “Do (action set) while
(conditions) hold, and when (conditions)
are no longer met, go to the next instruc-
tion.”

loop: An instruction to perform some set
of actions more than once. (The instruc-
tions repeat, forming a string of instruc-
tions into a loop of instructions.)

iteration: The process of repeating instruc-
tions.

cruciferous: An adjective used to describe
vegetables from the family Cruciferae
(a.k.a. Brassicaceae). The many crucif-
erous vegetables include kale, cabbage,
broccoli, arugula, turnips, and wasabi.

existence proof: A proof that shows that
something exists.

constructive proof: A proof that produces
an example of a desired object.

divides: Short for “divides evenly.”

congruent modulo n: Two integers a and b
are congruent modulo n when (a− b) =
kn for some k ∈ Z.

integers modulo n: The set of different re-
mainders obtainable by dividing integers
by n.

symmetric property: This holds if when
s1 ∼ s2, then s2 ∼ s1 for all s1,s2 ∈ S.

reflexive property: This holds if s ∼ s for
all s ∈ S.

transitive property: This holds if when
s1 ∼ s2 and s2 ∼ s3, then s1 ∼ s3 for all
s1,s2,s3 ∈ S.

equivalence relation: An operation ∼ de-
fined on a set S that satisfies the symmet-
ric property, the reflexive property, and
the transitive property.

equivalence class: All the elements equiv-
alent to a using some equivalence rela-
tion, i.e., [a] = {s ∈ S | s ∼ a}.
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partition: A set of subsets A1,A2, . . . ,An of
a set A such that A1 ∪A2 ∪ ·· · ∪An = A
and Ai ∩A j = /0 for all i ̸= j.

encryption: The process of taking mes-
sages and converting them to forms that
are not directly readable.

decryption: The process of converting re-
ceived text to readable messages.

substitution cipher: A cipher that encrypts
via letter-by-letter substitutions.

plaintext: A readable message.

ciphertext: A message encrypted with a
known cipher.

wacktext: A communication we cannot
read.

shift cipher: A cipher that encrypts by
shifting each number by some fixed
amount.

Caesar cipher: A shift cipher that shifts
by 1.

ROT13: A shift cipher that shifts by 13 (and
therefore encryption and decryption both
proceed by adding 13 (mod 26)).

key word: A set of letters that provides the
information needed to decrypt a cipher.

Vigenère cipher: A cipher that shifts each
letter by an amount determined by align-
ment with a key word. Named after
Blaise de Vigenère (1523–1596), who
was a diplomat. In modern standard us-
age, a Vigenère uses the key word re-
peatedly to decrypt an entire message;
originally, Vigenère himself used just one
copy of the key word and then used the
plaintext (or ciphertext) as it was gen-
erated for subsequent decryption (or en-
cryption).

5.8 Bonus: Algorithms for Searching Graphs

Suppose we need to look at every vertex in a graph. There are tons of reasons
(mathematical, computer scientific, etc.) why we might want to do this, but here is
one practical example: You maintain a website with many pages. Each page links
to some of the other pages and also has some external links. Once each year, you
need to check every link to make sure none of them are broken. Now, you could
think of the link structure as a graph, where every hyperlink represents a vertex and
two hypertext-vertices are adjacent if clicking on one leads to a page containing
the other. (This is a directed graph, though one can always hit the back button
to travel to a prior vertex.) An external hyperlink is considered to be a vertex of
degree 1 as it does not point to any page on your website. What you need is an
algorithm that visits every vertex in the graph, so that you can automate the link
checking. In this section, we will give you two algorithms that will do the job.
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How to search a connected graph, depth-first:

1. Examine the first vertex of the graph that you come across.
2. Mark the vertex as seen.
3. If this vertex has a neighbor that has not yet been seen, examine the
unseen neighbor and go to step 2; otherwise, continue.

4. If the current vertex is also the first vertex examined, then be done;
otherwise, return to the previous vertex and go to step 3.

In our example of checking all the links on a website, this is equivalent to
clicking on the first link you see until you reach a page on which the first link has
been clicked, and then clicking on the next link on the page. When there are no
links left to click on the current page, you hit the back button until you get to a page
with an unclicked link. If you are back at the starting page and all links have been
clicked, then you’ve clicked all possible links. This assumes, of course, that every
page on the website is linked from some other page on the website so that each
graph vertex is reachable. (Both algorithms need to be modified for nonconnected
graphs or general digraphs; the vertices must be labeled and ordered to assure that
all are reached.)

How to search a connected graph, breadth-first:

1. Examine the first vertex of the graph that you come across.
2. Mark the vertex as seen.
3. Examine all unseen neighbors of the vertex and mark them as seen.
4. For each of the neighbors considered in the previous step, execute
step 3.

5. If no unseen neighbors were identified, be done; otherwise, go to
step 4.

This is equivalent to checking each link on the first page, then following the
first internal link on the page and checking all the links on the page you reach,
then returning to the first page, following the second internal link on the page and
checking all the links on the page you reach, etc. This process checks all the links
that are one click away from the first page. Next, it checks all the links that are
two clicks away from the first page, then all the links that are three clicks away
from the first page, and so on.
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Figure 5.4. A breadth-first search (across the top row) and a depth-first search (across the
lower row) are both performed on a particular graph, starting with the upper-left vertex.

Let us contrast depth-first and breadth-first searches by seeing how they pro-
ceed on a particular graph; this is shown in Figure 5.4. For another example, see
http://demonstrations.wolfram.com/GraphSearchingBreadthFirstAndDepthFirst/
where you can use a slider to control howmany steps of the search have been done.

Practice. Redraw the graph in Figure 5.4 twice. Choose a different starting
vertex than the upper-left vertex, and perform a depth-first and a breadth-first
search using the new starting vertex. Now, draw a completely new graph,
never before seen by you, and perform a depth-first and a breadth-first search
on that graph.

5.9 Bonus 2: Pigeons and Divisibility

First, here’s a statement of the generalized pigeonhole principle in terms of par-
titions (see Definition 5.3.8): Suppose a set S has more than pq elements. If we
partition S into p parts, then at least one of the parts has more than q elements.

Now… holy cow. Look at the sequence 4,44,444,4444,44444,444444,
4444444,44444444, . . . . Do you believe that one of the first 63 elements of this
sequence is divisible by 63?

Well, if not, too bad. We’re going to prove that it’s true, using proof by con-
tradiction and the pigeonhole principle.

Suppose not. That is, suppose that none of the first 63 elements of 4,44,444,
4444,44444, 444444, 4444444,44444444, . . . is divisible by 63. Take those 63
elements and find their remainders after division by 63. Cast in the language
of modular arithmetic, compute 4 (mod 63),44 (mod 63),444 (mod 63),4444

http://demonstrations.wolfram.com/GraphSearchingBreadthFirstAndDepthFirst/
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(mod 63), etc. These will be numbers in the 1 to 62 range. None of them will
be 0 because none of the sequence elements are divisible by 63. Now, there are
63 remainders and 62 numbers, so at least two of them have to be the same by the
pigeonhole principle.

What? What’s that you’re saying? You don’t know how that helps? Right.
Hang on a minute. First, notice that you just proved a lemma.

Lemma 5.9.1. At least two of the first 63 elements of 4,44,444,4444,44444,
444444, 4444444,44444444, . . . have the same remainder on division by 63.

Hey, don’t knock it—even if that didn’t help prove the statement that one of
the first 63 elements of 4,44,444,4444,44444,444444,4444444,44444444, . . . is
equivalent to 0 (mod 63), it would be pretty cool.

But anyway. Go back to that remainder list. Use it to find two sequence ele-
ments that have the same remainder r after division by 63. Call them a1 and a2.
Now, a1 = 63p+r and a2 = 63q+r. So a1−a2 = 63p+r−(63q+r) = 63(p−q),
and that means that a1 −a2 ≡ 0 (mod 63).

I know what you’re thinking—this still doesn’t help, because yeah, we have
a number divisible by 63, but it’s not one of the elements of the sequence! Ele-
ments a1 and a2 are both strings of 4s (though they have different lengths), and so
|a1 − a2| is a bunch of 4s followed by a bunch of 0s. Still not helpful, but we’re
almost there. Notice that if you chop off all of the 0s, you get a bunch of 4s—
and it’s fewer than sixty-three 4s, because the longer of a1 and a2 is no more than
63 digits in length. That means the remaining bunch of 4s is one of the first 63
elements of 4,44,444,4444,44444,444444,4444444,44444444, . . . . Now for the
denouement: 63 has no factors in common with 10, so because integer factoriza-
tion is unique, a1 − a2 is divisible by 63 and also by 10, and therefore chopping
off the ending 0s leaves a number that is divisible by 63. Ha! We’re done.

(There’s a related problem, on which numbers divide numbers like 111, 1111,
11111, etc., that you may enjoy exploring at http://demonstrations.wolfram.com/
ThePigeonholePrincipleRepunits/.)

Pause. What was special about the digit 4 and the number 63 in the proof given
above? Think on this for at least 30 seconds. Your goal is to see how this proof,
and therefore the lemma and theorem, can be generalized. Spend at least two
minutes contemplating how to generalize this mathematical situation—and book-
mark/close the book if your eyes are likely to wander further.

What would a generalization of our original statement look like? We would
consider the sequence k,kk,kkk,kkkk,kkkkk,kkkkkk, . . . , and desire to show that

http://demonstrations.wolfram.com/ThePigeonholePrincipleRepunits/
http://demonstrations.wolfram.com/ThePigeonholePrincipleRepunits/
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one of the first m elements is divisible by m. In order to generalize our statement,
we need to determine what restrictions our proof placed on k and m. So let’s go
through the proof step by step and see what we find.

We first proved the lemma that at least two of the first m elements of k,kk,kkk,
kkkk,kkkkk,kkkkkk, . . . have the same remainder on division by m. There are at
most m−1 different values of k (mod m),kk (mod m), . . . among the first m re-
mainders. Thus, by the pigeonhole principle, two of these remainders must be the
same. What are the crucial parts of this argument? Well, m has to be larger than
m−1 in order to apply the pigeonhole principle, and m > m−1 is always true no
matter what m is. The value of k is irrelevant here—in fact, it doesn’t matter what
bunch of m numbers we pick. This means we have in fact now shown that at least
two of the first m elements of any integer sequence have the same remainder on
division by m.

The next step is to produce a number that is 0 (mod m). We do this by finding
two sequence elements that have the same remainder r after division by m. If
we call them a1 = mp+ r and a2 = mq+ r, we find that a1 − a2 = m(p− q) so
that a1 −a2 ≡ 0 (mod m). This time, k doesn’t even get a mention, and the rest is
arithmetic, sowe still have no restriction onm. (At this point, youmight reasonably
wonder whether we will end up with any restrictions at all. Keep reading to find
out!)

We then observed that |a1 − a2| is a bunch of ks followed by a bunch of 0s.
Aha! This does at least restrict us to a sequence of the form k,kk,kkk,kkkk,kkkkk,
kkkkkk, . . . , as otherwise we have no idea what the digits of |a1−a2|will be. Then
we note that the bunch of ks is one of the first m elements of our sequence. This
is true because the length of |a1 −a2| is less than m, which is true because each of
a1 and a2 has length no more than m. No restrictions here. But the denouement
gives a restriction: m has to have no common factors with 10 so that chopping off
all those 0s leaves a number divisible by m.

Now, there have been no restrictions on k so far. But let’s look a tiny bit closer.
We were sort of assuming that k was a digit, meaning that 1 ≤ k ≤ 9. But does
that have to be true? For example, what if k = 0? Well, we get a silly statement
and silly result. (You may decide for yourself whether we should allow k = 0 or
not.) And what if k > 9? The only place in the proof that k comes into play is in
showing that (bunch of ks)− (other bunch of ks) = ks followed by 0s. And that’s
true no matter how many digits k has.

Conclusion: For any m ∈ N divisible by neither 2 nor 5, and any k ∈ N, at least
one of the first m elements of the sequence k,kk,kkk,kkkk,kkkkk, kkkkkk, . . . , is
divisible by m.
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Related problem. Consider a prime p other than 2 or 5. Show that if you consider
p, p2, p3, . . . , one of these must have last digit 1. In fact, one must have last digits
01; why? And in fact, one must have last digits 000000000000000001; why?

5.10 Bonus Check-Yourself Problems
Solutions to these problems appear starting on page 603. Those solutions that model a
formal write-up (such as one might hand in for homework) are to Problems 3 and 6.

1. Find the smallest nonnegative integer
x that satisfies the equation 3(x+ 7) ≡
4(9− x)+1 (mod 5).

2. Encrypt this message from a supportive
shark using a shift-by-10 cipher: YOU
ARE SUPER GREAT AND FACES
ARE HIGH IN PROTEIN

3. Prove, using only the definition of
congruence modulo n, that if a ≡ b
(mod n), then a+ c ≡ b+ c (mod n).

4. While you are distraught over your
latest discrete math exam, a passerby
shoves a scrap of paper into your hand
that reads xvghdibhvivozz 21. You sus-
pect that this could be a shift cipher.
What does the message say?

5. Here is an algorithm:

1. Get a pot, a cover, a stove, and
an egg.

2. Put the egg in the pot.
3. Fill the pot with enough water

to cover the egg.
4. Turn a burner to high heat.
5. Set the pot on the burner.
6. Put on a hat.
7. Wait until the water boils.
8. Wait for 3 minutes.
9. Remove the pot from the heat

and add a cover.

10. Wait for 10 minutes.
11. Crack the shell of the egg.
12. Drain the water, replace with

cold water, and let stand for 3
minutes.

13. Put away the egg.

What are the inputs? What are the out-
puts? Does the algorithm terminate?
What does the algorithm do? Are there
any problems with this algorithm?

6. Let a ∼ b exactly when ab2 is even. Is
∼ an equivalence relation?

7. Write an algorithm that lists the first 10
negative multiples of 9.

8. Encrypt the foam shark visor is intended
only for children using the original Vi-
genère cipher with key word pickles.

9. Let ∼ be defined so that a ∼ b exactly
when b − a ≥ 2. Is this an equiva-
lence relation? If so, list the equivalence
classes. If not, which of the three prop-
erties (reflexive, symmetric, transitive)
does not hold?

10. Decrypt xx ut e kcyrp nvavximtsfl ixoeg-
wwpbggn using a Vigenère cipher and
the key word pemberley. Is this an orig-
inal or a standard Vigenère cipher?
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CHEESE

PRESER VER

REMOVE

LID

DAILY

REMOVE

LID

DAILY

SANITARY

KEEP CHEESE IN FOIL, PARCHMENT, OR 

WAXED PAPER. PUT PLAIN WATER IN 

BOTTOM. CHANGE TWICE WEEKLY.

MAYTAG DAIRY FARMS

NEWTON IOWA

Figure 5.5. A sanitary cheese preserver (left) and the inscription on its lid (right).

5.11 Problems about Algorithms, Modular Arithmetic,
and Ciphers

1. Consider the inscription shown in Fig-
ure 5.5. What are these instructions de-
signed to do? Are they an algorithm?

2. Encrypt the message naked mohawk
baby carrot jockeys using a shift cipher
with shift 24.

3. Finish decrypting the message given in
Example 5.4.4.

4. Let ∼ be defined so that a ∼ b exactly
when a · b is divisible by 3. Is this
an equivalence relation? If so, list the
equivalence classes. If not, which of the
three properties (reflexive, symmetric,
transitive) does not hold?

5. List the equivalence classes of Zn in
both equivalence-class notation and set
notation, and verify that they parti-
tion Z.

6. Prove that a ≡ b (mod n) if and only if
n|(a− b); that is, check that the condi-
tion given in Definition 5.3.1 is correct.

7. These instructions were found on an ac-
tual chopstick wrapper:

1. Tuck under thumb and hold
firmly.

2. Add second chopstick, hold it
as you hold a pencil.

3. Hold first chopstick in origi-
nal position, move the second
one up and down, now you
can pick up anything.

What are the inputs for this algorithm?
Is the algorithm correct? Comment on
the algorithm’s clarity.

8. Decrypt the message fqenjxpno fv rt-
nffrz fvug, which was encrypted using
ROT13.



5.11. Problems about Algorithms, Modular Arithmetic, and Ciphers 159

9. Prove, using only the definition of
congruence modulo n, that if a ≡ b
(mod n) and b ≡ c (mod n), then a ≡ c
(mod n).

10. What does this list of instructions do?
Comment on whether it is an algorithm
and whether it terminates.

1. Let n = 3.
2. Replace n with n+4.
3. If n is even, go to step 2.

11. Decrypt the message kqfnjzykwj qpmljd
uki xaegd aaf dua, which was encrypted
using the original Vigenère cipher with
key word fish.

12. The input for this algorithm is n ∈ N.
What does the algorithm do?

1. Let k = 1.
2. Let result = 1.
3. Replace result with k · result.
4. If k < n, replace k with k+ 1

and go to step 3.
5. Output result.

13. What kind of proof is used in proving
Theorem 5.3.3?

14. Let ∼ be defined so that a ∼ b exactly
when a+ b is even. Is this an equiva-
lence relation? If so, list the equivalence
classes. If not, which of the three prop-
erties (reflexive, symmetric, transitive)
does not hold?

15. Encrypt the message iron bars procras-
tinate rhymes with twin powers activate
using the standard Vigenère cipher with
key word silly.

16. Is [2] = [123] modulo 6? Explain.
17. Write an algorithm that counts to 18 by

twos.

18. Prove, using only the definition of
congruence modulo n, that if a ≡ b
(mod n) and c ≡ d (mod n), then a+
c ≡ b+d (mod n).

19. Our goal in this problem is to determine
when the converse of Theorem 5.3.3
holds and when it does not, namely,
when does ac ≡ bc (mod n) imply that
a ≡ b (mod n)?
(a) Let us recall our counterexample:

18 ≡ 24 (mod 6), but 9 ̸≡ 12
(mod 6). In fact, 18 ≡ 24 ≡ 0
(mod 6). Find another example in
which ac≡ bc≡ 0 (mod n) and a ̸≡
b (mod n). (Try not to have n = 6.)

(b) In your example, was n even? If so,
find another example in which n is
odd.

(c) Make a conjecture: under what con-
ditions does the converse of Theo-
rem 5.3.3 hold?

(d) Challenge: Perhaps there is some-
thing special about zero… or per-
haps not. Use the definition of
congruence modulo n to figure out
whether there are a,b,c,n such
that ac ≡ bc (mod n) and ac ̸≡ 0
(mod n) and a ̸≡ b (mod n).

20. Is set containment⊂ an equivalence re-
lation?

21. Decrypt themessage q kiv pih kpmmhjc-
zomz, which was encrypted using a ci-
pher that shifted by eight letters.

22. Decrypt the message dtrn utzaknr dbbv
utzaknr T lbt’b zoam po gabbd hvlwoec,
which was encrypted using a Vigenère
cipher with key word lady. Which type
of Vigenère cipher was used?

23. The company Charmed, I’m Sure
makes bracelets. Each bracelet has four
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charms, Apple, Banana, Cherry, and
Fig (or {A,B,C,F} for short). The way
these bracelets are made is by sending a
line of charms into a machine, where
they get attached to circular chains.
There are 24 different orders in which
a set of 4 charms might get fed into the
machine. (Why?) Once the bracelets
are complete, some of these 24 orders
look the same. If we consider the equiv-
alence relation b1 ∼ b2 when bracelets
b1 and b2 look the same, how does this
partition the set of 24 charm orderings?

24. Challenge: Understand the algorithm
for Russian multiplication given in Ex-
ample 5.2.11.
(a) Execute the algorithm using A = 12

and B = 7.
(b) Now choose two different values

for A,B and execute the algorithm
again.

(c) When do you write down Bstep and
when not?

(d) When you sum the column, what
multiple of B (how many copies of
B) do you obtain?

(e) Does this have anything to do with
binary numbers?

(f) How exactly does this algorithm
give the same result as usual multi-
plication?

25. Challenge: Write actual code in an ac-
tual programming language that…
(a) … encrypts a message using a shift

cipher of 12 letters.
(b) … decrypts a message encrypted us-

ing a shift cipher of 6 letters.
(c) … encrypts a message using the

original Vigenère cipher.

(d) … decrypts a message using the
standard Vigenère cipher.

26. Let ∼ be defined so that a ∼ b exactly
when a2 = b2. Is this an equivalence re-
lation? If so, describe the equivalence
classes. If not, which of the three prop-
erties (reflexive, symmetric, transitive)
does not hold?

27. Is {3k + 1 (mod 15) | k ∈ Z} ∪
{5k − 2 (mod 15) | k ∈ Z} ∪ {6k + 2
(mod 15) | k ∈ Z} a partition of Z15?
Why or why not?

28. Create a partition of Z12 and three non-
partitions of Z12, two that violate ex-
actly one of the conditions to be a par-
tition and one that violates both condi-
tions.

29. Fill in these addition and multiplication
tables modulo 5:

+ 0 1 2 3 4
0
1
2
3
4

× 0 1 2 3 4
0
1
2
3
4

30. (a) Find the smallest nonnegative num-
ber x such that x ≡ 107 (mod 7).

(b) Compute the smallest x such that x≡
483 (mod 9).

(c) Calculate the smallest positive value
of 8+8 (mod 9).
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(d) Is 10 ≡ 7 (mod 3)?
(e) What about 49… is it ≡ 17

(mod 22)?

31. Encrypt the message grackles are shiny
and like shiny things using the Caesar
cipher.

32. The input for this algorithm is n ∈ N.
What does the algorithm do?

1. Let k = 0.
2. Let result = 1.
3. Replace result with k · result.
4. If k < n, replace k with k+ 1

and go to step 3.
5. Output result.

33. Let ∼ be defined so that a ∼ b exactly
when a+ 2b is even. Is this an equiva-
lence relation? If so, list the equivalence
classes. If not, which of the three prop-
erties (reflexive, symmetric, transitive)
does not hold?

34. Decrypt the message ctzt dhp gkt qvym
pediyk dhp jvohibs, which was en-
crypted using the standard Vigenère ci-
pher with key word kale.

35. Consider the following, printed on
boxes of Opti-Free RepleniSH.
Directions for care of your lenses:
To clean, recondition, disinfect and re-
move protein from your contact lenses:

1. Thoroughly rinse each side
of the lens (5 seconds) with
OPTI-FREE® RepleniSH®

Multi-Purpose Disinfecting
Solution.

2. Fill your lens case with fresh
OPTI-FREE® RepleniSH®

Multi-Purpose Disinfecting
Solution.

3. Store lenses in the closed lens
case overnight or at least 6
hours. After soaking, lenses
are ready to wear.

What are the inputs for this algorithm?
Does the algorithm terminate?

36. Write an algorithm that sums the first n
squares.

37. Is 9 ≡ 3 (mod 6)? What about 389 ≡
87 (mod 92)?

38. Encrypt the message it was a dark and
stormy night using the original Vigenère
cipher with key word weather.

39. What is the smallest number greater
than n that is≡ 1 (mod n)? For a num-
ber k between 1 and n, what is the small-
est number larger than k but also ≡ k
(mod n)?

40. Encrypt the message can you tell me
how to get to Sesame Street twice, once
using the standard Vigenère cipher and
once using the original Vigenère cipher,
both with key word susan.

5.12 Instructor Notes

The material in this chapter is intentionally light so as to make room in a semester schedule
for review and the giving of an exam. So, the class-time plan here is for about one-and-
one-half classes. The fact that many students have more of a passing familiarity with
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algorithms and with modular arithmetic than with other topics in a discrete mathematics
course is helpful.

Assign the students to read Sections 5.1–5.4 in preparation for the week and to do
some of the Check Yourself problems. Twenty pages of reading seems like a lot, but it’s
very fast and students find most of it to be easy; in particular, they will zip right through
the algorithm and cipher material. Really! You probably don’t believe this, but it is true
(and verified by people other than the author). Usually students do not feel that modular
arithmetic presents any difficulty, but they do need some supervised practice with it, and
equivalence relations/classes can present a challenge.

Begin by having the students open to Section 5.5. It works well to introduce the first
problem to the students in the form of a tiny interactive lecture and then alternate between
having them work in pairs and conducting a large group discussion. Similarly, the second
problem can be introduced via interactive lecture and segue into work in pairs or groups.
It also presents a good opportunity to ask for questions over the reading. To add a bit of
dramatic flair to the first problem’s introduction, show a video (http://www.youtube.com/
watch?v=qTvhKZHAP8U) of Big Bird singing the “Abcdefghi…” song.

Problem 5 in Section 5.5 can be profitably introduced via interactive lecture as well
because it allows a discussion of how modular arithmetic is used algorithmically in these
substitution ciphers. If youwant to use actual code or code-like pseudocode, python syntax
is a good choice because students pick it up very quickly. If you plan to cover Chapter 17
later, you’ll want to assign Problem 24 in Section 5.11 now.

Section 5.5 is probably too much for a single class period; a good warmup for a second
class period is asking the class to describe the Vigenère cipher to you. This can easily
transition into the remaining problems in the activity.

An excellent way to break students into groups for work in this chapter is to count them
off from 1 to n (assuming you have n students), choose a k ≈ n

4 , and tell them to collect
into groups where all members have numbers congruent mod k. Then ask them to decide
whether their group forms an equivalence class (or not). This gives students practice with
modular arithmetic and equivalence classes while also allowing a bit of controlled chaos
into the classroom.

http://www.youtube.com/watch?v=qTvhKZHAP8U
http://www.youtube.com/watch?v=qTvhKZHAP8U
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TI.1 Summary of Theme I Proof Techniques

Template for a direct proof:

1. Restate the theorem as if (conditions) are true, then (conclusion) is true.

2. On a scratch sheet, write assume or suppose (conditions) are true.

3. Take some notes on what it means for (conditions) to be true. See where
they lead.

4. Attempt to argue in the direction of (conclusion) is true.

5. Repeat attempts until you are successful.

6. Write up the results on a clean sheet, as follows.

Theorem: (State theorem here.)
Proof: Suppose (conditions) are true.
(Explain your reasoning in a logically airtight manner, so that no
reader could question your statements.)
Therefore, (conclusion) is true. (Draw a box or checkmark or
write Q.E.D. to indicate that you’re done.)

How to apply the pigeonhole principle:

1. Figure out what represents the pigeons.

2. Figure out what represents the pigeonholes.

3. Figure out how pigeons correspond to holes.

163
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Template for a proof that A ⊂ B:

Let a be any element of A.

(Reasoning, statements.)

Therefore, a ∈ B, and so A ⊂ B.

Double-Inclusion. To show that A = B, show first that A ⊂ B and then show
that B ⊂ A.

Biconditionals (⇐⇒s):

(a) First, write (⇒) to indicate you’ll prove that P implies Q (and then
do so).

(b) Then, write (⇐) to indicate you’ll prove that Q implies P (and then
do so).

Be sure to start a new paragraph for each implication.

Template for proving the contrapositive:

1. State the theorem as if (conditions) are true, then (conclusion) is true.

2. Restate the theorem in the equivalent form if¬(conclusion) is true, then
¬(conditions) is true.

3. On a scratch sheet, write assume or suppose ¬(conclusion) is true.

4. Take some notes on what it means for ¬(conclusion) to be true. See
where they lead.

5. Attempt to argue in the direction of ¬(conditions) is true.

6. Repeat attempts until you are successful.
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7. Write up the results on a clean sheet, as follows:

Theorem: (State theorem here.)
Proof: Suppose ¬(conclusion) is true.
(Explain your reasoning in a logically airtight manner, so that no
reader could question your statements.)
Therefore, ¬(conditions) is true, so our original theorem holds
and we are done.

Template for a proof by contradiction:

1. Restate the theorem as if (conditions) are true, then (conclusion) is true.

2. On a scratch sheet, write suppose not. Then write out (conditions) and
the negation of (conclusion).

3. Try to simplify the statement of ¬(conclusion) and see what this might
mean.

4. Attempt to derive a contradiction of some kind—to one ormore of (con-
ditions) or to a commonly known mathematical truth.

5. Repeat attempts until you are successful.

6. Write up the results on a clean sheet, as follows:

Theorem: (State theorem here.)
Proof: Suppose not. That is, suppose (conditions) are true but
(conclusion) is false.
(Translate this to a simpler statement if applicable. Derive a con-
tradiction.)
Contradiction!
Therefore, (conclusion) is true. (Draw a box or checkmark or
write Q.E.D. to indicate that you’re done.)
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How to do a proof by induction:

Base case: Check to make sure that whatever you want to prove holds
for small natural numbers, like 1, 2, and 3.

Inductive hypothesis: Assume that whatever you want to prove is true,
as long as the variable in the statement is smaller than or equal to k;
here, k is a specific (but unknown) value.

Inductive step: Consider the statement with k+1 as the variable. Use
your knowledge that the statement is true when the variable is less than
or equal to k in order to show that it’s still true for k+1. (That is, use
the base case(s) and inductive hypothesis.)

TI.2 Potential Practice Proof Problems

Here is a panoply of plain practice proof problems. Many of those pertaining to
set theory were provided by David Cox.

TI.2.1 Problems Pertaining to Chapter 1

1. Prove that the sum of an odd number and an even number is odd.

2. Prove, or find a counterexample: for k any integer and n any odd number,
kn is odd.

3. Prove that for finite sets A,B,C, the number of elements of A×B×C is
|A| · |B| · |C|.

4. Prove, or find a counterexample: if m is odd, then 4m−3 is odd.

5. Prove that if n+6 is even, then n is even.

6. Prove that the binary representation of an even number ends in 0.

7. Prove that if a is even and b is odd, then ab+1 is odd.

TI.2.2 Problems Pertaining to Chapter 2

8. Prove that A ⊆ B if and only if A∪B = B.

9. Let A,B,C be sets; show that if A ⊆ B, then A∩C ⊆ B∩C.
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10. Show that for sets A,B, if A∪B ⊆ A∩B, then A = B.

11. Prove that A ⊆ B implies that A×C ⊆ B×C.

12. For sets A,B,C, show that A× (B∩C) = (A×B)∩ (A×C).

13. Prove that if m2 −2m is even, then m is even.

14. Show that (A\B)∩ (B\A) = /0.

15. Show that if z ∈ Z and z2 | z, then z ∈ {−1,0,1}.

16. Consider the proposition if n is even, then n2 +n is even.

(a) Prove it.
(b) State the converse.
(c) If the converse is true, prove it; if it is false, give a counterexample.

17. Using element notation, prove that if A∩B = A, then A∪B =U .

18. Prove, using contradiction or the contrapositive, that if the average age of
four children is ten years old, then at least one child is at least ten years old.

19. Prove that if a natural number n is even, then n+2 is even…

(a) … using a direct proof.
(b) … by proving the contrapositive.
(c) … using proof by contradiction.

TI.2.3 Problems Pertaining to Chapter 3

20. Prove that K4 is isomorphic toW4.

21. Prove that f : Z→ Z defined by f (z) = z+3 is a well-defined bijection.

22. Prove that f :Z×Z→Z×Z defined by f ((a,b))= (−b,a) is a well-defined
bijection.

23. Prove that there is no graph with degree sequence (1,1,2,3,4,4,5,7).

24. Prove that the cycle graphCn has n edges.

25. Is it possible for a simple graph with 6 vertices to have 42 edges? Explain.



168 Theme I Supplement

26. Let f : N×N→ N, with f (a,b) = a2 +b2. Decide (with proof) whether f
is one-to-one, onto, both, or neither.

27. Let f : N×N→ N, with f (a,b) = a+b. Decide (with proof) whether f is
one-to-one, onto, both, or neither.

TI.2.4 Problems Pertaining to Chapter 4

28. Prove, in two different ways, that when n > 1, 2n > n+1.

29. Prove that
n

∑
j=1

(2 j+3) = n2 +4n.

30. Prove that
n

∑
j=1

(3 j2 +1) =
2n3 +3n2 +3n

2
.

31. Prove that 12n > 3n for all n ∈ N.

32. Show that for n ∈ N,
n

∑
i=1

2
(i+1)(i+2)

=
n

n+2
.

TI.2.5 Problems Pertaining to Chapter 5

33. Let ∼ be an equivalence relation on a set S. Using the definition of equiva-
lence class (see page 139), prove that [a] = [b] if and only if a ∼ b.

34. Prove that if a ≡ b (mod n) and c ≡ d (mod n), then ac ≡ bd (mod n)
without applying the definition of congruence mod n.

35. Prove that 3|x ⇐⇒ 3|x2.

36. Let∼ be defined so that a∼ b exactlywhen a+b is odd. For each of the three
equivalence relation properties (reflexive, symmetric, transitive), prove that
the property holds or demonstrate why the property does not hold. Is this an
equivalence relation? If so, list the equivalence classes.

37. Let ∼ be defined so that a ∼ b exactly when |a| = |b|. Is this an equiva-
lence relation? If so, list the equivalence classes. If not, which of the three
properties (reflexive, symmetric, transitive) does not hold?

38. Let ∼ be defined so that a ∼ b exactly when a ≤ b+ 2. Is this an equiva-
lence relation? If so, list the equivalence classes. If not, which of the three
properties (reflexive, symmetric, transitive) does not hold?
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TI.3 Problems on the Theme of the Basics

These problems could be used for studying for (or writing!) in-class or take-home
exams, or just for more enrichment. They are not given in any particular order. In
fact, they have been intentionally mixed up so that they are not in chapter order, so
that the solver cannot use the ordering of the problems as a clue in solving them.

1. In a 1922 arsenic poisoning, at least 20
of the> 50 victims worked in a 12-story
building. Prove that at least two of the
victims worked on the same floor.

2. Determine whether the graphs in Fig-
ure TI.1 are isomorphic: exhibit an iso-
morphism or find a property for which
the two graphs differ. (A GeoGebra
file for Figure TI.1 is available for
your use at http://www.toroidalsnark.
net/dmwdlinksfiles.html.)

Figure TI.1. Two suspicious graphs.

3. Prove that
n

∑
j=1

j2 =
n(n+1)(2n+1)

6
.

4. Find the smallest number of vertices
needed to draw a graph with

an edge with multiplicity 3,
at least two edges crossing,
at least three vertices that are all
adjacent to each other, and
a vertex with five neighbors.

Now draw that graph.
5. Let n be an integer. Is it always true that
the difference between two consecutive
cubes is never even? Explain.

6. Give a counterexample to each of
the following statements… unless you
think the statement is true, in which case
give a one-line justification.
(a) If n2 = 4, then n3 = 8.
(b) If sin(x) = 0, then cos(x) = 1.
(c) If cos(x) = 0, then sin(x) = 1.
(d) If x3 = x, then x2 = 1.

7. Find |Z2 ×Z3|.
8. Challenge: Cast your memory all the
way back to Example 1.5.5. How far
does that example generalize? Consider
the statement given any length-k list of
m-digit numbers, two subsets have the
same sum. Find constraints on k,m for
this statement to be true.

9. Write the converse of if a graph G has
30 vertices, then G is not blue.

10. Consider a function on the real num-
bers defined by f (1) = q and f (a+b) =
f (a) · f (b) for all real numbers a,b.
(a) Prove by induction that f (n) = qn

for all n ∈ N.
(b) Show that if q ̸= 0, then f (0) = 1.

11. Prove that a connected simple graph
with ten vertices must have two vertices
of the same degree.

12. For which n isK4 a subgraph ofKn? Ex-
plain.

13. How many possible passwords have
6–12 characters, where the characters
must be alphanumeric but case does not
matter?

http://www.toroidalsnark.net/dmwdlinksfiles.html
http://www.toroidalsnark.net/dmwdlinksfiles.html
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Figure TI.2. An arbitrary heptagon with two different decompositions into triangles and a
graph associated to one of them.

14. Challenge: Try to figure out what the
Cartesian product of two graphs should
be, without looking it up. If you do
eventually search for information on
graph products, please forgive themath-
ematical community for using such ter-
rible and inconsistent notation. (The au-
thor has been unable to excuse it.)

15. Show that any 11 numbers selected
from {3, . . . ,30} must include two that
have a common divisor (other than 1).

16. Show that for n ∈ N,
n

∑
i=1

3
(i+2)(i+3)

=
n

n+3
.

17. Give three examples of functions f :
Z→ Z, where one is one-to-one but not
onto, the second is onto but not one-to-
one, and the third is neither one-to-one
nor onto.

18. Consider any convex polygon with at
least four sides and decompose it into
triangles by connecting vertices. (Do
not let chords cross or create new ver-
tices.) See Figure TI.2 for an example
of this process.

(a) Show that no matter how you de-
compose the polygon into triangles,
at least two of the triangles have
two sides (each) in common with the
original polygon.

(b) For any decomposition of a con-
vex polygon into triangles, create a
graph as follows. Place a vertex in
each triangle and join two vertices
when their two surrounding trian-
gles share an edge.

(i) What kind of graph is this?
(You may justify your answer.)

(ii) Does every graph of this type
arise from some convex poly-
gon? Explain.

(iii) What aspect of the graph cor-
responds to a triangle that has
two edges in common with the
original polygon?

(iv) What theorem about graphs did
you prove in the previous part
of this problem?

19. Prove or give a counterexample: Every
multiple of 6 that is ≥ 12 is the sum of
two consecutive primes. (For example,
30 = 13+17.)

20. Show that for a fixed r ∈ N and any

n ∈ N,
n

∑
i=1

r
(i+ r−1)(i+ r)

=
n

n+ r
.

21. Consider a,b ∈ Z and let a ∼ b if a ≡ b
(mod 3) or if a ≡ b (mod 5). Is this
an equivalence relation? Explain which
properties of equivalence relations hold
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and which don’t. If this is an equiva-
lence relation, then list the equivalence
classes.

22. Suppose all of G’s vertices have degree
3. Prove that G can be decomposed into
copies of K1,3 (a.k.a. claws), with ver-
tices of different copies possibly over-
lapping, if and only if G is bipartite.

23. You get on an elevator. There are nine
people already in the elevator, and six
floor-indicator buttons are lit. What
is a reasonable conclusion and why?
(Strange but true: If instead there are six
people already in the elevator, and nine
floor-indicator buttons are lit, what is a
reasonable conclusion and why?)

24. Write each of the following statements
using formal logic notation.
(a) For every integer n, 2n ̸= 9.
(b) There exists a triangle T that is equi-

lateral and has perimeter 10.
(c) Every circle has an integer diameter

or an integer area.
(d) Every two natural numbers have an

integer between them.
25. How many different programs to do a

single task can you write if there are
six available algorithms for the task and
each has been coded in four different
ways?

26. Give examples of sets A,B such that
|A|= 8, |B|= 6, and |A\B|= 5.

27. Prove that
n

∑
j=1

2 j−3 = (n−1)2 −1.

28. Show that if you choose k integers ar-
bitrarily, then at least two of them will
have the same remainder on division by
k − 1. (What principle did you use in
solving this problem?)

29. Let b represent the statement the cat
likes to eat broccoli, let p represent the
statement the cat likes to play, and let s
represent the statement the cat likes to
sleep. Write each of the following sen-
tences using formal logic notation.
(a) The cat likes to eat broccoli but does

not like to play.
(b) The cat likes to sleep and eat broc-

coli, or ze likes to play.
(c) The cat does not like to eat broccoli,

but ze likes to play or to sleep.
30. Encrypt the text rubber baby buggy

bumpers using a shift-by-15 cipher.

31. Prove that
n

∑
j=1

2 j = 2n+1 −2.

32. Decrypt the message O lkfz me hkaj atd
sy negrz ot tne jatck frour, which was
encrypted using a Vigenère cipher with
key word gaga. Which type of Vigenère
cipher was used?

33. What does this list of instructions do?
Comment on whether it is an algorithm
and whether it terminates.

1. Let n = 2.
2. Replace n with n+3.
3. If n is even, go to step 1; oth-

erwise, go to step 2.
4. Output n.

34. Let C = {d,e,{d,e}, f}. List the ele-
ments in each of the following sets (or
write /0 if appropriate). Be careful with
your notation.
(a) C \{d,e}.
(b) C \{{d,e}}.

35. Ittw etaiz mbmit (8).
36. A tap-dancing duckmakes sequences of

sounds with its feet. You count the num-
ber of taps between pauses. Show that if
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you listen long enough, say, for ten tap
sequences, then two of the numbers of
taps have the same value mod 9.

37. How many natural numbers k < 100
have the property k ≡ 3 (mod 7)?

38. Let t represent the statement Amali is
tall, let d represent the statement Amali
is dark, and let b represent the state-
ment Amali is beautiful. Write an En-
glish sentence equivalent to each of the
following formal-logic expressions.
(a) (t ∨d ∨b)∧¬(t ∧d ∧b).
(b) ¬t ∧¬d.
(c) d ∧¬(t ∧¬d).
(d) (t ∧d)∨ (¬t ∧d).

39. For the Cartesian product Z×Z = Z2,
let (a,b) ∼ (c,d) if a− c = b−d. Is ∼
an equivalence relation?

40. Prove that if A ⊆ B, then B ⊆ A. Do this
once using Venn diagrams and once us-
ing element notation.

41. Let A = {−2,−1,0,1,2} and let B =
{q,r,s, t}.
(a) How many functions f : A → B can

be defined? Explain.
(b) How many one-to-one functions f :

A → B can be defined? Explain.
(c) Suppose that f (0) = r, f (1) = q,

f (2) = t. How many functions f :
A → B satisfy these conditions?

(d) Suppose again that f (0) = r,
f (1) = q, f (2) = t. How many onto
functions f : A → B satisfy the con-
ditions?

42. Let A = {2k | k ∈ Z}, B = {3k + 1 |
k ∈Z}, andC = {6k+5 | k ∈Z}. Show
that {A,B,C} is not a partition of Z.

43. Prove that ifA⊆B, thenA∪(B\A)=B.
Use element notation in your proof.

44. Encipher graph theory is the bomb us-
ing aVigenère cipher with keyword bat.

45. Which one of the following statements
is true (and why)?
(a) −3 ≡ 21 (mod 12).
(b) −3 ≡ 15 (mod 12).

46. Let f : N× N → N, with f (a,b) =
2a · 3b. Decide (with proof) whether f
is one-to-one, onto, both, or neither.

47. Prove that if a ≡ b (mod n) and c ≡ d
(mod n), then a− c ≡ b−d (mod n).

48. The distance between vertices x and y of
a graph G, denoted d(x,y), is the length
of the shortest path joining x and y. If
x,y,z are vertices of G, is it always true
that d(x,y) + d(y,z) ≥ d(x,z)? Give a
proof or a counterexample.

49. The coop next door contains a flock of
chickens and a few ducks. Each duck is
basically either brown, white, or grey.
Every chicken in the flock is red xor
black. How many different color pairs
of birds are there if one is a duck and the
other is a chicken? Explain very briefly.

50. Draw Venn diagrams representing the
sets (A\B)∪ (B\C), (A\B)∪ (B∩C),
(A∪C)\ (A\B), (A∪C)\ (A∩B), and
(A∪B)\ (B\C). Do any two (or more)
of these represent the same set?

Credit where credit is due: Problem 18 was donated by David Cox. The message in
Problem 30 is a traditional tongue twister. For more on the situation of Problem 1, see The
Poisoner’s Handbook by Deborah Blum.
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Chapter 6

Binomial Coefficients and
Pascal’s Triangle

6.1 Introduction and Summary

This is the start of our four-chapter-long focus on combinatorics, and it is jam-
packed with (related-to-each-other) ideas! Combinatorics is the science of count-
ing. We will begin by considering the number of ways to choose some objects
from a larger pile of objects. This will lead us to investigate the links between
choosing objects, Pascal’s triangle, and powers of (x+ y). (At first glance, these
don’t seem to have anything to do with each other… surprise!) We will also see
how these ideas tie in to the factorial function (n!) and how factorials relate to ar-
ranging objects in different orders. As before, every exploration is followed by
reinforcing material in a subsequent section.

This chapter also introduces two counting techniques, both of which were fore-
shadowed in earlier chapters. Careful overcounting is exactly what it sounds like—
we overcount carefully so that we can compensate appropriately and determine an
exact count. Combinatorial proof is the process of counting the same thing two dif-
ferent ways, where one of the ways represents the amount we desire to calculate
(but can’t yet) and the other way is something we already know how to calculate.
Collaborating on challenging problems will help you practice these techniques, so
such problems are provided.

The bonus sections will be of particular interest to those who like algorithms—
and to those who like playing games. Go look at them (after you’ve worked
through Sections 6.2–6.5)!

6.2 You Have a Choice

Let us look back to Problem 5 in Section 1.2: Some people heading to a party stop
by an ice-cream store to buy quarts of ice cream. The store has five flavors of

175



176 6. Binomial Coefficients and Pascal’s Triangle

ice cream. How many orders of three quarts could they make? What if the three
flavors have to be different? What if no one will agree to order squirrel ice cream?

You may not remember how you solved this problem (it was a while ago!),
so here is one way to approach the first question. The three quarts could be
all the same flavor; there are five different ways that could happen. Or, two of
the quarts might be one flavor, and one might be a different flavor; in this case,
we need to know how many ways there are to choose two out of the five fla-
vors. If we number the flavors 1,2,3,4,5, then the different possible flavor pairs
are (1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5): there are ten
of them. (We do need to count each one twice because ordering one quart of
squirrel ice cream and two quarts of licorice ice cream is different from order-
ing one quart of licorice ice cream and two quarts of squirrel ice cream.) The
remaining possibility is that the three flavors could be different from each other;
here we need to know how many ways there are to choose three out of the five
flavors. The possible flavor triples are (1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),
(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5): there are ten of them. So, in total, there
are 5+10 ·2+10 = 35 possible three-quart orders.

Surely there is a faster way to know how many choices there are than to list
them each time. Indeed, we will learn two different ways to determine this number
(but in a later section; keep your eyes out). And, there must be a shorter way to
say, “the number of ways there are to choose two out of the five flavors” than to
use all those words. Indeed, there is; read on to the next paragraph.

Definition 6.2.1. The symbol
(n

k

)
is pronounced “n choose k,” will be referred to

as a choice number, and means the number of ways one can choose k things from
a pile of n different things. The order in which the k things are chosen does not
matter. Expressions using choice numbers are said to be written using choice no-
tation.

For nonexample, the number of ways of choosing two teal balls from a pile of
three teal balls is just one, if the balls are truly identical. On the other hand, for
example, if the three teal balls are different somehow (perhaps because they are
numbered), then there are three different ways to choose two of them. (Borifying
this by placing it in a set-theoretical context,

(n
k

)
is also the number of k-element

subsets of an n-element set.)
For now, let us imagine that we have a bag of n sugar-numbers. These are

wrapped maple sugar candies in the shapes of numbers (see Figure 6.1), and each
sugar-number in our bag is different. Our model for choice is that you reach into
the bag and grab a handful of sugar-numbers. (Public Service Apology: we’re
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Figure 6.1. The sugar-number 2.

sorry if this has made you crave maple sugar candy.) If there are n sugar-numbers
in the bag, and you grab a handful of k sugar-numbers, then there are

(n
k

)
ways for

that grab to occur. Borific side note: there is a one-to-one correspondence between
a handful of k sugar-numbers and the k-element subset of {1, . . . ,n} with those k
numbers in it.

We will now derive an important relation that can be expressed using choice
notation. Moreover, we will derive this relation using combinatorial proof, a char-
acteristic approach to solving combinatorics problems by counting some quantity
in two different ways. Section 6.8 provides more on combinatorial proof.

Start with a bag of n sugar-numbers, numbered 1 through n. Consider the set
H of all possible handfuls of k sugar-numbers. Each of them either (a) contains the
sugar-number n xor (b) does not contain the sugar-number n. Call the first set N
and call the second set D (for “Does not contain n”). Now, H = N ∪D. We know
that |H| =

(n
k

)
, and we are about to find ways to determine |N| and |D|. Then we

will have two ways to express |H|, one as
(n

k

)
and one as |N|+ |D|. (Notice that

we can use the sum principle here because N and D are disjoint.)
First, think aboutN. Every handful of k sugar-numbers inN contains the sugar-

number n. If we take the n out of a handful, we have a corresponding handful of
k−1 sugar-numbers. Because there can’t be an n in there, the handful might as well
have been taken from a bag with the first n−1 sugar-numbers in it. Thus, we have
a one-to-one correspondence betweenN and the set of all possible handfuls of k−1
sugar-numbers drawn from a bag of n− 1 sugar-numbers. (See Figure 6.2 for a
visualization.) Call that latter set M (for “k Minus one”). We know how to express
|M| in other terms—it’s

(n−1
k−1

)
. And, because of the one-to-one correspondence,

we know that |M|= |N|.
Now, think about D. Every handful of k sugar-numbers in D does not contain

the sugar-number n. So, those k sugar-numbers might as well have been taken from
a bag with only the first n− 1 sugar-numbers in it. Thus, we have a one-to-one
correspondence between D and the set of all possible handfuls of k sugar-numbers
drawn from a bag of n−1 sugar-numbers. Call that latter set Y (for “Yuck, can’t
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n n–1

Figure 6.2. An element of N in correspondence with one of M.

think of a name”). Again, we know how to express |Y | in other terms—it’s
(n−1

k

)
.

And again, our one-to-one correspondence tells us that |Y |= |D|.

Denouement. Putting this all together, we have that
(n

k

)
= |H|= |N|+ |D|=

|M|+ |Y | =
(n−1

k−1

)
+
(n−1

k

)
. This fact, that

(n
k

)
=
(n−1

k−1

)
+
(n−1

k

)
, is the most

basic of choice notation identities. Notice that it re-expresses
(n

k

)
in similar

notation but with smaller numbers (or indices); this type of equation is called
a recursion and will be the focus of Chapter 8.

Check Yourself

Do all of these problems—they’re worth it.

1. Write the solutions to the questions that begin this section in choice notation.

2. Compute
(4

2

)
using the basic choice notation identity (and a little bit of exhaustive

listing).

3. Compute
(5

2

)
using the basic choice notation identity and the previous problem.

6.3 Try This! Investigate a Triangle

Our investigations begin by switching gears away from choice notation. Maybe
sometime in your past you’ve seen this creature:
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1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1

. . .
...

. . .

It’s created by starting out with the 1 at the top, and then in each successive
row, each entry is the sum of the two numbers diagonally left and diagonally right
above it. (Those 1s on the edges? They’re created by adding the numbers 1 and 0,
with 0 represented above by “ ”.)

1. Write out the next two or three rows of this triangular array, to verify that
you understand it.

2. Do you see any connection between the triangular array above and the choice
notation identity

(n
k

)
=
(n−1

k−1

)
+
(n−1

k

)
? (If so, what is the connection?) Is

there a way to connect numbers n and k to the triangular array? (If so, what
is it?)

3. Use the choice notation identity
(n

k

)
=
(n−1

k−1

)
+
(n−1

k

)
to figure out how many

different Sushi Samplers (three kinds of rolls) can be ordered from a 12-roll
sushi menu (salmon skin, avocado, california, yellowtail/scallion, dragon,
futo maki, alaska, kanpyo, eel/avocado, shrimp tempura, spicy tuna, cu-
cumber). Or, use the triangular array to determine how many different
quadruple-chunk cookie recipes can be made from the eight common inclu-
sions milk chocolate chunk, white chocolate chunk, dried cranberry, peanut
butter chip, raisin, butterscotch chip, macadamia nut, and dark chocolate
chunk. And why not switch? Use the identity to count cookie recipes and
use the array to count Sushi Samplers. (How different are these methods?)

4. You have probably noticed some left-right symmetry in the triangular array.
(If not, go notice it now.) Using choice notation, express this symmetry for
a particular pair of entries in the triangular array. Pick three more symmetric
pairs and use choice notation to express their symmetry. Can you now ex-
press the symmetry of the entire array using choice notation? Please attempt
to do so. Using sugar-numbers, prove that this symmetry makes sense. (By
the way, this is another example of combinatorial proof.)
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5. Let n be odd. What is the relationship between the number of subsets of
{1,2, . . . ,n} of odd size and the number of subsets of {1,2, . . . ,n} of even
size? The previous problem may be of assistance.

6. How does the total number of subsets of {1,2, . . . ,n} relate to the triangular
array? (What is that number again, anyway?)

6.4 Pascal’s Triangle

Hey! You! Don’t read this unless you have worked through the problems in Sec-
tion 6.3. I mean it!

The triangular array introduced in Section 6.3 above is called Pascal’s triangle
(after Blaise Pascal from the 1600s, even though it was known at least 500 years
earlier). The rows are indexed by n, and the entries are indexed by k, as follows.
We consider the top 1 to be 0 over in row 0 (that is, the initial 1 is at k = n = 0) and
count n downwards and k to the right of the left edge of the triangle. In this way, the
generation of the triangle by adding pairs of entries in the previous row corresponds
to the choice notation identity

(n
k

)
=
(n−1

k−1

)
+
(n−1

k

)
. So the zeroth row is secretly(0

0

)
, the first row is secretly

(1
0

) (1
1

)
, the second row is secretly

(2
0

) (2
1

) (2
2

)
, etc.

More generally,
(n

k

)
is the kth number in the nth row of the triangular array. One

great utility of Pascal’s triangle is that it’s pretty fast to generate, so for small values
of n (like n ≤ 10) one can quickly look up a given

(n
k

)
in the triangle. This is much

faster and easier than repeatedly applying
(n

k

)
=
(n−1

k−1

)
+
(n−1

k

)
.

From Pascal’s Triangle we can see that(
n
k

)
=

(
n

n− k

)
because the triangle has symmetry over the vertical midline. We could prove this
combinatorially by noting that if we choose k candies (such as sugar-numbers)
from a bag of n candies, there are n− k candies remaining. So there are the same
number of ways of choosing k candies as there are of choosing n−k candies from
a bag containing n candies. (Do not confuse this with choosing candles from a
bag. If lit, they are dangerous.)

Additionally, we can use the correspondence between
(n

k

)
and the number of

size-k subsets of {1,2, . . . ,n} to gain some insight into the latter, and vice versa.
The number of subsets of {1,2, . . . ,n} is 2n, and that’s also the sum of the numbers
across a row of Pascal’s triangle—each entry in the row counts the number of
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subsets of a particular size, and every subset-size is represented. Now notice that in
odd-n rows of Pascal’s triangle, the set of odd-k entries is equal to the set of even-k
entries because n−k is even when k is odd; therefore, there are the same number of
odd-sized subsets of {1,2, . . . ,n} as there are even-sized subsets of {1,2, . . . ,n}.
In fact, this tells us that the number of odd-sized (and of even-sized) subsets of
{1,2, . . . ,n} must be 2n−1.

Pascal’s triangle can also be written as a right triangle with n increasing down-
wards and k increasing to the right.

1 0 0 0 0 0 0 0 0 0 …
1 1 0 0 0 0 0 0 0 0 …
1 2 1 0 0 0 0 0 0 0 …
1 3 3 1 0 0 0 0 0 0 …
1 4 6 4 1 0 0 0 0 0 …
1 5 10 10 5 1 0 0 0 0 …
1 6 15 20 15 6 1 0 0 0 …
1 7 21 35 35 21 7 1 0 0 …
1 8 28 56 70 56 28 8 1 0 …
...

...
...

...
...

...
...

...
...

...
. . .

Instead of taking the sum of the two entries diagonally above the desired entry,
we take the sum of the entry directly above and the entry diagonally left above.
We can extend this to a rectangle by filling in 0s in the remaining entries—after
all, there are no ways of choosing more than n items from a pile of n items, i.e.,
when k > n for

(n
k

)
.

Check Yourself

These are extra-fast.

1. Quickly compute
(8

3

)
.

2. Quickly compute
(7

5

)
.

3. How many ways are there to choose two ducks out of a raft of nine ducks?

4. How many ways are there for two of the author’s three cats to sit on her bed?

5. Invent a question to which the answer is
(13

4

)
.
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6.5 Overcounting Carefully and Reordering at Will

Let us take a cue from Math Curse by Jon Sczieska (rhymes with “Fresca”) and
Lane Smith. (If you have not read this book, go directly to the nearest public
library, without passing GO or collecting $200, and get it. If you are unsure as
to whether your local university library has this seminal tome, check http://www.
worldcat.org/title/math-curse/oclc/32589625 and enter your zip code.) There are
24 students in the narrator’s class. She counts the desks in the room as divided in
four rows, eight rows, three rows, and two rows; she counts the students by twos;
she wonders how many fingers and ears and tongues are in the class.

Super-quickie questions:

1. How many of the 24 desks are in each row if there are four rows? … eight
rows? … three rows? … two rows?

2. How many pairs of students does the narrator count?

3. If there are 216 fingers in the class, how many fingers does each student
have?

4. If there are 47 ears in the class, how many ears does each student have (and
who is one of the students)?

Let’s face it: you were just doing division. And that’s basically all you were
doing. But just as when you were adding and multiplying in Chapter 1, the basic
operation is but a paltry reflection of the larger cognition in which you were en-
gaged. That is, it doesn’t look like you were doing much, but in reality you did
something pretty complicated. Namely, you counted indirectly—you noticed that
the students had been overcounted by a certain factor and divided by that factor.

Another perspective on this phenomenon is to cast it in the language of func-
tions. (If you feel that this borifies matters, then read it quickly and think not of it
again; use the concept but not the language.) In the case of counting desks by rows,
we are secretly mapping the set of desks onto the set of rows. If there are the same
number of desks in each row (let’s say k), then we have a k-to-one and onto func-
tion, or a k-to-one correspondence; see Figure 6.3. (This is also known as a many-
to-one correspondence and is related to the generalized pigeonhole principle—see
page 18.)

Fact. Just as a one-to-one correspondence is a bijection and implies that two
sets have the same size, a k-to-one correspondence indicates that the size of
the domain is k times the size of the target space.

http://www.worldcat.org/title/math-curse/oclc/32589625 and enter your zip code
http://www.worldcat.org/title/math-curse/oclc/32589625 and enter your zip code
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row

row

row

1 2 3 k

1 2 3 k

1 2 3 k

Figure 6.3. A k-to-one correspondence between desks and rows.

Example 6.5.1 (of careful overcounting). Consider a polygon with p sides. We
would like to know how many vertices the polygon has. Each side of the poly-
gon touches two vertices, so there are a total of 2p vertices. However, each vertex
touches two sides, and that means we have overcounted by a factor of two. Thus
the polygon has 2p

2 = p vertices.

Example 6.5.2. Consider a graph G in which each vertex has degree r. Let |V | be
the number of vertices in G and let |E| be the number of edges in G. We will use
overcounting to prove that |E| = r|V |

2 . (This is a special case of the handshaking
lemma proved in Chapter 3.)

Because each vertex has degree r and there are |V | vertices, the total degree
of G is r|V |. An edge has two ends, each of which is counted once in the total
degree of G, so the total degree is also 2|E|. (More formally, there is a two-to-
one correspondence between vertex/edge incidences of G and the set E.) This
means that r|V | counts each edge twice, so |E| = r|V |

2 . (By the way, this is also a
combinatorial proof because we counted the same quantity two different ways.)

Here is the general structure underlying Example 6.5.2; it provides a template
you can apply to other problems. Suppose there are a things, and each of the a
things has b aspects. By the product principle, there are a · b variants in total.
But there might be a different way to think about these ab variants. It may be
that the number ab can be written as c ·d, where this represents c things that each
have d aspects. (This would give a d-to-one correspondence between the set of ab
variants and the set of c things.) In trying to solve a problem, we would probably
know the value of d and be seeking the value of c. To complete our translation, in
Example 6.5.2 we have a = |V |, b = r, c = |E|, and d = 2.

Let us do a more complicated example to see how a k-to-one correspondence
can be noticed and then used.
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44 4

4

4

4

Figure 6.4. (Left) This may be a start on a solution. (Right) Well, that’s not going to
work….

Example 6.5.3. In a Sudoku board, a player cannot have two of the same number
appear in the same row or the same column. How many different ways can we
place three 4s on a 9×9 grid so that no two of them share a row or a column? (For
this example, we will ignore the fact that on a Sudoku board, a player also cannot
have two of the same number appear in the same 3×3 block.) Figure 6.4 shows a
possibility and an impossibility.

There are nine possibilities for the row of the first 4, and also nine possibilities
for the column of the first 4. We can’t reuse that row or that column, so there are
only eight possibilities for the row and for the column of the second 4, and neither
of those two columns nor rows may be reused, so there are only seven possibilities
for the row and for the column of the third 4.

However, for each of the nine row choices for the first 4, we could use any
of the nine columns. So there are 92 ways to place the first 4. For each of those,
there are (by similar reasoning) 82 ways to place the second 4, and then for each
of those there are 72 ways of placing the third 4, for a total of (9 · 8 · 7)2 ways of
placing the three 4s.

Uh, but wait. We kind of overcounted there. If we place the first 4 in row 1 and
column 2, and the second 4 in row 3, column 4, that gives the same result as placing
the first 4 in row 3, column 4, and the second 4 in row 1 and column 2. (Notice that
if we’d wanted to place a 4, a 5, and a 6, or perhaps 4s of three different colors,
there would have been no overcounting and our initial answer would have been
correct.) So now what we need to figure out is (1) whether we are overcounting
uniformly—that is, dowe have a k-to-one correspondence?—and (2) what the heck
k is, if so.

Often when we (intentionally) overcount, we will rely on some symmetry to
help us create a k-to-one correspondence. In the case of a Sudoku board, every
row looks like every other row; for this purpose, they’re all the same. This is true
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for the columns as well. (And, as we just discovered, all the 4s are identical.) This
symmetry tells us that we have some sort of uniform overcounting. So what is k
in this case? For a given placement of three 4s, there are six ways we could have
chosen it: let the placement be denoted by (a,b,c), where a represents the location
of the first 4, b the location of the second 4, and c the location of the third 4. If
we were to place the second 4 in location c and the third in location b, that’d be
the same configuration of 4s; all possible permutations of (a,b,c) give this same
result, and there are six of them. (Those six permutations are (a,b,c), (a,c,b),
(b,a,c), (b,c,a), (c,a,b), and (c,b,a).)

So we have not (9 · 8 · 7)2 ways of placing three 4s in a Sudoku board, but
(9·8·7)2

6 = 254,016
6 = 42,336… that’s still a lot.

The key to figuring out Example 6.5.3 was determining that we were over-
counting and by what factor k. However, there was a subproblem we glossed
over: we had to know that there were six possible orderings of the letters a,b,c.
Let’s generalize this—we might be in trouble if we had to know how many order-
ings there were of a,b,c,d,e, f ,g,h, i, j,k, l,m,n,o, p. First we will do an example.
Luckily we will need nothing more sophisticated than the product principle.

Example 6.5.4. Suppose you have five different citrus fruits (blood orange, clemen-
tine, kumquat, pink grapefruit, and uglifruit) and you can’t decide in what order to
eat them. How many possibilities are there? There are five choices for the first-
eaten fruit. Then, for each of those first-fruit choices, four options remain for the
second-eaten fruit; for each of those choices, three choices remain for the third-
eaten fruit; for each of those choices, there are two options for the fourth-eaten
fruit, and there is then only one fruit left to eat. By the product principle, there are
5 ·4 ·3 ·2 ·1 orders in which to eat the five citrus fruits. (A word of advice: don’t
store the uglifruit in the refrigerator.)

In general, suppose we have n items and we want to know how many ways
there are to order them, also referred to as the number of permutations of the set.
There are n choices for which item appears first in the ordering, then n−1 items
remaining to choose for the second spot in the ordering, then n−2 items remaining
to choose for the third spot in the ordering, and so forth. By the product principle,
we have a total of n · (n− 1) · (n− 2) · · · · · 3 · 2 · 1 ways to order n items. We
abbreviate this as n!. Wait, you say, why are you shouting numbers at me? Oops.
Let’s have a…

Definition 6.5.5. The notation n! is pronounced n factorial and means n · (n−1) ·
(n−2) · · · · ·3 ·2 ·1. (It would be confusing if we pronounced it “En!!” excitedly,
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tempting though that might be.) We define 0! = 1 because there is exactly one way
to rearrange nothing.

Let us make a quick comparison between permutations of a set and subsets of
that same set.

Example 6.5.6. Does a set with n elements have more subsets or more ways of
being ordered? Check out the data:

|S| 1 2 3 4 5 6 n
subsets 2 4 8 16 32 64 2n

permutations 1 2 6 24 120 720 n!

At first, it looks like the subsets are in the lead. But then suddenly at n = 4, the
permutations overtake them and go dashing ahead! To see that this trend continues
and that permutations will win the race for even moderately large n, notice that
when increasing n by 1, the number of subsets is multiplied by 2, whereas the
number of permutations is multiplied by n+1.

Check Yourself

Try to do at least two of these problems.

1. You receive a shipment of 36 legs for stools to gowith the stock ofmass-manufactured
stool seats you already have. How many stools can you complete?

2. Suppose wewanted to place all nine different numbers onto a Sudoku board without
reusing rows or columns—how many ways would there be to do it?

3. On the other hand, what if we wanted to place nine 4s onto a Sudoku board without
reusing rows or columns? (Again, we will ignore the fact that on a Sudoku board,
a player also cannot have two of the same number appear in the same 3×3 block.)
How many different ways would there be to make that placement?

4. How many orderings are there of a,b,c,d,e, f ,g,h, i, j,k, l,m,n,o, p?

6.6 Try This! Play with Powers and Permutations

Enjoy these problems; the first three are quite fundamental.

1. Let us return to sugar-numbers for a moment.

(a) Pull a sugar-number out of the bag of n sugar-numbers. How many
ways are there to do this?
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(b) Now pull another sugar-number out of the bag and put it next to the
first sugar-number. How many ways are there to do this?

(c) Keep pulling sugar-numbers out of the bag until you have a line of k
sugar-numbers. How many ways are there to produce this line?

(d) Basically, you have chosen k sugar-numbers from a bag of n sugar-
numbers. But your resulting number of ways to do this is not the same
as
(n

k

)
. (If you don’t believe this, check for a few values of n and k.)

What information do you need to take into consideration? Do so.
(e) Rewrite your expression so that it only uses factorials. Now you have

a handy formula for computing
(n

k

)
! (No, not “n-choose-k-factorial.”

This is the interjection sort of exclamation point.)

2. Go back, back into your memory, far back to the days of high school algebra.
You will certainly recall that (x + y)2 expands to x2 + 2xy + y2. Expand
(x+ y)3 by hand. Wait—please follow this algorithm:

1. Let j = 3.
2. Expand (x+ y) j.
3. If you see something familiar from earlier in this chapter, go to
step 4. If not, replace j with j+1 and go to step 2.

4. Make a conjecture about the expansion of (x+ y)n for any n ∈ N.

3. Prove the conjecture you made in the previous problem by choosing xs.

4. Can you write your (now proven) conjecture in summation notation?

5. Using some sort of fact you’ve developed somewhere recently, compute
∑6

j=0 4 j
(6

j

)
.

6. Write
(n

0

)
−
(n

1

)
+
(n

2

)
− ·· ·±

(n
n

)
in summation notation. Then evaluate it,

somehow.

6.7 Binomial Basics

Hey! You! Don’t read this unless you have worked through the problems in Sec-
tion 6.6. I mean it!

A binomial is a polynomial with exactly two terms, such as 3a− 2b5. Consider
the simple binomial (x+ y). We can rewrite (x+ y)n as (x+ y) · (x+ y) · (x+ y) ·
· · · · (x+ y), where there are n copies of (x+ y) in that product. If we expand the
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binomial power (x+y)n into a polynomial, we know what all of the variable parts
of the terms are—they’re xn,xn−1y,xn−2y2, . . . ,x2yn−2,xyn−1,yn. But we don’t
know what the coefficients are. Well, we know they should be called binomial
coefficients because they are coefficients of a binomial expansion, but that’s not
yet helpful. Notice that each term has variables whose degrees total to n. (Yes, lit-
erally go back a few sentences and notice it actively.) We will have one occurrence
of a given term in the full expansion for every way there is of forming it, meaning,
for example, that there will be only one copy of xn because we can only form xn

by multiplying together all n copies of x in (x+ y) · (x+ y) · (x+ y) · · · · · (x+ y).
We can form xn−1y by multiplying together all but one of the xs and the remaining
y, and we can figure out the number of different xn−1ys we can have by counting
the number of ways of choosing that single y. Oh, hey! That’s

(n
1

)
, and in fact,

the number of ways of forming xn was
(n

0

)
. Similarly, the number of ways to form

xn−kyk is
(n

k

)
because we choose k copies of y from the n copies of (x+ y) (or,

equivalently, because we choose n− k copies of x from the n copies of (x+ y)).
Yup.
Conclusion 1: Another name for

(n
k

)
is binomial coefficient.

Conclusion 2: We have proven a theorem.

Theorem 6.7.1 (the binomial theorem).

(x+y)n=
n

∑
k=0

(
n
k

)
xn−kyk=

(
n
0

)
xn+

(
n
1

)
xn−1y+· · ·+

(
n

n−1

)
xyn−1+

(
n
n

)
yn.

This theorem has lots of cool consequences. My favorite is this one: the sum
across row n of Pascal’s Triangle is 2n. I know, you’re like,Whaaaa? but it’s true.
(Well, you won’t be so surprised if you finished the last problem in Section 6.3.
But this is a different approach, so pay attention in any case.)

Mini-activity (do it right now!):

1. Add up all the numbers in the third row of Pascal’s triangle. Do it again with
the fifth row and with the sixth row. (Now do you believe that the sum will
be 2n?)

2. Look at the binomial theorem and see if you can use it to prove that the sum
across row n of Pascal’s triangle is 2n. Try for at least two minutes.

3. Cover your eyes and wait 30 seconds.

4. Hop up and down on your left foot (if you have one; if not, improvise).
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5. Let x = y = 1 in the binomial theorem and see what happens.

6. Explain why this gives yet another proof that a finite set of size n has 2n

subsets.

7. Go tell someone you know from high school about these interconnections
because it’s all so cool.

Another consequence of the binomial theorem is that instead ofmultiplying out
binomials until the end of time, you can be sleek and use Pascal’s triangle instead.
Here is an example.
Example 6.7.2. We will expand (3a− 2b5)5 the easy way. First, let x = 3a and
let y = −2b5. Then, read off the coefficients of (x+ y)5 from Pascal’s triangle
(1,5,10,10,5,1) and slap them in front of the appropriate monomials in the ex-
pansion to get x5+5x4y+10x3y2+10x2y3+5xy4+y5. Then plug in for x and y to
get (3a)5 + 5(3a)4(−2b5)+ 10(3a)3(−2b5)2 + 10(3a)2(−2b5)3 + 5(3a)(−2b5)4

+ (−2b5)5. Finally, expand out the coefficients to get 35a5 − (10 · 34)a4b5+
(10 · 27 · 4)a3b10 − 720a2b15 +(15 · 16)ab20 − 32b25. To do this the easiest way,
first be confident and then skip some of the intermediate steps.

Youmay have seen the following basic fact about binomial coefficients before;
people often learn it as a definition, when in fact it’s a computational tool that needs
to be justified.

A formula for computing binomial coefficients.

(
n
k

)
=

n!
k!(n− k)!

.

Problem 1 in Section 6.6 leads to one proof of this fact, and Problem 25 in
Section 6.15 gives another. It is one of the three most popular ways of verifying
binomial identities (equations involving binomial coefficients); the other two are
induction (See? It’s everywhere!) and combinatorial proof.

Check Yourself

Make sure you understand how to do binomial computations by attempting these problems.

1. Find the coefficient of x5y5 in (x+ y)10.
2. Find the coefficient of the monomial containing c3 in (5b2 −4c)4.
3. Compute, by hand, a numerical value for

(36
32

)
.

4. Challenge: Create a binomial (x+ y)n (with n greater than one) with neither x nor
y a constant, such that when expanded it will have a constant term.
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6.8 Combinatorial Proof

Here is the long- and multiply-promised introduction to combinatorial proof. (Af-
ter all the buildup earlier in the chapter, this may seem anticlimactic.) Because a
combinatorial proof proceeds by determining the size of one set in two different
ways, it is sometimes also called bijective proof. A bijection is formed from the
one-to-one correspondence between the two descriptions of the set. Essentially,
combinatorial proof works by looking at a set frommultiple perspectives and gain-
ing new information from each perspective.

We have already seen three combinatorial proofs in this chapter:

In the proof that
(n

k

)
=
(n−1

k−1

)
+
(n−1

k

)
in Section 6.2, we viewed the set of

ways to choose k objects from n objects also as the union of two disjoint
subsets; then, we figured out how to express the sizes of those subsets in
new ways.

The proof that
(n

k

)
=
( n

n−k

)
in Sections 6.3 and 6.4 counted the number of

ways to choose k objects from n objects and the number of ways to choose
all but k objects (that is, to choose n− k objects) from a set of n objects.
Handily, these are the same number.

When we proved a special case of the handshaking lemma (for regular
graphs) in Example 6.5.2, we double-counted the number of edges twice,
once by counting the total number of ends of edges and once by counting
the edges touching each vertex.

Notice that in each case, we began with an equation. We then interpreted each
side of the equation in a different way. The challenge in combinatorial proof is
figuring out a good way to interpret a mathematical expression! We will discuss
this in the context of Example 6.8.1. Our goal will be to decide what we are count-
ing if one side of the equation is the number of ways some choosing can happen
and then answer the question, “Why does the other side of the equation count the
same thing (but in a different way)?”

Example 6.8.1. Consider the identity ∑n
k=0
(n

k

)( 3n
n−k

)
=
(4n

n

)
. We will prove its va-

lidity by interpreting each side of the equation as a different way of counting some-
thing. The right-hand side of the equation is somewhat straightforward;

(4n
n

)
is by

definition the number of ways to choose n objects from a set of 4n objects, so that
will be our something in this proof. In keeping with our previous themes, we will
imagine that we have a bag of 4n delicious Ahiru hard candy drops. On the left-
hand side of the equation appear choice notations with n and 3n in the top slots.
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These total to 4n, so perhaps we can partition the bag of Ahiru drops into two fla-
vors of drops. Let us say that our bag contains n chrysanthemum drops and 3n
lemon drops. Now we will reinterpret the equation. On the right-hand side of the
equation, we are choosing any n candies from the bag, regardless of flavor. On
the left-hand side, things are a bit more complicated. Imagine that within the bag
we have separated the candies into two piles, one for the chrysanthemum drops
and one for the lemon drops. Then we choose k drops from the chrysanthemum
pile and the remaining n− k drops from the lemon pile. However, the number of
ways we can do that depends on what k is, and k could take any value from 0 to
n. Therefore, we need to add up all the possibilities. If we only take lemon drops,
then there are

( 3n
n−0

)
ways to choose them; because

(n
0

)
= 1, this is the same as(n

0

)( 3n
n−0

)
. If we take one chrysanthemum drop and n−1 lemon drops, there are

(n
1

)
ways to grab the chrysanthemum drop, and for each of those possibilities, there are( 3n

n−1

)
ways to choose the lemon drops, so in total we have

(n
1

)( 3n
n−1

)
ways to grab

a chrysanthemum drop and n− 1 lemon drops. Analogously, we have
(n

k

)( 3n
n−k

)
ways to choose k chrysanthemum drops and n− k lemon drops. Summing, we
obtain ∑n

k=0
(n

k

)( 3n
n−k

)
. This completes our combinatorial proof.

Check Yourself

These may seem challenging but are useful practice before attempting full combinatorial
proofs.

1. Let m ≤ n. What might
(n

3

)( n
m−3

)
be counting?

2. What might
(n

6

)(6
k

)
be counting?

3. What might
(n

k

)
2k be counting?

4. Challenge: Create a situation similar to the lemon-and-chrysanthemum-drops sit-
uation, and use this to write down a new binomial identity.

6.9 Try This! Pancakes and Proofs

You will especially want to collaborate on the last three of these problems.

1. Check out the octahedron in Figure 6.5.

(a) How many vertices does it have?
(b) How many edges are there touching each vertex?



192 6. Binomial Coefficients and Pascal’s Triangle

Figure 6.5. I am an octahedron because I am solid and have eight faces.

(c) Using your previous two answers, compute how many edges there are,
total.

2. At the Local Order-place of Pancakes (LOOP), all you can do is order pan-
cakes in stacks of three. In fact, you must specify which pancake is on top,
which is in the middle, and which is on the bottom. The waitstaff refer to
this as “stack order.” There are six pancake flavors (blueberry, chocolate
chip, apple cinnamon, pecan, buttermilk, and banana).

(a) How many possible pancake orders are there (specifying flavor and
stack order)?

(b) How many different pancake orders involve three different flavors of
pancakes?

(c) Howmany different pancake orders involve one banana, one chocolate
chip, and one pecan pancake?

(d) Howmany three-different-flavor pancake orders provide subtly differ-
ent nutrition? (How many are nutritively the same?)

3. Recall the complete graph Kn. (See page 77 for images in Figure 3.7.)

(a) How many edges does Kn have? Suggestion: use overcounting or use
induction.

(b) What property holds for any pair of vertices in Kn?
(c) Use your previous two answers to construct a combinatorial proof of

a formula for
(n

2

)
.

4. Use a combinatorial proof to show that
(

w
p

)(
p
m

)
=

(
w
m

)(
w−m
p−m

)
.
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5. Use a combinatorial proof to show that
n

∑
k=0

((
n
k

))2

=

(
2n
n

)
.

6. Use a combinatorial proof to show that
(

n+m
r

)
=

r

∑
i=0

(
n
i

)(
m

r− i

)
.

6.10 Where to Go from Here

If you haven’t looked at Section 4 of the student preface, on problem-solving
prompts, lately, this would be a good time to do so; you’ve just started working on
serious discrete mathematics problems, and there are more to come.

Combinatorics is used extensively in computer science: all counting tech-
niques are important for computing the efficiency of algorithms. Section 6.12
gives an elementary example of such a computation that involves binomial coef-
ficients.

Binomial coefficients are used throughout combinatorics; we will need them in
the rest of the book, particularly in Chapters 7 and 9. To learn more, see Chapter
5 of [10]. (It has lots and lots of binomial identities—in fact, it has a top ten
list of them!) This is in fact an excellent book for self-studying combinatorics
more generally. Reference [4] is more advanced, but quite well written and gives
introductions to many combinatorial subfields in which research is active. While
they are not a central focus of combinatorics research, there are still open questions
about binomial coefficients; for example, no one knows the prime factorization
of
(2n

n

)
.

To learn more about combinatorial proofs, read Proofs That Really Count: The
Art of Combinatorial Proof by Art Benjamin and Jennifer Quinn. Combinatorial
proof is highly desired as it usually produces the most elegant explanations, so it
is regularly used in research papers.

Credit where credit is due: The uglifruit tip in Example 6.5.4 came from Prof. George
Piranian (1914–2009) of the University of Michigan. An emeritus professor at the time, he
regularly appeared (seemingly from nowhere) to give the author luncheon advice when she
was in graduate school. Section 6.12 was inspired by Section 17.2.1 in [4]. Section 6.13
was inspired by Section 5 of Chapter 3 in [1]. Some problems in Sections 6.3 and 6.6
were inspired by [3]. Example 6.5.6 was inspired by [15] and [16]. In Section 6.15,
Problem 33 was inspired by Sam Oshins’s character who was inspired in turn by this book
(see page 148), and Problem 13 arose from the excellent survival ballroom dance class the
author took from Dr. Kathleen Kerr many years ago. Everyone should learn both leading
and following!
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6.11 Chapter 6 Definitions

choice number: A number of the form
(n

k

)
(that is, n choose k).

combinatorial proof: A characteristic ap-
proach to solving combinatorics prob-
lems by counting some quantity in two
different ways. Combinatorial proof
works by looking at a set from multiple
perspectives and gaining new informa-
tion from each perspective.

Pascal’s triangle: A triangular array of num-
bers in which the kth entry in the nth row
is
(n

k

)
. The top row is a single “1” and

this is counted as the 0th entry of the 0th
row.

permutation: An ordering of items.

factorial: An operation on a natural num-
ber n, denoted n!, that returns n · (n−1) ·
(n−2) · · · · ·3 ·2 ·1.

binomial: A polynomial with exactly two
terms, such as 2x− y.

binomial coefficient: A coefficient in a bi-
nomial expansion, such as the coefficient
“2” in w2 +2wr+ r = (w+ r)2.

binomial identity: An equation involving
binomial coefficients.

bijective proof: A proof that shows the
equality of the sizes of two sets by
demonstrating a one-to-one correspon-
dence between two descriptions of the
sets.

6.12 Bonus: Sorting Bubbles in Order of Size

Imagine that we have a bunch of bubbles, all of different sizes. (We can measure
size by the radius or the diameter of the bubbles.) We would like to order the
bubbles from smallest to largest. Here is one way to do it:

1. Look around for the smallest bubble. Put it at the start of a line. (Okay,
yes, in reality it might pop, but assume the bubbles are made of something
like bubblegum so they can be moved around.)

2. Find the next-smallest bubble. Put it next in the line.

3. Repeat until all the bubbles are in a line.

That’s problematic, though. It seems like an algorithm, but it’s not something
a computer could deal with. And worse, there’s all kinds of steps encapsulated in
the command, “Find the smallest bubble.” How exactly do we do that? (Isn’t that
kind of equivalent to the original problem?) Let’s try again.

1. Pick up the first two bubbles. Put the smaller one to the left of the larger
one.



6.12. Bonus: Sorting Bubbles in Order of Size 195

2. Pick up another bubble. If it is larger than the last bubble in line, put it to
the right of that bubble. If it is smaller than the last bubble in line, put it
to the left of that bubble.

3. Repeat until all the bubbles are in a line. But wait! They might not be in
order!

4. Go back to the left end of the line. Compare the first two bubbles in line.
Put the smaller one to the left of the larger one.

5. Check the next bubble in line against the previous bubble. If the smaller
isn’t to the left of the larger, switch them.

6. Repeat until the end of the line. But wait! The bubbles still might not be
in order!

7. If any switches were made along the line, go back to the left end of the
line and do comparisons again. If no switches were made along the line,
be done because the bubbles are in order according to size.

Hey, we might as well assume that the bubbles are in a line to begin with. After
all, our arbitrary picking up of bubbles creates an order to the bubbles, which is
like lining them up. That simplifies the algorithm a little bit.

1. Start at the left of the bubble line. Compare the first two bubbles. If the
larger is to the left of the smaller, switch them.

2. Move one bubble down the line. Compare it to the previous bubble. If
the larger is to the left of the smaller, switch them.

3. Repeat until the end of the line. If any switches were made along the
line, go back to the left end of the line and do comparisons again. If no
switches were made along the line, be done because the bubbles are in
order according to size.

This algorithm is commonly called bubble sort. (No, really. It is.) To see
an example in action, check out https://www.cs.usfca.edu/~galles/visualization/
ComparisonSort.html (and choose Bubble Sort from the menu). Bubble sort is
not used in practice because it is not very efficient, but encoding it is a standard
computer science exercise—if you are a student of computer science, you might
try writing it out in pseudocode.

What we would like to do is figure out how many switches we have to make to
order the bubbles, in a worst-case scenario—depending on the initial order of the
bubbles, we might go through the line many times or just a few times. This is one

https://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html
https://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html
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measure of the efficiency of the algorithm. (For more on algorithmic efficiency,
see Chapter 17.)

Notice first that no matter where the largest bubble starts, when we finish the
first pass through the line the largest bubble will be on the right end of the line. At
worst, the largest bubble is at the start of the line, so with n bubbles, we will have
to do n−1 switches.

But hey! If we know the largest bubble ends up on the right, we don’t have to
look at it again on subsequent passes through the line! So that means that on the
next pass through, if the second-largest bubble is at the start of the line,

1. we will have to do n−2 switches, and

2. it will end up in the second position from the right.

Hmm. Does anything seem familiar here? There are two things that might
come to mind:

1. Each time we go down the line, in the worst-case scenario we will have to
do one less switch.

2. Each time we go down the line, we’re sort of reducing the problem to the
worst-case scenario for a shorter line.

Hmmmmmmm.
Let’s leave that line of thinking for now and just say that this is related to

induction (see Chapter 4) and recursion (see Chapter 8).
Okay, so in a worst-case scenario, we do

n−1 switches the first time through the line,
n−2 switches the second time through the line,
n−3 switches the third time through the line,
n−4 switches the fourth time through the line, …
n−n switches the nth time through the line …

Hey wait, if we make zero switches, we’re not truly going through the line. So
that last line should read

one switch the (n−1)st time through the line.
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So our total number of switches is

(n−1)+(n−2)+ · · ·+1 = 1+ · · ·+(n−2)+(n−1) =
n−1

∑
i=1

i =
n(n−1)

2
=

(
n
2

)
.

Huh! A binomial coefficient pops up after all of that!

Activities:

1. Perform the bubble sort algorithm on a line of bubbles with sizes 2.3,
6.4, 1.2, 7.9, 5.5, 3.4, 2.9, 5.7.

2. Given bubbles of sizes 1 through 9, place them in an order that would
take the bubble sort algorithm the largest number of switches to com-
plete.

3. Write pseudocode for the bubble sort algorithm.

4. Implement the bubble sort algorithm in your favorite programming lan-
guage.

6.13 Bonus 2: Mastermind

Once upon a time, there was a two-player game calledMastermind. It was popular
in the 1970s and 1980s; one can still obtain a physical copy but these days few
people play it with pieces rather than on phones or tablets. One end of the board
has a bin of pegs in six possible colors (red, yellow, green, blue, black, and white).
The board has a hidden area at the other end, behind which one player places four
colored pegs in a row; color repetition is allowed. The bulk of the board consists
of rows of four holes into which the second player places a guess sequence of
colored pegs. The goal of the game for the second player is to discover the hidden
peg sequence before running out of rows. Most mathematically inclined second
players can win, so truly the goal is to guess the sequence in the smallest number
of moves possible, and usually the players agree that a win will only count if it is
achieved in eight or fewer guesses. On one side of each row are four tiny holes
into which tiny marker pegs are placed. After the second player places guess pegs
into a row, the first player places one black marker peg per correctly colored-and-
placed guess peg and one white marker peg per correctly colored-but-not-placed
guess peg. Modern (computer) versions of the game have options to use more
colors (often eight or nine) and/or more guess peg holes (usually five).
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For our discussion, we will call the six guess peg colors R, Y, G, B, K, and
W and the two marker peg colors k and w. With this nomenclature, we give an
example.

Example 6.13.1. Suppose you and I are playing. I hide the peg sequence RYKR.
You guess GGRR, so I respond kw because one of your reds is in a correct posi-
tion and one is in an incorrect position, but neither of your greens appears in my
sequence. You then guessBBYY, and I respondw because neither of your yellows
is in a correct position.

For maximal enjoyment of this topic, you may wish to play a few games of
Mastermind on a computer or mobile device in order to familiarize yourself with
the thinking of a mastermind. Note how many guesses it takes each time so you
can compare with our later results.

Now for some mathematics. If the second player seriously wants to win, ze
needs to definitively determine what the peg sequence is. There is some huge
number of possibilities for the possible guess sequences, and ze needs to narrow
this huge number down to one so that ze is certain of hir final answer. How large
is that huge starting number?

Pause. Try to think of how large this number will be. Don’t read further un-
til you’ve thought for at least 30 seconds. (Maybe close the book so you’re not
tempted to look further for the answer.)

Solution. Let’s use the product principle. There are four pegs in the sequence, and
each can be one of six possible colors, so we see that there are 6 ·6 ·6 ·6 = 1,296
possible sequences for the first player to choose. How will we get this cut down
to one?

6.13.1 One Strategy for Playing

Wewill focus on the strategy employed by the second player, as this is where bino-
mial coefficients and permutations and algorithms arise. Usually when one plays
games, one employs intuitive strategies of what will help one win. However, in
games such as Mastermind where one’s number of moves is limited, developing
efficient strategies and following them (sometimes disregarding intuition) is help-
ful. (This is akin to basing policy decisions or medical diagnoses on the results
of studies rather than on gut feelings or anecdotal evidence. As a mathematics
student, you should learn how to act in accordance with logical thinking, even if
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you do not always choose to act this way.) We will attempt to use mathematics
to develop a good strategy forMastermind, and to make sure it is an easily usable
strategy, we will write it as an algorithm.

A naive approach is to start with six guesses: RRRR,YYYY,GGGG,BBBB,
KKKK, and WWWW. The only responses player 1 can give are black mark-
ers (why?), and between the six guesses there will be exactly four black markers
(why?), so these guesses tell us which colors are present in the hidden peg sequence
and how many times each occurs.

Pause. If we know which colors are present in the hidden peg sequence and how
many times each occurs, what is the largest number of possibilities left for the
sequence? Don’t read further until you’ve thought for at least 30 seconds. (Maybe
close the book so you’re not tempted to look further for the answer.)

Solution. This time we will use permutations. The most possibilities are present
when the four colors are different. Those four colors might have been placed in
any order, so there are 4! = 24 different possibilities that remain. We have used
six guesses to cut down the number of possibilities from 1,296 to 24, or by a factor
of 54. That’s pretty good bang for the buck.

If by chance we have a repeated color, the number of possibilities remaining is
even smaller. There are lots of cases here, represented without loss of generality
using examples fromR,Y, andG: we could have something likeRRYG orRRYY
or RRRY or RRRR. We also know which type of hidden peg sequence we have
from our original six guesses. Let’s figure out how many possibilities there are if
our original six guesses reveal that we have two Rs, one Y, and one G.

Pause. Write out all possible peg sequences using two Rs, one Y, and oneG. Do
you see any patterns that would allow you to count these efficiently instead of by
brute force? Think on this for at least 30 seconds.

Solution. We’ll approach this in two ways. First, let’s pretend the two reds are
different by labeling them Ra and Ro. Then we have 24 different orderings of
RaRoYG; however, Ra is the same color as Ro so we counted each possibility
twice (e.g., RaRoYG and RoRaYG both correspond to RRYG). Thus, we need
to divide by 2 and we obtain 12 possibilities.

On the other hand, we could think of the holes into which the pegs are placed.
Two of those holes will be filledwithRs, and there are

(4
2

)
ways to place them. This

leaves two blank holes that could be filled with Y on the left or G on the left (so
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two possibilities), and the product principle says we get a total of
(4

2

)
·2= 6 ·2= 12

possibilities.

We will leave the counting of the possibilities of the other cases as an exercise.
Still, the way we treat any one of the cases (including the one with four different
colors) can be seen as an example of an overall algorithm:

1. Let the set of possible hidden peg sequences under consideration be calledH.
2. Begin with all possibilities, so that |H|= 1,296.
3. Guess one of the possibilities inH and get feedback from the other player.
4. Using this knowledge, revise H by removing all hidden peg sequences
that are not possible sequences for this game.

5. If |H| ̸= 1, go to step 3.

Our goal is to create a version of this algorithm that loops through step 3 the
fewest times possible.

6.13.2 Mini-Project

1. As a warm-up, use the following guesses and feedback information to de-
termine the hidden peg sequence.

Guess Response
RYRY none
GBGB none
KWKW bbb
KKWK ww

2. Let’s make sure we’re fully warm—determine the hidden peg sequence from
the following guesses and feedback.

Guess Response
KKWW none
KBKB none
GGYY bb
GRGR bw
RYRY bbww

3. Why is there no hidden peg sequence that could correspond to these guesses
and feedback? Explain.
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Guess Response
GKGK w
WYWY b
BRBR w
GWBR bwww

4. Same here: why is there no hidden peg sequence that could correspond to
these guesses and feedback? Explain.

Guess Response
RYGG bbww
GYRG bwww
YRGG wwww

5. How many different feedback sequences could player 1 give? Explain.

6. This exercise was promised earlier in this section: How many hidden peg
sequences use…

(a) … two Rs and two Ys?
(b) … three Rs and one Y?
(c) … four Rs?

Try to count efficiently.

7. Now we will start to develop a reasonable algorithm for beating Master-
mind. Above, it was suggested that the six guessesRRRR,YYYY,GGGG,
BBBB,KKKK, andWWWW would tell us which colors are present in the
hidden peg sequence and how many times each occurs. Suppose we only
use the first five of the guesses. How does that change the information we
have?

8. After determining which colors are present in the hidden peg sequence, we
know that there are at least two colors not present (because there are six
possible colors and only four positions for pegs). Let C be a color that is
present in the sequence, and let N be one of the colors that is not present.
What information is gained from the guesses CNNN, NCNN, NNCN, and
NNNC?

9. Using the ideas developed in the previous two questions, write an algorithm
that takes no more than 11 guesses.

Still, we should be able to do better. If you’ve played Mastermind several
times, you know that you often do better than 11 guesses without using mathemat-
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ics. There is an excellent algorithm that uses no more than five guesses, introduced
by Donald Knuth. Sadly, it is not quick to develop or explain, as Knuth generated
it using a computer. However, the algorithm is of the same type as the overall algo-
rithm given above, and the paper in which Knuth published his algorithm and proof
that it works is relatively easy to read. The reference is Donald E. Knuth, “The
Computer as Master Mind,” J. Recreational Mathematics, Vol. 9, No. 1 (1976–
77), pp. 1–6, and it can be downloaded from http://colorcode.laebisch.com/links/
Donald.E.Knuth.pdf (at least as of April 2018).

6.14 Bonus Check-Yourself Problems
Solutions to these problems appear starting on page 606. Those solutions that model a
formal write-up (such as one might hand in for homework) are to Problems 9 and 10.

1. Find a combinatorial proof for the iden-
tity ∑n

k=0 k
(n

k

)
= n2n−1.

2. Show that if n is even and k is odd, then(n
k

)
is even.

3. Evaluate
2m

∑
r=0

3r22m−r
(

2m
r

)
.

4. The four students Ariel, Bingwen,
Clarissa, and Dwayne have albums they
need to listen to for a music appreci-
ation class: Duck Rock (by Malcolm
McLaren), Duck Stab (by The Resi-
dents), Quack (by Duck Sauce), and
This Time (by Galapagos Duck).

(a) How many ways are there to match
the students with the albums?

(b) The library has two listening rooms,
each of which has two listening sta-
tions. How many ways are there to
pair the students in the rooms?

(c) Suppose the students have to sign
up in advance, so they have to spec-
ify which listening station each stu-
dent is using. Now how many ways
are there for the students to be dis-
tributed into the rooms?

5. Give a combinatorial proof that
(n

4

)
=

n!
4!(n−4)! =

n(n−1)(n−2)(n−3)
24 .

6. At the art museum, you are decorat-
ing a round spinny top with stickers.
However, this is an anti-creative art mu-
seum, so there are only four equally
spaced spots on the spinny top that are
designated for receiving stickers, and
there are only two colors of sticker
available—gray and grey. How many
ways are there to “decorate” the spinny
top? (There are quotation marks be-
cause it is hard to envision the spinny
top as actually being decorated….)

7. There are 18 students gathering to work
on making a campus duck pond. They
need to work in groups of three on vari-
ous tasks. Howmany ways are there for
the students to form groups?

8. Conjecture and prove a binomial iden-
tity for ∑n

i=0
( i

5

)
.

9. Find the coefficient of x4y6 in
(5x2 −3y3)4.

10. Prove that
(2n

2

)
= 2
(n

2

)
+n2.

http://colorcode.laebisch.com/links/Donald.E.Knuth.pdf
http://colorcode.laebisch.com/links/Donald.E.Knuth.pdf
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6.15 Problems Binomially Combinatorial in Nature

1. These are super-quickies:
(a) Howmanyways can you choose one

insect from a collection of 5 butter-
flies and 11 ants?

(b) Howmanyways can you choose one
flower from a garden of two roses,
six lilies, and eight birds of par-
adise?

(c) Howmanyways can you choose two
pieces of fruit from a bowl contain-
ing one persimmon and four man-
goes?

(d) How many ways can you choose
nine spiders from ten spiders?

2. In Section 6.2, we proved that
(n

k

)
=(n−1

k

)
+
(n−1

k−1

)
. Adapt this proof to

use any particular sugar-number (dye it
pink) instead of the sugar-number n.

3. When a new session of Congress is in
session, at the first formalmeeting of the
HouseWays andMeans Committee, ev-
ery pair of Representatives must shake
hands. (Indeed, that’s made up.) The
committee has 41 members. (That, on
the other hand, is not made up.) Give
two different expressions (with expla-
nation) for the number of handshakes
that occur at the first formal meeting.

4. Using the computational tool that
(n

k

)
=

n!
k!(n−k)! , find formulas for

(n
0

)
,
(n

1

)
,
(n

2

)
,

and
(n

3

)
. Give combinatorial proofs of

the first two of these formulas.
5. Prove that if p is prime, then p |

(p
j

)
for

0 < j < p.
6. Prove that for n ≥ 2, 2

(n
2

)
+
(n

1

)
= n2.

7. Use a combinatorial proof to show that(2n
n

)
is even for n > 0.

8. Let n be even. What is the relation-
ship between the number of subsets of
{1,2, . . . ,n} of odd size and the number
of subsets of {1,2, . . . ,n} of even size?
Explain. Problem 5 of Section 6.3 may
be of assistance.

9. Compute ∑m
j=0 3 j

(m
j

)
. The result should

be somewhat familiar. Then, use the bi-
nomial theorem to verify the result.

10. TheMassachusettsMegabucks Doubler
lottery game lets you pay $1 in ex-
change for the privilege of filling out
a ticket with six different numbers that
range from 1 to 49. Howmany ways are
there to fill out the ticket?

11. Compute ∑n
k=0

1
k+1

(n
k

)
for n = 3,4, 6,8.

(A computer algebra system can make
quick work of this task.) Using this in-
formation, conjecture a formula for this
sum.

12. Challenge: Use induction to prove that
∑n

k=0 k
(n

k

)
= n2n−1.

13. In a ballroom dance class, participants
are divided into couples for each drill
session. One partner leads and the other
follows for three minutes, and then the
couple switches roles for the next three
minutes.
(a) Only four people show up on time.

How many ways are there to pair
them up?

(b) If instead six people show up on
time, how many ways are there to
pair them up?

(c) Assume all m people in the class ar-
rive on time. (There are an even
number of people in the class.) How
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many ways are there to pair them
up?

14. Consider the previous problem, this
time assuming that we specify which
member of each couple leads first. How
many ways are there to pair-and-specify
the dancers?

15. Figure 6.6 shows a polyhedron with 60
vertices. (Note that at each vertex, two
squares meet one triangle and one pen-
tagon.) How many edges does it have?
Explain, perhaps by overcounting care-
fully.

Figure 6.6. I am a Small Rhombicosi-
dodecahedron. (Yes, “Small” is offi-
cially my first name. One of my rela-
tives has the first name “Large.”)

16. There is a very quick way to compute
∑q
ℓ=0 2ℓ(−1)q−ℓ

(q
ℓ

)
; do use it.

17. Find a combinatorial proof that
n
(n−1

k

)
= (k+1)

( n
k+1

)
.

18. Find a combinatorial proof that
n
(n−1

k−1

)
= k
(n

k

)
.

19. Find a combinatorial proof that
n(n−1)

(n−2
k−2

)
= k(k−1)

(n
k

)
.

20. Calculate ∑n
k=0
( n

2k

)
for n = 2,3,4. Use

these data to find an identity of the form
∑n

k=0
( n

2k

)
= ???. Now prove that your

identity holds.

21. Compute
s

∑
r=0

64r(−64)s−r
(

s
r

)
.

22. Show that
n

∑
i=1

(
i
2

)
=

(
n+1

3

)
.

23. Use Problems 6 and 22 to develop (and
prove) an identity for ∑m

j=1 j2. Be care-
ful about the lower index for your sum.

24. Challenge: In Section 3.4, we counted
the number of functions from an m-
element set to an n-element set (and ob-
tained nm) and the number of injections
from an m-element set to an n-element
set with m ≤ n (and obtained n · (n−1) ·
· · · · (n− (m−1)), or

(n
m

)
m!). Suppose

we count surjections from anm-element
set to an n-element set. How many are
there?

25. Find a more direct combinatorial way to
show that

(n
k

)
= n!

k!(n−k)! than in Prob-
lem 1 of Section 6.6. Here are some
questions to guide you in your search.

(a) First, we lay our n sugar-numbers
out in a line, in some order (probably
with no discernable pattern). How
many ways are there to do this?

(b) Separate the first k of the sugar-
numbers from the remaining n− k.
In how many ways could the first k
sugar-numbers have been ordered?

(c) In howmanyways could the remain-
ing n− k sugar-numbers have been
ordered?

(d) Assemble the information you have
gathered so far to produce a new ex-
planation for how to compute

(n
k

)
.

26. Revisit the octahedron from Figure 6.5.

(a) Using the number of vertices, and
the relationship between vertices
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and faces, count the number of
faces.

(b) Using the number of edges, and
the relationship between edges and
faces, count the number of faces.

27. Let us construct a new Pascal-ish trian-
gle. We start with a 1 at the top, and
then in each successive row, each entry
is the sum of the number diagonally left
above and twice the number diagonally
right above.
(a) Write out the first 5 rows of this

Pascal-ish triangle.
(b) What is the sum of the nth row?
(c) Let the kth number in the nth

row be denoted by [n△k]. Write
a binomial-like theorem for the
Pascal-ish triangle, of the form
(stuff)n = ∑n

k=0[n△k]xn−kyk.
(d) Now use the binomial theorem to

get a new expression of the form
(stuff)n = ∑n

k=0
(n

k

)
things. What for-

mula do you now have for [n△k]?
(e) Challenge: Weknow that

(n
k

)
counts

the number of subsets of {1, . . . ,n}
of size k. Find a characterization
for [n△k] in terms of subsets of
{1, . . . ,n}.

28. Find the coefficient of x5y3 in (12x −
4y3)6.

29. Return to the 60-vertex polyhedron in
Figure 6.6, where at each vertex, two
squares meet one triangle and one pen-
tagon. How many faces of each size,
and in total, does the polyhedron have?

30. The garden has room for eight rows
of plants. Your seed bin contains 12
vegetable-seed packets and six flower-
seed packets.

(a) How many ways are there to choose
four kinds of vegetables and four
kinds of flowers to plant?

(b) You decide you’d rather have six
rows of vegetables bordered by two
rows of flowers. Now how many
ways are there to choose the seeds
to go in your garden?

(c) In each of the situations (a) and (b),
how many different ways are there
to plant your garden?

31. Your duck-loving young cousin has
pulled the books Hey, Duck!, Just a
Duck?, and Sleepover Duck! by Carin
Bramsen, Giggle, Giggle, Quack and
Duck for President by Doreen Cronin,
Duck, Death and the Tulip by Wolf Erl-
bruch, and Duck on a Bike by David
Shannon off a shelf. How many ways
are there to put four of the books back
on the shelf?

32. Evaluate
c

∑
a=0

(−4)a
(

c
a

)
.

33. Intrepid spy Pvaanzba Ohaf looks un-
der a door and sees 21 human foot-
containing shoes. Howmany people are
in the room?

34. Challenge: You are given a long sum
· · ·+495b18 +4,455b16 + · · · and know
this is a binomial expansion. What are
the values of x, y, and n?

35. A hungry person needs a snack. This
could be two mini granola bars (there
are four different flavors and no one
wants two of the same flavor for a
snack) or a cracker pack (there are seven
kinds of these) or a packet of M&M’s
(milk chocolate, dark chocolate, peanut,
peanut butter, mint). How many ways
can a snack be selected?
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6.16 Instructor Notes
This is a very problem-oriented chapter; there are enough problems between Sections 6.3,
6.6, and 6.9 to use an entire week (or more!) of class time. As preparation for the first class
meeting, assign students to read Sections 6.1 and 6.2 and attempt the Check Yourself prob-
lems. At the first class meeting, my suggestion is to warm up the students by reminding
them of the definition of

(n
k

)
and computing a couple of small-value binomial coefficients,

such as
(4

2

)
and

(5
4

)
. Then have the students work on Section 6.3. For the second class

meeting, have students read Sections 6.4 and 6.5 and attempt the Check Yourself prob-
lems. At that meeting, ask whether they have questions over the reading and then have the
students work on Section 6.6. For the third class meeting, have students read Sections 6.7
and 6.8 and attempt the Check Yourself problems. Start the last class meeting of the week
by reminding students that because 1+ 1 = 2, the binomial theorem shows that the sum
of the entries in the nth row of Pascal’s triangle is 2n. Then have the students work on
Section 6.9. They are likely to find the combinatorial proof problems quite difficult; the
goal is to have them start to understand combinatorial proof, not to master it. Be sure
to leave time for discussion each day so the students achieve some closure on the main
concepts. If some students whip through these problems, a nicely challenging supplement
that is suitable for groupwork would be Problems 13 and 14 of Section 6.15.



Chapter 7

Balls and Boxes and PIE:
Counting Techniques

7.1 Introduction and Summary

In this chapter, wewill consider more advanced counting questions and techniques.
At the start, we will examine a range of combinatorial questions commonly en-
countered and reframe all of these in the language of distributing balls into boxes.
Later in the chapter, we will try to figure out howmany ways there are to distribute
balls into boxes. That sounds simple, but there are lots of variations: Are the balls
identical, or are they labeled? What about the labeling of the boxes? Does it mat-
ter whether any box is empty? It turns out that addressing some of the possible
scenarios is quite difficult and well beyond this text! We will focus on balls-and-
boxes problems that can be answered using binomial coefficients or permutations
in interesting ways. We will also work with the principle of inclusion-exclusion,
or PIE for short. Back in the old days of Chapter 1, we used the sum principle to
determine the size of a collection of disjoint sets; PIE reveals how to determine the
size of a collection of sets that are not disjoint. One application of PIE is to Venn
diagrams and how to figure out the number of objects represented by one of the
regions of a Venn diagram given sufficient information about the other regions.

7.2 Combinatorial Problem Types

The most difficult part of solving a counting problem is determining what type
of problem it is. There are certain words, phrases, and ideas commonly used in
counting problems that can help determine the problem type, so we will outline
those here. We begin with an example.

Example 7.2.1. Consider the question, “Howmany different seven-digit telephone
numbers are there?” We may think of each digit of the phone number as a slot or

207
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1 2 3 n

Figure 7.1. A line of empty, labeled boxes.

box into which we must place a number. The order of the digits in the telephone
number does matter (as you’ve surely noticed if you’ve accidentally reversed a
pair of digits while dialing), and so these boxes are distinguishable, or labeled.
We may also think of the possible one-digit numbers as balls labeled with those
ten different one-digit numbers. We have a large number of balls with each label,
and we must place one labeled ball into each labeled box. Thus, we have now
converted the question into, “How many ways are there to place one labeled ball,
with ten possible labels, into each of seven labeled boxes?”

Notice that we did not discuss how to solve the problem in Example 7.2.1.
In this section, we are primarily concerned with identifying which problem type
we have encountered. Once the problem type has been identified, the solution
becomes straightforward (after you have understood that solution type! These
are detailed in Section 7.4). We will translate all problems into the same frame-
work so that we have a single typing system; that universal framework is balls
and boxes.

We will only consider balls-and-boxes problems that involve labeled boxes
because unlabeled-box problems lead to concepts beyond this course (such as in-
teger partitions and Stirling numbers). This also simplifies matters because every
problem can be conceived as beginning with a row of empty boxes in a line (see
Figure 7.1). After you see our list of problem types (below), you will surely think
of other related problem types that could conceivably be encountered. Rest assured
that those problems have solutions you don’t yet want to confront.

Question A. How many ways are there to place k differently labeled balls,
at most one per box, into n labeled boxes?

Notice that k must be less than or equal to n for this to be possible. See
Figure 7.2 for a visualization of this question. The fact that the balls are la-
beled means that it matters which ball is placed in a given box. That is, the
order in which they appear matters. This is sometimes abbreviated as order
matters or ordered. The restriction that at most one ball may be placed in any
box means that each ball label will only appear once. In other words, the ball
labels do not repeat; this is referred to as a problem without repetition.
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1 3 n–12 n

k 3
5

Figure 7.2. Shown are k differently labeled balls, placed (at most one per box) into n
labeled boxes.

Example 7.2.2. In your extended family (nephews, nieces, cousins, …), there are
12 children between the ages of four and ten. You have knitted six differently
colored pairs of mittens. How many ways are there to give out the mittens at the
wintertime family reunion? Because the pairs of mittens are different colors, they
are not identical, and therefore, it matters which child receives which pair of mit-
tens. Additionally, the children are all different. The problem does not explicitly
say that no child can receive more than one pair of mittens, but it would be rea-
sonable to interpret the problem in this way (as there are not enough mittens to go
around). Translating, we may consider each pair of mittens to be a labeled ball
and each child to be a mitten-receiving box. Our question then becomes, “How
many ways are there to place six labeled balls, at most one per box, into 12 labeled
boxes?” One might wonder why we chose to consider mittens as balls and chil-
dren as boxes, rather than the other way around. This is because we are not asking
multiple children to share a pair of mittens, as would happen if we were placing
all 12 balls (children) in only six boxes (pairs of mittens).

Question B. How many ways are there to place k identical (unlabeled) balls,
at most one per box, into n labeled boxes?

(Again, k must be less than or equal to n for this to be possible.) See Fig-
ure 7.3 for a visualization of this question. Because the balls are not labeled,
it does not matter which ball ends up in which box. In other words, the order
in which they appear in the box line does not matter. This is often abbreviated
as order doesn’t matter or unordered.

This is a problem without repetition: each box label will only appear once
because of the restriction that at most one ball may be placed in any box.

2 n–1 n31

Figure 7.3. Shown are k unlabeled balls, placed (at most one per box) into n labeled boxes.
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k

1 3 n–1

24 k
1

2 n

Figure 7.4. Balls with k different labels, placed (with exactly one per box) into n labeled
boxes.

Example 7.2.3. You are asked to distribute fliers for the student dance company
performance at your introductory salsa class. However, the publicity director only
gave you 15 fliers and there are 40 students in your salsa class. How many ways
are there to distribute the fliers? Here, the fliers are identical, and so unlabeled, but
the students are all different (and so labeled). Therefore, if we are to make balls
and boxes of this situation, the students must correspond to boxes (and that leaves
the fliers as balls). Moreover, it would be silly to give multiple fliers to any person
when we want to distribute publicity materials, so we will distribute at most one
flier per student. Our question has become, “How many ways are there to place
15 identical balls, at most one per box, into 40 boxes?”

Question C. How many ways are there to place balls, exactly one per box,
with k different possible labels, into n labeled boxes?

See Figure 7.4 for a visualization of this question. Here, order matters
(the balls are ordered). The order in which the balls appear matters because
the balls are labeled; it makes a difference which ball is placed in which box.

Example 7.2.4. In order for a computer system to be at all secure, there must be
enough different possibilities for passwords that a hacker can’t just try all of them
and thus succeed in breaking into a given account. The Bank of Önd uses eight-
character passwords and allows the use of letters and numbers. Howmany possible
passwords are there? The order of the characters in a password certainly matters,
so the eight positions are labeled; additionally, which character appears in each
position matters, so the characters are labeled as well. In creating a password, a
user may use a letter or number more than once in different positions. Thus, the 26
letters and 10 numbers cannot be boxes and instead must be balls. The positions
naturally correspond to boxes. Our question is now, “How many ways are there to
place one ball, with 36 different possible labels, into each of eight labeled boxes?”

We also addressed this problem type in Example 7.2.1.
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2 n–11 3 n

Figure 7.5. Shown are k unlabeled balls placed into n labeled boxes.

Question D. How many ways are there to place k unlabeled balls into n
labeled boxes?

Notice that some boxesmay be empty, and others may havemultiple balls.
See Figure 7.5 for a visualization of this question. Because the balls are not
labeled, order doesn’t matter (the balls are unordered); it does not make a
difference which specific ball ends up in which box, so the order in which the
balls appear does not matter.

The fact that a box may contain more than one ball means that the use of
a box as a ball destination can be repeated. Thus, this is sometimes referred
to as repetition allowed or with repetition.

Example 7.2.5 (secretly three examples). Suppose an ogre is distributing 43 cup-
cakes to 12 baby mice. The ogre is, of course, cruel (almost by definition) and
will sometimes deny cupcakes to some of the baby mice. (Yes, it’s terrible. Try to
make it through.) Howmanyways are there for the ogre to distribute the cupcakes?
The baby mice are all different, and thus labeled. On the other hand, the cupcakes
are all the same, and thus unlabeled. (Even if a human can tell the difference be-
tween delicately decorated cupcakes, an ogre will treat all tiresome cupcakes as the
same.) Therefore, the cupcakes correspond to balls and the baby mice correspond
to boxes. It only remains to determine what constraints (or lack thereof) there are
on the number of balls per box. No constraints are given, and with 43 cupcakes for
12 baby mice, there are enough to go around, so our question has become, “How
many ways are there to place 43 unlabeled balls into 12 labeled boxes?”

Consider a second question. How many ways are there to line up five grey
ducks and two white ducks? We will later see that thinking of this problem in
terms of balls and boxes may not be the fastest way to develop a solution, but it is
worth seeing that the problem does fit into our framework. The initial difficulty is
that it does not appear that either the grey ducks or the white ducks are labeled, and
we know that every ball-and-boxes problem requires labeled boxes. Let us suppose
that the grey ducks correspond to balls. There are three categories of grey duck in
our duck-y lineup, namely those to the left of both white ducks, those between the
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two white ducks, and those to the right of the two white ducks—they will become
our labeled boxes. That transforms our question into, “How many ways are there
to place five unlabeled balls into three labeled boxes?” Now suppose instead that
the white ducks correspond to balls. In our duck-y lineup, there are six categories
of white duck, namely those to the left of all five grey ducks, those between the
first two grey ducks, those between the second and third grey ducks, those between
the third and fourth grey ducks, those between the fourth and fifth grey ducks, and
those to the right of all five grey ducks. These six different categories of white duck
can become our labeled boxes. This transforms our question into, “How many
ways are there to place two unlabeled balls into six labeled boxes?” Probably you
are quite concerned now, because we have created two different questions from
our original query about duck lineups. As you will discover in Section 7.4.3, these
two questions have the same answer—and in Problem 21 in Section 7.11, you will
discover that for any similar situation, those two questions will always have the
same answer.

Finally, consider a third question. Howmany nonnegative integer solutions are
there to the equation a+ b+ c = 5? This is completely mysterious (there are no
obvious candidates for balls or boxes) until we observe that 5 = 1+1+1+1+1.
Each of a, b, and c is a sum of some number of 1s (perhaps zero 1s), where there
are five total 1s. Thus, we need to distribute the 1s into the variables—so the 1s are
unlabeled balls. Moreover, the variables are different from each other; we usually
consider a= 1,b= 4,c= 0 to be a different solution than a= 4,b= 1,c= 0. Thus,
the variables can be viewed as labeled boxes. Now, our question has become,
“How many ways are there to place five unlabeled balls into three labeled boxes?”

Question E. How many ways are there to place k labeled balls into n labeled
boxes, where k j balls are placed into the jth box?

See Figure 7.6 for a visualization of this question. The balls are unordered
(order doesn’t matter). Because the balls are labeled, it matters which ball
ends up in which box. However, the order in which balls appear in a given
box does not matter.

1

9

2

5
2k–1

7

6

3

1 3 n–1 n

Figure 7.6. A total of k differently labeled balls, with k j placed in the jth of n labeled
boxes.
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Example 7.2.6. At a party, there are 20 bite-sized pieces of fancily decorated straw-
berry cake and three fairies who would like some. After some fey nitternattering,
the fairies decide that the first fairy will receive five bites of strawberry cake, the
second fairy will receive eight bites of strawberry cake, and the third fairy will
receive seven bites of strawberry cake. How many ways are there to distribute the
fancily decorated strawberry cake bites among the fairies? Here the reader has to
do a bit of deciphering. The fairies are certainly different from each other, and
because they will receive cake, it seems likely that we could consider them boxes.
This would make the cake pieces balls—but are they labeled or unlabeled? If they
were unlabeled, then there would only be one way to distribute them. Thus, it
seems they should be labeled. In fact, the wording of the problem supports this:
When fancily decorated cake is cut, different pieces have differing amounts and
patterns of frosting. Thus, our question is now, “Howmany ways are there to place
20 labeled balls into 3 labeled boxes, with those boxes receiving 5, 8, and 7 balls
respectively?”

Interestingly, the answer to this question type is the same as the answer to the
question, “How many ways are there to rearrange the letters of a given word?”
but this question cannot be recast as a balls-and-boxes question in an intuitively
helpful fashion.

Check Yourself

Rephrase the following situations as balls-and-boxes problems. Unless you have been
instructed to consider only a few of the problems, please try to address all of them.

1. Howmany ways are there to give four snacks to six puppies, with no more than one
snack going to each puppy?

2. How many ways are there to give four snacks to six puppies, with gluttony and
cruelty allowed?

3. How many ways are there to deal five ace cards and four queen cards to nine card
players?

4. How many ways are there to feed 12 spinach stems (of different lengths) to four
ducks such that the grey duck gets five spinach stems, the white duck gets five
spinach stems, and the pale-grey and black ducks get one spinach stem each?

5. How many ways are there to arrange 5 monster figurines and 12 angel figurines in
a line on a shelf?

6. How many ways are there to distribute three chocolates (one white, one milk, and
one dark) to four classmates, at most one chocolate per classmate?
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7. Howmany ways are there to put a star sticker (they come in gold, silver, red, green,
and blue) on every student’s paper in your class?

8. How many ways are there to give two different catnip toys to five cats, such that
no cat gets more than one toy?

7.3 Try This! Let’s Have Some PIE

Think for a moment way back to the beginning, to Chapter 1, where we encoun-
tered the sum principle; it allowed us to calculate the size of two disjoint sets (said
boringly). For example, the total number of pastilles, some of which are in the
set of anise pastilles A and some of which are in the set of violet pastilles V , is
|A|+ |V |. But we are at a loss when there is overlap between our sets, as when
we wish to know the total number of pastilles, but some of the pastilles are anise-
violet flavor and we are only told |A| and |V |—the sum would double-count the
anise-violet pastilles. Let’s experiment.

1. At Bakery Patitsa (in Bulgaria), there are 25 pies available: 10 contain blue-
berries, 15 contain peaches, and 5 are blueberry-peach pies. The only other
offering at Bakery Patitsa is chocolate mousse pies. How many fruit pies
are available? How many chocolate mousse pies are available?

2. Let’s borify: If we have A ⊂ Q and B ⊂ Q, and you are given the values
of |A|, |B|, and |A∩B|, then how can you determine |A∪B|? How about
|Q\ (A∪B)|?

3. Back at the bakery, there has been a disaster. A contingent of crazy crim-
inal clowns arrived and stole a bunch of the pies, taking some with them
to eat, throwing others at each other’s (and customers’!) faces, and smear-
ing pie filling on the glass of the cases before leaving. While a counter
clerk cleans the cases, the bakers rush to the market to get more ingredients
and frantically bake more pies. The result is seven apple-containing pies,
eight strawberry-containing pies, five rhubarb-containing pies, three pies
containing both apple and strawberry, four pies containing both strawberry
and rhubarb, and one apple-strawberry-rhubarb pie that is bought seconds
after it comes out of the oven. (Later it was noticed that this last pie was
also the one pie containing both apple and rhubarb.) How many total pies
did the bakers bake?
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4. What would a convenient formula be for |A∪B∪C| in terms of sizes of
individual sets and their intersections?

5. In an explosion of creativity, the bakers combine apples, blueberries, cher-
ries, dates, figs, gooseberries, and huckleberries into all sorts of pies. Can
you conjecture a formula to help determine the total number of pies baked,
given the number of pies containing each subset of the filling fruits? If this
proliferation of pies is too overwhelming to contemplate, first consider the
situation of the trainee baker who is only allowed to use four fruit fillings in
all possible combinations.

7.4 Combinatorial Problem Solutions and Strategies

In this section, we will outline solutions for the problem types introduced in Sec-
tion 7.2 and introduce a few combinatorial strategies for approaching different
types of problems. Most of our solutions proceed by combinatorial proof.

7.4.1 Strategy: Slots

For some combinatorial problems, the simplest way to approach a solution is to
imagine filling some slots. By slot, we mean an area reserved in which to place
something, visualized as . This harkens back to Chapter 1; see Figure 1.3 in
particular for how slots were used with the product principle.

Example 7.4.1. We return to the situation of Example 7.2.1: How many different
seven-digit telephone numbers are there? We may think of this as needing to fill
the seven slots . Now, there are ten different digits
that can be placed in each slot, which by the product principle tells us there are
10 ·10 ·10 ·10 ·10 ·10 ·10 = 107 different seven-digit telephone numbers.

Example 7.4.2. The second question of Example 7.2.5 asks, “How many ways are
there to line up five grey ducks and two white ducks?” Again we have seven slots

, but this time we are not going to fill them one at a
time. Instead, we will place the white ducks and then let the grey ducks walk to
the remaining slots. There are

(7
2

)
ways to place the white ducks because we wish

to choose two of the seven slots for them to stand in. That’s all there is to it! Notice
that we also could have placed the grey ducks first and let the white ducks walk to
the remaining two slots, which would have resulted in

(7
5

)
ways; luckily,

(7
5

)
=
(7

2

)
.

(Actually, no luck was involved.)
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Example 7.4.3. Now for a new question. How many seven-digit telephone num-
bers have exactly three even entries? We still have seven slots, but we need to do
some fancier counting than in the previous examples. There are

(7
3

)
ways to deter-

mine which three digits will be even. Then, for each of those ways, there are five
ways to fill each even-digit slot (because there are five even digits, namely, 0, 2,
4, 6, and 8) and five (odd) ways to fill each of the remaining four slots. Thus, the
product principle tells us that there are

(7
3

)
· 53 · 54 telephone numbers with three

even entries.

7.4.2 Strategy: Stars and Bars

By stars, we mean … , and by bars we mean | | . . . |. Here is one possible
arrangement of four stars and two bars: | | . When we reframe a problem
so that it is about arranging stars and bars, we call the discussion a stars-and-
bars argument. Stars-and-bars arguments work well for problems that ask for two
different types of items to be arranged in a line and for problems that ask for some
objects to be distributed among some beings. Here are two examples.

Example 7.4.4. Suppose we have six teal owls and three orange cats. How many
ways are there to arrange them in a line so no two cats sit next to each other?

First, we will line up the teal owls. A cat can sit to either side of any owl,
so there are five places between owls, one place to the left of all the owls, and
one place to the right of all the owls for a total of seven places a cat can sit (see
Figure 7.7). We just have to choose three of those, so the total number of ways is(7

3

)
. Here, the owls were like stars, and the cats were like bars—there are

(7
3

)
ways

to arrange six stars and three bars so that no two bars are adjacent.

Figure 7.7. Six owls, with the seven places near them in which a cat could sit.
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Let’s generalize. Suppose that instead we have s stars and b bars to arrange,
and we do not want any two bars to be adjacent. Again, line up the stars; there are
s− 1 spots between the stars plus one spot to either side of the line, so a total of
s+1 spots in which bars can be placed. We can put at most one bar in each spot,
so we just need to choose b of the s+1 spots. This gives us

(s+1
b

)
ways to arrange

the stars and bars so that no two bars are adjacent. Notice that if there are too many
bars, the answer will appropriately be zero.

Example 7.4.5. Back in Example 7.2.5, we had an ogre distributing 43 cupcakes to
12 baby mice. One way the ogre can accomplish its task is to line up the cupcakes,
hand some out to the first baby mouse, tell that baby mouse to shoo, hand some
more cupcakes out to the second baby mouse, tell that baby mouse to shoo, etc. So
the ogre is simply deciding when to shift giving cupcakes from one baby mouse
to the next.

Wewill line up 43 stars (to reframe the problem and get rid of the ogre). Among
them we must place 11 bars. Why 11, you ask? Well, let’s return to cupcakes for
a moment. We need to separate our line of cupcakes into 12 line segments, one
for each baby mouse. So there are 11 separators—the cupcakes to the left of the
first separator will be allocated to the first baby mouse, the cupcakes between the
first and second separators will be allocated to the second baby mouse, and so on,
until we see the cupcakes after the 11th separator given to the 12th (last) baby
mouse.

Now, our question has become, “How many ways are there to arrange 43 stars
and 11 bars?” That’s not so bad. There are 54 slots in which a star or bar can be
placed, so there are

(54
11

)
=
(54

43

)
ways to arrange them.

Again generalizing, suppose we are given s stars and b bars to arrange. There
are
(s+b

b

)
=
(s+b

s

)
ways to arrange them, because there are s+b spaces to fill with

stars and bars and b of themmust be chosen to be bars, or s of themmust be chosen
to be stars.

An Issue. Sometimes problem solvers are confused about when to add one (as
in the number of places cats can sit) and when to subtract one (as in the number
of pauses between baby mice). There is no general rule as to how many slots or
bars there will be for a given problem. You just have to figure it out every time.
One of the goals of this chapter is to help you become familiar with the process of
ferreting out the details of how to count in a given situation. Hopefully, the many
examples given here will be of service.
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7.4.3 Solutions to Problem Types

We now solve all the problems outlined in Section 7.2 (and one bonus problem
type).

Question A. How many ways are there to place k differently labeled balls,
at most one per box, into n labeled boxes?

Solution. If k > n, then there are zero ways. So let us assume k ≤ n. Because the
balls are labeled, it matters which ball lands in which box. Consider the first ball;
there are n choices for which box to toss it in. Similarly, there are (n−1) choices
for the box that will hold the second ball, (n−( j−1)) = (n− j+1) choices for the
box that will hold the jth ball, and (n− (k−1)) = (n− k+1) choices for the box
that will hold the kth ball. Thus, there are n(n−1)(n−2) · · ·(n− k+1) = n!

(n−k)!
ways to place k differently labeled balls, at most one per box, into n labeled boxes.
We could also solve this problem by noting that there are

(n
k

)
ways of picking the

boxes that will receive balls and k! ways to specify which label is on which ball,
for a total of

(n
k

)
k! = n!

(n−k)! ways to place k differently labeled balls, at most one
per box, into n labeled boxes.

For Example 7.2.2, there are
(12

6

)
6! = 12!

6! = 665,280 ways to distribute six
different pairs of mittens to 12 young relatives.

Question B. How many ways are there to place k identical (unlabeled) balls,
at most one per box, into n labeled boxes?

Solution. Again, if k > n, then there are zero ways. So let us assume k ≤ n. We
just need to choose which k of the n boxes will get balls, as the order of the balls
does not matter. Thus, we have

(n
k

)
ways to place k identical balls, at most one per

box, into n labeled boxes.

For Example 7.2.3, there are
(40

15

)
= 40,225,345,056 ways to decide which of

the 40 students in your salsa class will receive the 15 fliers about the student dance
company performance.

Question C. How many ways are there to place balls, exactly one per box,
with k different labels, into n labeled boxes?

Solution. For each of the n boxes, we have k choices as to the type of ball that will
be placed in the box. Thus, by the product principle, we have kn ways to place
balls, exactly one per box, with k different labels, into n labeled boxes.
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2 n–11 3 n

box box box box box

Figure 7.8. The balls from Figure 7.5 lined up between separators.

For Example 7.2.4, there are 368 = 2,821,109,907,456 different eight-charac-
ter alphanumeric passwords available for use by Iceland’s Bank of Önd. Some
quick googling suggests that an ordinary brute-force password-cracking program
can whip through 100 million passwords per second, so it would take about 45
minutes to search through all possible Bank of Önd passwords. Of course, in prac-
tice the search would end when the user’s password is encountered, and how fast
that is depends on where the user’s password falls in the ordering of potential pass-
words that the cracking program uses. Also, in practice there are more efficient
ways to crack a password. (Perhaps the Bank of Önd should use longer passwords,
or make them case-sensitive.)

Question D. How many ways are there to place k unlabeled balls into n
labeled boxes?

Solution. Notice first that there are no restrictions specifying howmany or how few
balls may land in a given box. Therefore there may be zero, one, or many balls in
a box. We will line up the balls and place separators in the line to determine which
balls land in which box. All the balls to the left of the first separator will be tossed
in the first box; those balls between the first and second separators will land in the
second box; and in general, the balls between the ( j−1)st and jth separators will
land in the jth box (see Figure 7.8). Those balls to the right of the last separator
will be in the nth box, so there must be n− 1 separators. (If you wish to think
literally in terms of boxes, each separator corresponds to the right side of one box
glued to the left side of the next box, and the whole assembly is placed under the
line of balls and moved upwards to catch the balls in the boxes.)

With k balls and n−1 separators, we have a stars-and-bars situation: we want
to know how many ways there are to line up k stars and n−1 bars. This becomes
a situation with slots, in which we have k+n−1 slots and must place k stars and
n− 1 bars in those slots. (Two bars next to each other corresponds to an empty
box.) There are

(k+n−1
k

)
=
(k+n−1

n−1

)
ways to do this, and thus

(k+n−1
k

)
=
(k+n−1

n−1

)
ways to place k unlabeled balls into n labeled boxes.
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For Example 7.2.5, we have
(43+12−1

11

)
= 95,722,852,680 ways to distribute

43 cupcakes to 12 baby mice. We also have
(5+2

2

)
= 28 ways to arrange five grey

ducks and two white ducks, which can be recast as
(5+3−1

3−1

)
=
(7

2

)
ways if the grey

ducks are the balls and the white ducks are the boxes, or
(2+6−1

2

)
=
(7

2

)
ways if

the white ducks are the balls and the grey ducks are the boxes. Finally, there are(7
2

)
= 28 nonnegative integer solutions to the equation a+b+c = 5. We will now

give one more example for good measure.
Example 7.4.6. Suppose you wish to get a dozen tulip bulbs at the garden cen-
ter. (They are on sale for $5/dozen.) There are 16 different kinds of tulip bulbs
available. How many ways are there to fill your dozen bag? We place 12 slots in
a line to represent our dozen tulip bulbs. We will place 15 dividers to mark the
places in the line where our tulip bulbs switch between the 16 types. One such
arrangement is

t1 t1 | | t3 t3 t3 t3 t3 | t4 | t5 | t6 | | t8 | | | | | t13 | | | .

Thus, we have 27 spots from which we need to choose the locations of the tulips
(or of the dividers). The total number of ways to fill the dozen bag is then

(27
12

)
=(27

15

)
= 17,383,860, which is a lot. No wonder it takes so long to make decisions

at the garden center!

Question D′. How many ways are there to place k unlabeled balls into n
labeled boxes, so that each box contains at least one ball?

This is a variation on the previous problem, and wemust require that k ≥ n
so that there are enough balls to go around.

Solution 1. Let us start by placing one ball into each box; there is only one way to
do this, as the balls are unlabeled. Now we have k−n unlabeled balls remaining
to place into the n boxes. But this is exactly the same as Question D, so there are((k−n)+n−1

n−1

)
=
(k−1

n−1

)
=
(k−1

k−n

)
ways to place the remaining balls in the boxes.

Solution 2. We will convert this to a stars-and-bars problem. Let the k balls be
represented by a line of k stars. We want to place bars into the line of stars in such
a way that they separate the line into n clumps of stars. This means we need to
place n− 1 bars as separators. How many places are there in which bars can be
placed? There are k− 1 places between stars. (We cannot place a bar to the left
or right of the star line, as it would mean there was an empty box. And we cannot
place two bars into the same place, as that would also indicate an empty box.) That
means we have

(k−1
n−1

)
ways to place k unlabeled balls into n boxes so that each box

contains at least one ball.
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Because this is a new problem type, it deserves some examples to go with it.
We will use variations on Example 7.2.5.

Example 7.4.7 (secretly two examples). Let’s talk about feeding folks cake again.
This time we will feed identical miniature cupcakes to baby mice, but each (polite)
babymouse will pick up some cupcakes in turn. Babymice are nice and, of course,
will make sure that everyone gets at least one cupcake. Therefore, we just need
to help the baby mice decide when one will stop munching and let the next one
start. With c cupcakes, there are c−1 different times that a baby mouse could stop
eating, and if we are feeding b baby mice, there are b−1 transitions between baby
mice eating. Therefore, the number of ways the b baby mice can distribute their c
cupcakes so that every baby mouse gets at least one cupcake is

(c−1
b−1

)
.

Now let us suppose that we want to count positive integer solutions to the
equation a+ b+ c = 5. We can put a 1 in each of the a,b,c variables, and then
have two 1s left to distribute among the three variables. There are

(2+3−1
2

)
= 6

ways to place two bars (that demarcate three variables) among two stars (the 1s),
and so six positive integer solutions to the equation a+ b+ c = 5. Alternatively,
we could choose two of the three variables to get the extra 1s and thus would
have

(3
2

)
= 3 ways of doing it, but we could also give both 1s to one variable and

there are
(3

1

)
= 3 ways of doing that. In total, there are again six positive integer

solutions to the equation a+b+ c = 5.

Question E. How many ways are there to place k labeled balls into n labeled
boxes, where k j balls are placed into the jth box?

Solution 1. We know that k1+k2+ · · ·+kn = k because there are k total balls with
k1 balls assigned to the first box, k2 balls assigned to the second box, and kn balls
assigned to the nth box. Within a given box, the balls are unordered (because we
could have reached a hand in and stirred them). So we can just choose k1 of the k
balls for the first box, k2 of the remaining balls for the second box, and so forth.
Notice that when we get to the nth box, we will have no choice because there will
be exactly kn balls left. Therefore, using the product principle, we see that there are( k

k1

)(k−k1
k2

)(k−k1−k2
k3

)
· · ·
(kn+kn−1

kn−1

)
ways to place k labeled balls into n labeled boxes,

where k j balls are placed into the jth box. (Notice that k− k1 − k2 −·· ·− kn−2 =
kn + kn−1.)

Solution 2. There are k! ways to lay out all the balls in a line. We can then scoop
up the first k1 balls and put them in the first box, the next k2 balls and put them
in the second box, and so forth. However, this overcounts because the balls in a
single box could be stirred into any order within the box. So we need to divide
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by k1! to account for the orderings within the first box all being equivalent, by
k2! to account for the orderings within the second box all being equivalent, and so
forth. Thus, there are k!/(k1!k2! . . .kn!)ways to place k labeled balls into n labeled
boxes, where k j balls are placed into the jth box. Some symbolic manipulation
will show that this solution is equivalent to the choice notation solution above.
(See Problem 3 in Section 7.11.)

In Example 7.2.6, there are
(20

5

)(15
8

)
= 99,768,240 = 20!

5!8!7! ways to give 20
bites of fancily decorated strawberry cake to three fairies, so that the first of the
fairies gets 5 bites, the second gets 8 bites, and the third gets 7 bites.

Question F. How many ways are there to rearrange the letters of a given
word?

Solution. In mathematics, a word is a (finite) sequence of letters from a given
alphabet—not necessarily a word found in a dictionary. If a k-letter word has no
repeated letters, there are k! rearrangements of the letters, or anagrams of that
word. If a k-letter word has some repeated letters, then k! overcounts the number
of anagrams because it treats two identical letters as being different. Thus, we
need to divide by the number of orderings of each repeated letter. If there are n
different letters in the word and the jth letter is repeated k j times, then the number
of anagrams of the word is k!/(k1!k2! · · ·kn!). (For most words, the denominator
will contain a bunch of 1!s.) An example will make this clearer.

Example 7.4.8 (of anagramming three words). First we will count the anagrams of
BOXES; there are 5! of them because all letters are different.

Now consider thewordBALLS. Let us label the repeated letters so that BALLS
becomes BAL1L2S. BAL1L2S has 5! anagrams, though we’ve overcounted be-
cause L1 and L2 could have appeared with L1 first or L2 first, so BALLS has 5!

2!
anagrams.

Finally, notice that PARALLELOGRAMhas 13!
3!2!3! anagrams because the three

As could have been in any of 3! orders, the two Rs could have been in any of 2!
orders, and the three Ls could have been in any of 3! orders.

Solutions summary. The grid in Table 7.1 presents our results in abbreviated form;
each entry contains a question letter and the solution formula.
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How many ways…
… n labeled boxes?

at most one
per box

any number
per box

exactly one
per box

k labeled (ordered) balls A:(n
k

)
k! = n(n−1)
· · ·(n− k+1)

E, F:
(k j balls unordered
within box)

k!
k1!k2!...kn! =

( k
k1

)(k−k1
k2

) (k−k1−k2
k3

)
· · ·
(kn+kn−1

kn−1

)

———

k unlabeled
(unordered) balls

B:(n
k

) D, D′:(k+n−1
k

)
=
(k+n−1

n−1

)
and

(k−1
n−1

)
=
(k−1

k−n

) ———

unlimited balls,
k different labels
(order matters)

——— ——— C:
kn

Table 7.1. Solutions summary.

7.4.4 Denouement: Bijective Counting, Again

Just to call attention to what’s going on underneath the hood in this section: we
are using bijections, lots of them, to accomplish our counting. For example, the
number of ways to choose a dozen duck eggs that come in five colors (white,
brown, cream, green, and speckled) is

(16
4

)
. How can we see the bijections that

are involved? We will make a one-to-one correspondence between duck eggs and
stars, and a one-to-one correspondence between the spaces between piles of like-
colored eggs and bars (see Figure 7.9). Then we’ll spread each pile of eggs out into
a line and discover that we have a bijection between choices of a dozen duck eggs
and star-and-bar sequences of length 16 with exactly 12 stars and 4 bars. There are
certainly

(16
4

)
such sequences because we can make a one-to-one correspondence

Figure 7.9. Eggs correspond to stars and spaces to bars.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 7.10. A choice of a dozen eggs corresponds to a choice of sugar-numbers.

between 16-slot sequences and a bag of 16 sugar-numbers, and choosing which
slots to fill with bars (or which slots to fill with stars) is the same as choosing 4
sugar-numbers (or 12 sugar-numbers) from the bag. A sample choice of eggs with
this sequence of bijections is shown in Figure 7.10.

While we’re discussing bijections, this seems like an appropriate moment to
mention the connection between counting functions of certain types and counting
the number of ways to place balls into boxes. In Section 3.3.1 you counted the
number of functions from an m-element set to a q-element set; this is the same as
counting the number of ways to assign one of the q elements of the target to each
of the m elements of the domain, which is in turn the same as counting the number
of ways to place balls with q labels into m labeled boxes. This is Question C, with
solution qm. Section 3.4 also addresses counting the number of injective functions
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from an m-element set to a q-element set. Here, we cannot use any target-space
element more than once, and some elements of the target spacemay end up unused;
however, all of the elements of the domain are used. Therefore the target-space
elements must represent boxes rather than balls. Thus, this situation is like placing
m labeled balls into q labeled boxes so that each box gets at most one ball. This is
Question A, with solution

(q
m

)
m! = q · (q−1) · · · · · (q− (m−1)).

Check Yourself

Solve the following problems (which, yes, are the same ones posed in the Check Yourself
list for Section 7.2).

1. Howmany ways are there to give four snacks to six puppies, with no more than one
snack going to each puppy?

2. How many ways are there to give four snacks to six puppies, with gluttony and
cruelty allowed?

3. How many ways are there to deal five aces and four queens to nine card players?

4. How many ways are there to feed 12 spinach stems (of different lengths) to four
ducks such that the grey duck gets five spinach stems, the white duck gets five
spinach stems, and the pale-grey and black ducks get one spinach stem each?

5. How many ways are there to arrange 5 monster figurines and 12 angel figurines in
a line on a shelf?

6. How many ways are there to distribute three chocolates (one white, one milk, and
one dark) to four classmates, at most one chocolate per classmate?

7. How many ways are there to put a star sticker (they come in gold, silver, red, green,
and blue) on every student’s paper in your class?

8. How many ways are there to give two different catnip toys to five cats, such that
no cat gets more than one toy?

7.5 Let’s Explain Our PIE!

Hey! You! Don’t read this unless you have worked through the problems in Sec-
tion 7.3. I mean it!

So, let’s check out what we’ve learned (and then figure out why the theme is PIE
rather than, say, pie). We wanted to understand how to find the size of a union of
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A ∩B

A \B B \A

Figure 7.11. The intersection of two sets can be partitioned into three disjoint subsets.

sets when these sets overlap, so that we can avoid accidental overcounting and only
overcount intentionally. Check out the handy Venn diagram in Figure 7.11: notice
that there are three disjoint regions, A \B, B \A, and A∩B. Certainly, |A∪B| =
|A\B|+ |B\A|+ |A∩B|. But generally, this is not the information we’re given—
after all, if that were the case, we could simply have used the sum principle. If we
look at this from an overcounting perspective, we see that |A|+ |B| has counted
the elements of |A∩B| exactly twice. Thus, |A∪B| = |A|+ |B|− |A∩B|, as you
discovered yourself in Section 7.3.

Example 7.5.1. A map is labeled with numbers 1, 2, 3, 4, 5 along the left edge
and letters A, B, C, D, E, F along the bottom. Locations on the map are indicated
by their sectors, e.g., A-4 or D-2. How many ways are there to select two sectors
that both have odd numbers or both have vowels? The total number of sectors is
30, and 3

5 of these (18) are labeled with odd numbers;
2
6 of these (10) are labeled

with vowels. So to get a pair with odd numbers there are
(18

2

)
ways, and to get

a pair with vowels there are
(10

2

)
ways. Still, we have overcounted the pairs with

both odd numbers and vowels, so we need to know how many such pairs there are.
There are three odd numbers and two vowels, so six sectors are labeled with both
odd numbers and vowels, and thus there are

(6
2

)
pairs of such sectors. Therefore,

there are
(18

2

)
+
(10

2

)
−
(6

2

)
= 183 pairs of sectors that both have odd numbers or

both have vowels.

Figure 7.12 shows a Venn diagram for sets A,B,C. We can extend our reason-
ing from two sets to three and obtain the formula |A∪B∪C| = |A|+ |B|+ |C|−
|A∩B|− |A∩C|− |B∩C|+ |A∩B∩C|.

Example 7.5.2. Thirty-five cats are surveyed. Twenty like catnip, 25 like tuna, and
23 like to sleep in the sun; 10 like all three; 15 like catnip and tuna; and 17 like
tuna and sleeping in the sun. How many like catnip and sleeping in the sun?
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A

A ∩B ∩ C

(A ∩B) \ C

(B ∩ C) \A
(A ∩ C) \B

A \ (B ∪ C)

B \ (A ∪ C)

C \ (A ∪B)

B

C

Figure 7.12. All disjoint subsets of three intersecting sets are labeled.

Notice first that while this is a PIE situation, we are not trying to calculate
|C ∪T ∪ S|. Instead, we desire |C ∩ S|. We could use the three-set PIE formula,
plug in the numbers we have, and solve for |C∩S|, but here is a visual approach.
Highlighted at left in Figure 7.13, we seeC∩S. From the given information, we can
fill in |C∩T ∩S|= 10, from which we can deduce that |(C∩T )\S|= 15−10 = 5
and |(T ∩ S) \C| = 17− 10 = 7 (see the center diagrams of Figure 7.13). Then
we are able to see that |T \ (S∪C)|= 25− (10+5+7) = 3. Now in Figure 7.14,
we will focus on the part of the Venn diagram left blank in Figure 7.13 and start
by noting that |(C∪ S) \T | = |C∪ S∪T |− |T | = 35− 25 = 10. We also see that
|C \T |= 20−15 = 5 and that |S\T |= 23−17 = 6. Because 10 = 5+6−1, we
deduce that |(C∩S)\T |= 1, and therefore, |C∩S|= 10+1 = 11.

Notice how this goes: to describe the size of a union of sets, we include the
individual set sizes, but this overcounts pairwise intersections, so we exclude them
(by subtracting their sizes). But in turn, this undercounts triple intersections, so
we include them again by adding their sizes. If there are fourfold intersections,
we will have overcounted them, so we would then exclude (by subtraction) their

C T

S

C T

S

10

C T

S

10

5

7

C T

S

10

5

7

3

Figure 7.13. Venn diagrams showing an approach to determining |C∩S|.
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C

S

C

S

C

S

C

S

10

6

5

1

Figure 7.14. Venn diagrams for (C∪S)\T .

sizes. This is the origin of the descriptor inclusion-exclusion for this technique;
while one might call it “the inclusion-exclusion principle” to parallel the sum and
product principles, that doesn’t lend itself to a happy acronym like PIE (really, IEP
isn’t as fun).

Example 7.5.3 (of apple PIE). A Cortland apple bushel has 35 apples, of which 20
are large, 25 are green, and 23 have stems. Ten of the apples are large, green, and
have stems; 15 are large and green; 17 are green and have stems. How many of
the Cortland apples are large and have stems?

The apple bushel has | L∪G∪S |= 35 apples, and we want to know | L∩S |.
We know from the PIE formula that 35= (20+25+23)−(15+17+ | L∩S |)+10
= 68−32−| L∩S |+10 = 46−| L∩S |, so | L∩S |= 46−35 = 11.

Summary of PIE for two or three sets. We have |A∪B|= |A|+ |B|− |A∩B|,
and |A∪B∪C|= |A|+ |B|+ |C|− |A∩B|− |A∩C|− |B∩C|+ |A∩B∩C|.

It is not super-difficult to see how to extend our formulas to n sets in concept—
just take an alternating sum of many-fold intersections—but figuring out notation
with which to express this idea is a nightmare. Here is one version:

Theorem 7.5.4 (general PIE). Let A1,A2, . . . ,An be subsets of a finite set B.
Then ∣∣∣∣∣ n∪

i=1

Ai

∣∣∣∣∣= n

∑
j=1

(−1) j−1

 ∑
all (n

j) intersections involving j sets

∣∣∣∩Ai

∣∣∣
 .

And you knew we would prove that this is a correct formula, right?

Proof: Wewould like to show that each element of
∪n

i=1 Ai is counted exactly once
by that monstrous double sum on the right-hand side of the equation. To that end,
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consider a∈A1∪A2∪·· ·∪An and let the number of Ai in which a is contained be k.
The items being added up on the right-hand side are all sizes of j-fold intersections
of the Ai, and a is in such a j-fold intersection if and only if a is an element of all j
sets in the intersection (duh, but important). The number of different j-fold inter-
sections containing a is

(k
j

)
. So let’s count: there are k “intersections” containing

a once,
(k

2

)
intersections containing a twice,

(k
3

)
intersections containing a three

times, and so forth, so that a is counted a total of k−
(k

2

)
+
(k

3

)
−·· ·+(−1)k−1

(k
k

)
times. Now notice that this looks eerily familiar: if we have x = 1,y = −1 in the
binomial theorem (and change our index variable letters from n,k to k, j), we get
(1−1)k =∑k

j=0
(k

j

)
(1)k− j(−1) j, or 0=

(k
0

)
−k+

(k
2

)
−
(k

3

)
+ · · ·+(−1)k

(k
k

)
, which

can be rewritten as k−
(k

2

)
+
(k

3

)
−·· ·+(−1)k−1

(k
k

)
=
(k

0

)
= 1, as desired. �

To uncrunch our heads, let’s do another example.
Example 7.5.5. Consider all possible permutations of the numbers 0,1,2,3,4,5,
6,7,8,9. How many of them have the substrings 53, 02, or 28? The permutation
4536028179 has all three, but 8042957316 has none. First, let’s see howmany per-
mutations have the substring 53. Because all digits of our permutation are distinct,
we can think of 53 as a single digit within a permutation with eight other numbers
0,1,2,4,6,7,8,9; thus, there are 9! different permutations containing 53. Like-
wise, there are 9! permutations containing 02 and 9! permutations containing 28.
However… there is overlap. We can think of 53 and 02 as single digits within per-
mutations also containing 1,4,6,7,8,9, for a total of 8! permutations, and likewise
with 53 and 28. The only way that 02 and 28 can appear together in a permutation
is if they overlap as 028, so we can think of that as a single digit in a permutation
with numbers 1,3,4,5,6,7,9, and we again (slightly surprisingly) have a total of
8! permutations. Using this same technique, we find that there are 7! permutations
containing 53, 028 (02 and 28), and 1,4,6,7,9. Putting it all together, we have
3 ·9!−3 ·8!+7! = 972,720.

Check Yourself

Please do at least the first three of these problems.

1. Write out Theorem 7.5.4 for four sets A1,A2,A3,A4.
2. How many permutations of the numbers 0,1,2,3,4 have substrings 03 or 21?
3. How many permutations of the numbers 5,6,7,8,9 have the substrings 59 or 85?
4. Challenge: Write and solve your own three-set PIE problem (but not involving

pies).
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7.6 Try This! What Are the Balls and What Are the Boxes?
And Do You Want Some PIE?

It is useful to discuss these problems with others, to practice explaining why each
problem is of the appropriate type.

1. (This problem comes from a real-life situation faced by the author.) If the
Smith College fencing team offers eight kinds of fudge and you want to
order 2 1

2 pounds, and the fudge comes in
1
4 -pound boxes, howmany different

orders could you make?

2. Howmany anagrams are there (including those that aren’t dictionary words)
of PIES?

3. Howmany anagrams are there (including those that aren’t dictionary words)
of TELEPHONE?

4. Suppose that N and M are sets in the universe U . Express |N ∪M| in terms
of the cardinalities of N,U,M and combinations of these sets. (Did you use
symbols or did you use pictures in your expression?)

5. How many ways are there to arrange 15 bluejays and 3 white cats to sit in a
line? What if the white cats may not sit next to each other?

6. There are 184 students taking classes in French. Of these, 112 are tak-
ing Intermediate French, 84 are taking French Literature, and 46 are taking
French Cultural History. There are 66 students taking Intermediate French
and French Literature, 37 students taking Intermediate French and French
Cultural History, and 30 taking French Cultural History and French Liter-
ature. If 45 students take none of these three French classes, how many
take all three (Intermediate French, French Literature, and French Cultural
History)?

7. Howmany seven-digit telephone numbers are there with all digits different?
Answer the same question including area codes (so for ten-digit telephone
numbers). What if we include country codes (each is two or three digits
long) as well?

8. A mathematically inclined club is forming a recruitment committee with
five members. They have calculated that there are 8,568 ways to form this
committee. Two of the club members are named Joaquín and Ana. The club
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calculates that 1,820 of the possible committees would have Joaquín on them
but not Ana, 1,820 would have Ana but not Joaquín, and 560 would have
both Joaquín and Ana.

(a) How many potential committees have either Joaquín or Ana?
(b) How many potential committees have neither Joaquín nor Ana?
(c) One semester, Joaquín and Ana carpool to meetings, so they insist that

if either one of them is on the committee, then both should be on the
committee. How many potential committees meet this condition?

(d) Later, Joaquín andAna have a fight and refuse towork together. Joaquín
says ze won’t be on the committee if Ana is on it, and Ana says that
ze won’t be on the committee if Joaquín is on it. How many of the
potential committees meet this condition?

7.7 Where to Go from Here

As previously mentioned, there are balls-and-boxes questions whose solutions are
too advanced for this text. Among other topics, they lead to integer partitions and
Stirling numbers—research is active on both of those topics. Sometimes the col-
lective variety of balls-and-boxes questions is known as the Twelvefold Way. For
a first introduction to these ideas and many more related combinatorial concepts,
check out [18], which is eminently readable (but be prepared for challenging prob-
lems!). The gold standard for combinatorial reference is the hardcore and awesome
Enumerative Combinatorics, Volume I by Richard Stanley.

If you enjoyed PIE (and who doesn’t?), you may want to study derangements
(rearrangements in which no item ends up in its starting place). Learn how to use
PIE in this way in [18], [10], or Enumerative Combinatorics, Volume I. That last
gives extensions of PIE to linear algebra, permutations, and more.

As with Chapter 6, the likeliest courses to introduce ideas related to those in
this chapter are courses in combinatorics.

Credit where credit is due: Example 7.2.5 was inspired by the Babymouse books by Jen-
nifer and Matthew Holm. Go read them. Example 7.2.6 was inspired by Terry Moore’s
comic character Kixie. Example 7.5.5 was inspired by [17]. Bonus Check-Yourself Prob-
lem 3 was inspired by an Art of Problem Solving student whose username is ninjataco.
In Section 7.11, Problem 34 was inspired by Sam Oshins’s character who was inspired in
turn by this book (see page 148); Jayke Bouche in Problem 28 is a friend of the author.
Some problems in this chapter were adapted from [8], [1], [11], and [18].
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7.8 Chapter 7 Definitions

order matters: “Item 1, then item 2” is dif-
ferent from “item 2, then item 1.”

ordered: Order matters.

order doesn’t matter: “Item 1, then item 2”
is the same as “item 2, then item 1.”

unordered: Order doesn’t matter.

without repetition: Once an item has been
used, it cannot be used again; for exam-
ple, in forming a number with distinct
digits.

repetition allowed: Once an item has been
used, it can be used again; for example, in
forming a number with possibly repeated
digits.

stars-and-bars: A problem reframed so that
it is about arranging stars and bars, and
then solved.

word: A (finite) sequence of letters from a
given alphabet—not necessarily a word
found in a dictionary.

anagram: A rearrangement of the letters of
a word.

inclusion-exclusion: A process of careful
over- and undercounting in which we
include individual set sizes by adding
them (but this overcounts pairwise in-
tersections) and exclude sizes of pair-
wise intersections by subtracting them
(but this undercounts triple intersections)
and include sizes of triple intersections
by adding them… and so on.

7.9 Bonus: Linear and Integer Programming

Notice. The material in this section is not particularly related to the rest of the
chapter. It gives an introduction to a mathematical subfield that is not usually a part
of the undergraduate curriculum. Linear and integer programming are ways to set
up and solve a large class of practical problems, and they are part of the larger field
of operations research (also called industrial engineering or management science
and including the subfields of combinatorial optimization and discrete optimiza-
tion). The material is placed here because this is the first point in the text where the
reader has enough familiarity with discrete mathematics to appreciate these tech-
niques. We will give introductions to other types of operations research problems
later in the text, namely network flows (Bonus Section 12.10), minimum-weight
spanning trees (Sections 10.3 and 10.4), and the Traveling Salesperson Problem
and shortest path calculations (Section 12.4). In this section, we will discuss how
to set up linear and integer programming problems, and in Bonus Section 10.11,
we will introduce an approach to solving integer programming problems.
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If you have taken calculus, you may recall that the word “optimization” is
used in that context for the process of finding maximum or minimum values of a
continuous function. More generally (and literally), optimization is the process of
finding the optimal (best) solution to a problem.

Example 7.9.1. In assembling a fruit basket for yourGreat-AuntMildred, youwant
to spend the least amount of money possible. However, you know her taste—
she adores mangoes, so you must include some; on the other hand, she despises
apples, so you’d better not put any of them in there. There are 10 types of fruit
from which to choose (oranges, grapes, mangoes, pineapple, kiwi, persimmons,
bananas, apples, pears, and plums) and you may select 12 pieces of fruit to put in
the basket. What is the best selection?

We will begin by defining some variables and some constants.

x1 is the number of oranges selected and c1 is the cost for an orange.

x2 is the number of bunches of grapes selected and c2 is the cost for a bunch of
grapes.

x3 is the number of mangoes selected and c3 is the cost for a mango.

x4 is the number of pineapples selected and c4 is the cost for a pineapple.

x5 is the number of kiwi fruits selected and c5 is the cost for a kiwi fruit.

x6 is the number of persimmons selected and c6 is the cost for a persimmon.

x7 is the number of bunches of bananas selected and c7 is the cost for a bunch
of bananas.

x8 is the number of apples selected and c8 is the cost for an apple.

x9 is the number of pears selected and c9 is the cost for a pear.

x10 is the number of plums selected and c10 is the cost for a plum.

Now, the total cost of the fruit basket will be x1c1+x2c2+ · · ·+x10c10 =∑10
j=1 x jc j.

We would like to select fruit so as to make this expression have minimum possible
value. But we must also use the other information we have. In order to include at
least one mango, we know x3 > 0, and in order to avoid apples, we know x8 = 0.
Selecting 12 pieces of fruit means that x1+x2+ · · ·+x10 =∑10

j=1 x j = 12. There are
some hidden pieces of information, as well; in particular, we cannot have negative
numbers of pieces of fruit, so x j ≥ 0 for all j.
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In summary, we have converted the Great-Aunt Mildred’s Fruit Basket Prob-
lem into a new problem, namely,

minimize the quantity
10

∑
j=1

x jc j,

subject to the constraints x j is an integer, x3 > 0,
x j ≥ 0 for all j, x8 = 0,
10

∑
j=1

x j = 12.

A solution to this problem will give values for the x j.

Now, we will not discuss how to solve problems such as that of Great-Aunt
Mildred’s Fruit Basket because that would entail an entire course. We will talk
about how solvable they are, but first we should be clearer in describing these
problems. For a problem to be formulable for linear or integer programming, it
must have certain properties.

There must be a function to be maximized or minimized. This is often
termed the objective function or cost function.

The variables involved must take on real values or integer values.

The objective functionmust not involve any powers or products of variables;
it must be linear.

Theremust be restrictions placed on the variables, usually termed constraints.

The constraints must be writable as inequalities or equalities, for which one
side of the equation/inequality is a constant and the other is a sum of vari-
ables, perhaps with coefficients added. (These are also linear.)

A linear objective function together with linear constraints is a linear program.
In Example 7.9.1, our variables had to be whole numbers. Thus, that objective
function and its constraints together constitute an integer program. It is also pos-
sible for a problem to involve some variables that must be integers and others that
need not be. Such setups are calledmixed integer-linear programs. The science of
creating linear programs and solving them is known as linear programming. Three
acronyms you may run across are LP, IP, and MILP (can you discern what they
stand for?); they can be used to refer to individual problems (as in, “Oh, that’s an
MILP”) or more general studies (as in, “This technique is used in IP”).
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Example 7.9.2 (of linear and integer versions of a problem). Before leaving the
house in the morning, you like to have a smoothie. You keep bananas, milk,
oranges, frozen blueberries, protein powder, soy milk, frozen strawberries, and
honey on hand to make your smoothies. Each of these ingredients has a cost c j
and will be added to a smoothie in some quantity x j. You know the nutritional
profile (calories, protein, carbohydrates, fats, vitamins) of each ingredient. There
is some minimum number of calories you need for breakfast, and you want to meet
the recommended amounts of certain vitamins and other nutrients. You may also
want to have no more than a certain amount of calories in your smoothie. Probably
you do not want multiple types of milk in a single smoothie. This gives a set of
constraints. Your objective may be to minimize the total cost to make a smoothie.
Or, perhaps you want to maximize nutritive value. This situation forms a linear
program because you can cut up the fruit and measure any amount of liquid or
powder desired. Sometimes you are in a rush to leave the house, so all you have
time for is to grab some pieces of fruit and a protein bar or a small milk carton.
However, you have the same constraints and the same objective. This situation
forms an integer program because you don’t have time to cut up fruit or put milk
or parts of protein bars in separate containers; you can only grab unit amounts of
these foods.

Example 7.9.3 (of real life IP problems). Here are three practical problems that are
usually set up as integer programs:

1. A community needs firehouses. There are several proposed sites available.
Where should firehouses be built so that (a) nowhere in the community is
more than two miles from a firehouse and (b) the cost is as low as possible?

2. A team of explorers is heading out into the wild for a week. Each explorer
needs food, clothing, and equipment but can only carry 10 kg in hir back-
pack. What should the team pack?

3. A corporation wants to invest a maximum of $9,000 in one of five different
projects. Which one will likely be most profitable?

It is known how to solve any linear program quickly. To understand how the
most-used algorithm works, you will need to know linear algebra or some convex
geometry. On the other hand, there is no known quick way to solve an integer
program. We will encounter one solution technique in Section 10.8 and apply
it in Section 10.11. This technique uses the fact that every integer program has
an associated linear program (found by removing the constraints that specify the
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variables must be integers), along with the fact that the associated linear problem
can be solved quickly. Even with this advantage, it is only slightly better than
using brute force.

What is meant by using brute force as a solution? Basically, one makes a list
of all possible values for each variable and tries out every combination of those
values. Some combinations will violate a constraint or several constraints; among
those combinations of values that honor all constraints, one must check to see
which combination gives the best output for the objective function.

Realistic problems usually have large numbers of variables. Putting these
problems into standard forms for LP/IP introduces many more variables. For
example, inequalities are made into equalities by the introduction of additional
variables (called slack variables), and integer variables are converted into binary
variables. In this way, a simple problem that at first glance seems to have fewer
than 10 variables can quickly become a problem with more than 100 variables.
Therefore, a brute-force approach will involve checking a very large number of
combinations; in the case of a binary integer program with n variables, that will
be 2n combinations. Any improvement that can be made over using brute force—
even if the improvement is only for certain types of integer programs—is valuable,
and finding such improvements is an active area of mathematics research. (It is
a good question whether such research falls under pure or applied mathematics;
perhaps it is both!)

Hopefully, this introduction has convinced you that LP/IP/MILP is super-cool,
mega-interesting, and seriously important… or at least cool enough, interesting
enough, or important enough to learn more about it. Find ways to study it in your
future.

Questions for LP/IP practice:

1. Set up the linear program described in Example 7.9.2: list and name the
variables and constants, write down an objective function, and create
the constraints indicated by the example as well as any hidden con-
straints you can discover.

2. Set up the integer program described in Example 7.9.2: list and name
the variables and constants, write down an objective function, and cre-
ate the constraints indicated by the example as well as any hidden con-
straints you can discover.
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3. In your work with Example 7.9.2, you created some inequalities. For
each inequality, introduce additional variables to make that inequality
into an equation. How many additional variables do you need?

4. Using Example 7.9.1, rewrite each variable as a sumof binary variables.
You will find it helpful to remember that there can be no more than 12
pieces of any one fruit.

7.10 Bonus Check-Yourself Problems
Solutions to these problems appear starting on page 608. Those solutions that model a
formal write-up (such as one might hand in for homework) are to Problems 4 and 6.

1. Around Halloween, one can find bags
of minipacks of SweeTarts. There are
three SweeTarts in each pack, and the
available color-flavors are orange, pink,
purple, and blue.
(a) How many different kinds of three-

SweeTart minipacks are there?
(b) Actually, if you open a pack rea-

sonably (instead of ripping it com-
pletely apart), you get only one
SweeTart out to eat at a time. How
many different experiences of three-
SweeTart minipacks are there?

2. In a 300-home neighborhood of
Batamji, there are four different kinds
of trees (magnolias, cypress, willow,
and river birch). Forty homes have
just cypress trees; 32 homes have just
willow trees; 9 homes have just river
birch. Seventy homes have magnolia
and willow; 47 homes have magnolia
and cypress; 40 homes have cypress and
river birch; 61 homes have magnolia
and river birch; 44 homes have cypress
and willow; 56 homes have willow and
river birch. Twelve homes have mag-
nolias, cypress, willow, and river birch;

38 homes have magnolias, cypress, and
willow; 19 homes have magnolias, wil-
low, and river birch; 28 homes have
magnolias, cypress, and river birch; 29
homes have cypress, willow, and river
birch. Howmany homes have just mag-
nolia trees?

3. A hungry ninja is making tacos with
the following ingredients: beans, gua-
camole, cheese, tomatoes, scallions,
salsa, and lettuce. How many ways can
the ninja assemble tacos for different
meals (breakfast, snack, lunch, tea, din-
ner), the first of which has three fill-
ings, the next two of which have four
fillings, and the final two of which have
five fillings?

4. The Edgy Ruck company uses length-
10 serial numbers that mix letters (ex-
cept Y) and numbers. How many serial
numbers are there that have a 7 in the
fourth slot and a consonant in the eighth
slot, or have a letter in the fifth slot and
a vowel in the ninth slot?

5. All that is left of your Hello Kitty Jelly
Belly sampler is the 12 Very Cherry fla-
vored Jelly Bellies (because you hate
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that flavor) and you have four friends
who volunteer to eat them for you. How
many ways are there to hand out the
Jelly Bellies?

6. You’ve made a pile of eight cute notes
for your best friend to find. Ze has 12
folders, one for each of hir classes and
activities. How many ways are there to
tuck the notes into folders? (Of course,
you will not put more than one note in a
folder. That would be excessive.)

7. The computer print-out says it all: Your
first student needs three Learning Mod-
ules inserted, your second student needs
five Learning Modules inserted, and
your third student needs 54 Learn-
ing Modules inserted from the bank
of 62 new government-approved-topic
Learning Modules. But wait… The
computer print-out doesn’t say which

Learning Modules should go to which
student. How many ways can you as-
sign Learning Module topics to stu-
dents?

8. Your spiky little plant has once again
outgrown its pot, and when you split
off all the small bits into different pots,
you discover you have 23 spiky plant-
spawn. You’ve promised eight people
they can have baby spiky plants, but re-
ally you want to get rid of all of the
spiky plant-spawn so they don’t take
over your house. How many ways are
there to distribute the 23 baby spiky
plants to the eight people?

9. How many anagrams are there of the
word ENUMERATE?

10. How many ways are there to list the 50
U.S. states so that no two states begin-
ning with “A” are next to each other?

7.11 Problems about Balls, Boxes, and PIEs
In this section, aword is a (finite) sequence of letters from a given alphabet, not necessarily
a word found in a dictionary.

1. How many words of length w can be
made using an alphabet with ℓ letters?

2. How many telephone numbers have no
0 in the prefix (the first three numbers
before the hyphen)?

3. True or false: if A∩B∩C = /0, then the
sum principle applies so |A∪B∪C| =
|A|+ |B|+ |C|.

4. How many words of length w can be
made using a set of alphabets with a j
letters for the jth letter in a word?

5. You bring a bag of 12 snacks to an an-
imal shelter and discover that there are
18 animals there. To be fair, you don’t

want to give more than one snack to any
individual animal. How many ways are
there of distributing snacks?

6. How many seven-digit telephone num-
bers have an odd number of even num-
bers?

7. Consider the alphabet A, B, C, D, E, F.

(a) Howmany four-letter words contain
the subword ACE?

(b) How many four-letter words don’t
begin with F or don’t end in E?

(c) How many five-letter words contain
the subword CAB?
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(d) How many four-letter words begin
with C or end in two vowels?

8. Consider the alphabet A, B, C, D, E, F
and make words without repetition of
letters allowed.
(a) How many six-letter words are

there?
(b) How many words begin with D or

E?
(c) How many words end in B or A?
(d) How many words begin with D or E

and end in B or A?
(e) Howmany have first letter neither D

nor E and last letter neither B nor A?
9. At the chocolate store, you decide to
get a 20-chocolate box for your beloved.
There are creams (maple, vanilla, or-
ange, lemon, chocolate) and caramels
(milk chocolate, dark chocolate, wal-
nut) and coated nuts (milk chocolate
peanuts, dark chocolate peanuts, milk
chocolate almonds, dark chocolate al-
monds, white chocolate almonds), as
well as cherry cordials, white chocolate
truffles, solid chocolate pieces (in both
milk and dark chocolate), and yogurt-
and chocolate-coated pretzels. How
many ways are there to fill the box?

10. Multinomial mini-project: The follow-
ing problems introduce multinomial co-
efficients and the multinomial theorem.
A multinomial coefficient isdenoted by( k

k1,k2,...,kn

)
and counts the number of

ways, given a pile of k things, of choos-
ing n mini-piles of sizes k1,k2, . . . ,kn
(where k1 + k2 + · · ·+ kn = k).

(a) Show that multinomial coeffi-
cients give the solution to the num-
ber of ways of placing k labeled
balls into n labeled boxes, such
that the jth box holds k j balls.
(This needs to be a combinato-
rial proof: it then allows you to
use

( k
k1

)(k−k1
k2

)(k−k1−k2
k3

)
· · ·
(kn+kn−1

kn−1

)
in calculating multinomial coeffi-
cients.)

(b) Show twice, once by symbolic ma-
nipulation and once by combinato-
rial proof, that

( k
k1,k2

)
=
( k

k1

)
. Thus,

multinomial coefficients for n = 2
agree with binomial coefficients.

(c) Show that k!
k1!k2!...kn! =

( k
k1

)(k−k1
k2

)(k−k1−k2
k3

)
· · ·
(kn+kn−1

kn−1

)
.

(d) Show that multinomial coefficients
give the solution to the number of
ways of anagramming a word.

(e) Calculate
( 10

3,2,5

)
and

( 12
4,4,2,1

)
.

(f) Show that it doesn’t matter in what
order the k j appear in a multinomial
coefficient. For example,

( 12
4,4,2,1

)
=( 12

4,1,2,4

)
and

( 10
3,2,5

)
=
( 10

5,3,2

)
.

(g) Show that
( k

k1,k2,k3

)
=
( k−1

k1−1,k2,k3

)
+( k−1

k1,k2−1,k3

)
+
( k−1

k1,k2,k3−1

)
. In fact,

do this both symbolically and using
combinatorial proof. Thus, trino-
mial coefficients are generalizations
of binomial coefficients.

(h) Challenge: Write down a general
multinomial identity of that form.

(i) Prove the multinomial theorem
shown in Figure 7.15. (Examining
your proof of the binomial theorem

(x1 + x2 + · · ·+ xn)
k = ∑

k1+k2+···+kn=k

(
k

k1,k2, . . . ,kn

)
xk1

1 xk2
2 · · ·xkn

n

Figure 7.15. The wider-than-a-column multinomial theorem.
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will probably help.) Thus, multino-
mial coefficients are generalizations
of binomial coefficients.

11. A common scheme for motor vehi-
cle license plates is to require that the
first three characters be letters and the
last three characters be numbers. How
many vehicles could a state have using
such a scheme? In 2009, there were
10,699,846 valid vehicle registrations in
New York state. Is the license plate
scheme described in this problem ap-
propriate for New York state?

12. A task force working to preserve the
nose of Saint Tabascus is forming a
chemistry committee with five mem-
bers. They have calculated that there are
65,780 ways to form this committee. Of
these, 24,480 have exactly one woman,
22,848 have exactly two women, 8,568
have exactly three women, 1,260 have
exactly four women, and 56 have ex-
actly five women.

(a) How many committees have at least
three women?

(b) How many committees have no
women?

(c) How many committees have at most
two women?

(d) Challenge: How many members
does the Preserve the Nose of Saint
Tabascus Task Force have? And
how many of those are women?

13. There are 8 strands of embroidery floss
in a basket (all of different colors) and
11 different small pillows that could be
embellished (with at most one strand of
floss each). How many ways are there
to embellish the pillows?

14. How many anagrams are there of the
word SUPERCALIFRAGILISTICEX-
PIALIDOCIOUS?

15. One college sent another a report say-
ing that 119 students took Calculus I in
a Fall semester. The report notes that
during the next term, 96 of these stu-
dents took Calculus II, 53 of them took
Discrete Mathematics, and 39 of them
took Physics II. The report also says that
38 of the students took both Calculus II
andDiscreteMathematics, 31 of the stu-
dents took both Discrete Mathematics
and Physics II, 32 of the students took
both Calculus II and Physics II, and 22
of the students took all three courses.
We examine the report and sense an er-
ror is present. Why?

16. There are 20 plants in your garden but
only enough fertilizer spray to boost 8
of them. How many ways are there to
fertilize the plants?

17. How many different seven-digit phone
numbers begin with 231- and contain at
least one 9?

18. At a meeting of h hobgoblins and t
trolls, it is decided that the collection of
n chipmunk snax will be distributed in
some way. Every hobgoblin must get
at least one chipmunk but trolls are not
required to receive chipmunks, yummy
though they are. How many ways can
the chipmunks be fed to the hobgoblins
and trolls?

19. How many positive integer solutions
are there to the equation y1 + y2 + y3 +
y4 + y5 + y6 = 13?

20. Let’s count banana splits. These are ice-
cream treats that have three scoops of
ice cream (two or three of the scoops
could be the same flavor), three top-
pings (two or three of the toppings could
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be the same flavor), whipped cream (al-
ways), a choice of nuts or no nuts, and
a choice of a cherry or no cherry, all
placed atop two banana halves. If there
are 18 different flavors of ice cream and
5 choices of toppings, how many dif-
ferent banana split orders are possible?
Note that people do care which toppings
end up onwhich scoops, so the positions
of the scoops should be labeled.

21. Suppose we want to arrange p things of
one type and q things of another type
into a line.
(a) Argue that the p things can act

as unlabeled balls and the q things
can form separators between labeled
boxes. How many ways are there to
line up all the things?

(b) Argue that the q things can act as
unlabeled balls and the p things
can form separators between labeled
boxes. How many ways are there to
line up all the things?

(c) Aside from the fact that we are
counting the same situation in two
different ways, why do we get the
same answer? (That is, give a sym-
bolic explanation.)

22. When we kindly distributed 43 cup-
cakes to 12 baby mice, every baby

mouse was guaranteed a single cupcake
at least. What if a beneficent person
of some sort guaranteed at least two
cupcakes per baby mouse—how many
ways would there be to feed the cup-
cakes to the baby mice?

23. Let us say that two words are equivalent
if they are anagrams of each other. How
many six-letter words are equivalent to
BLEFLA? (Note that the words do not
have to be sensical.) Is this an equiva-
lence relation on the set of all words?

24. A person is murdered at twilight near
the outskirts of a town of population
5,000, in view of several witnesses. The
dastardly murderer has been described
as male, between the ages of 16 and 35,
with glasses, and under 6 feet tall. The
police search Department of Motor Ve-
hicles records for the city in an effort to
narrow down the identity of the crimi-
nal.
Let F indicate that the driver is female,
let O indicate that the driver is over the
age of 35, let E indicate that the driver
is not required to wear corrective lenses,
and let T indicate that the driver is over
6 feet tall.
The police obtain the data given in Ta-
ble 7.2. In a discussion of these data, the

characteristics F O E T
residents with characteristics 2,400 3,600 1,200 800
characteristics F, O F, E F, T O, E
residents with characteristics 1,200 900 700 800
characteristics O, T E, T F, O, E F, O, T
residents with characteristics 700 700 800 500
characteristics F, E, T O, E, T F, O, E, T
residents with characteristics 500 400 200

Table 7.2. Police data from DMV records.
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police chief says the murderer doesn’t
reside in the city. A detective responds
by saying that the DMV records are in-
correct. Why does each crime-fighting
official make the claim that ze does?

25. How many passwords can be con-
structed that have between 6 and 12
characters and must use at least one let-
ter and at least one number (and no spe-
cial characters), but are not case sensi-
tive?

26. How many passwords can be con-
structed that have between 8 and 12
characters and must use at least one
upper-case letter, at least one lower-case
letter, and at least one number (and no
special characters)? If we assume that a
pretty good hacker can attempt 1 billion
passwords per second, how long would
it take to crack a password made with
this scheme?

27. According to PetHelpful.com, the top
10 duck snacks (in descending or-
der) are algae, strawberries, meal-
worms, dandelions/clover, scrambled
eggs, crickets, kale, feeder fish, earth-
worms, and marigolds. You have ac-
quired a sample box of duck-snack
packs, with one sample pack of each of
these top 10 duck snacks. How many
ways are there to distribute one pack to
each of your 6 ducks? What if you just
got the ducks, and not only are they all
grey (of course), but you don’t know
them well enough to tell them apart?

28. Jayke has a bag of 54 super-fancy
candies (different flavors and wrappers
and…) to give out to people waiting in
line. Ze gives two candies to the first
person, and then because the next per-
son has been waiting longer, gives hir

an additional candy, and indeed gives
out one more piece of candy to each per-
son in line than ze gave to the previous
person. How many ways are there for
Jayke to give out the candies?

29. There are seven flavors of sorbet avail-
able at Tebros, namely blackberry-lime,
meyer lemon, watermelon, blueberry,
pink grapefruit champagne, dandelion-
lilac, and durian.
(a) How many ways are there to order a

three-scoop cone at Tebros?
(b) How many ways are there to order a

five-scoop bowl at Tebros?
(c) How many ways are there to order

two different hand-packed pints of
sorbet to take home?

(d) How many different anagrams are
there of TEBROS?

(e) How many different anagrams are
there of SCOOP?

30. How many ways can 11 chemistry text-
books and 6 post-modern novels be ar-
ranged on a bookshelf?

31. A narwhal, a unicorn, and a rhinoceros
go into a bar. How many ways can
they order Italian sodas (there are 18 fla-
vors available) from the jackalope bar-
tender?

32. At Half Do– – –n–t, one buys—you
guessed it!—half dougnuts. On any
given day there are eight flavors avail-
able.
(a) How many ways are there to pick

three different flavors?
(b) How many ways are there to order

three half doughnuts?
(c) If there are a dozen half doughnuts

in the Chocolate or Apple! case, of
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which six are chocolate apple and
eight have apple, then howmany are
plain chocolate and how many are
plain apple half doughnuts?

33. Today you go to Half Do– – –n–t with
your BFF.

(a) Your BFF wants to split a four-
half-doughnut order with you. Ze
will pick two different half dough-
nuts, and you will pick two differ-
ent half doughnuts. Howmanyways
are there to choose the order (not-
ing which half doughnuts belong to
which person)?

(b) What if your BFF insists that there
be no overlap between your half
doughnut flavors and hir half dough-
nut flavors? How many ways are
there to choose the order (noting
which half doughnuts belong to

which person)? How many four-
half-doughnut orders are possible
here?

34. International individual of mystery
Pvaanzba Ohaf is faced with a corridor
of 13 doors.
(a) Howmany ways can Pvaanzba Ohaf

select four doors on which to paint
numbers (1,2,3,4) in invisible ink?

(b) Howmanyways can Pvaanzba Ohaf
paint three doors puce, five doors
pink, two doors periwinkle, and
three doors peach?

(c) How many anagrams are there of
PVAANZBA OHAF?

(d) How many anagrams of PVAANZ-
BAOHAF contain exactly three As?

35. How many anagrams are there of
DISCRETE MATHEMATICS WITH
DUCKS?

7.12 Instructor Notes

Most students will find solving counting problems to be confusing. And indeed, this topic
is confusing! It is included to give students a taste of the complexity involved in combina-
torics and to let them experience counting problems that are a step above the nigh-trivial
straightforward

(n
k

)
-type problems. The goal is not to have students master counting prob-

lems, but to have students acquire enough experience that they can work through counting
problems using the text as an aid.

To that end, here is one way to approach this material. Ask students to read Sec-
tions 7.1 and 7.2 before the first class of the week. Then, split this class between an
interactive lecture and letting the students loose to work on Section 7.3. The interactive
lecture can give balls-and-boxes sample problems and discuss how to solve them (thus
foreshadowing Section 7.4). I, and others, have done this successfully by listing the prob-
lems on different sections of the board and then asking the students for ideas on how to
solve them. They are often creative (and wrong) in their attempts, and this provides good
clarification between problem types—it’s easy for students tomisread problem statements!
After the “easy” types have been addressed, the instructor then takes over to present the
stars-and-bars argument.
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Students should then be asked to read Section 7.4, to deepen and reinforce their un-
derstanding, for the following class. (Section 7.5 could be assigned reading after the first
or second class meeting.) Spend the bulk of the next two class meetings on having the
students do problems from Section 7.6 in groups—but of course, take time to ask them if
they have questions over the reading or Check Yourself problems. They will argue back
and forth about how to determine the type of each problem and then how to get the solution
to make sense; it takes quite a while, but these are productive arguments. About five to
ten minutes before the end of such a class meeting, survey the students to see whether any
problems have been solved by most groups and then discuss those problems.

A fun showmanship opportunity for starting a class based primarily on doing problems
is to show the Flash movie The Donuts, available at https://youtu.be/2bhKHg8xX4M—ask
students how it relates to the class, and it is likely that someone will identify this as an
opportunity for inclusion/exclusion analysis.

There are a couple of side effects of combining many problem types into one chapter.
One is that students are likely to confuse problem types, either by misreading problems (or
leaving out crucial words) or misinterpreting problems. Another is that some students will
invent somewhat laborious counting arguments for individual problems. Be aware that
you may need to wade through such proposed solutions. A common error is that a student
will separate counting into two stages, using a variable for how the stages are to be split,
and then not realize that ze must sum over that variable to obtain all possibilities. While
these issues are annoying to deal with, an unnecessarily complicated solution does have
the bonus of revealing a combinatorial identity (when the resulting expression is equated
with a simpler solution).

https://youtu.be/2bhKHg8xX4M�ask


Chapter 8

Recurrences

8.1 Introduction and Summary

Our introduction to recursion is the Fibonacci sequence, which is 1,1,2,3,5,8,
13, . . . and is defined by Fn = Fn−1 +Fn−2. There are lots of interesting identities
one can prove about the Fibonacci sequence (just as we saw there are for binomial
coefficients). Many of these can be proven by induction—as foreshadowed in
Chapter 4, this proof technique is pervasive.

We will then study integer sequences in general, with a focus on recursively
defined sequences. For example, the sequence 1,2,4,8, . . . is recursively defined
by an = 2an−1. This sequence is also defined by the formula an = 2n. A general
question is how to find formulas (in terms of n rather than an−1, etc.) for recur-
rences; this is important because it’s faster to compute using a formula than using
a recurrence. Once a formula is found, we need to prove that it is correct. Induc-
tion is the proof method of choice, as the recursive definition of a sequence usually
provides the induction step in the proof.

In this text, wewill only learn the very basics of finding formulas for sequences
and recurrences. The simplest sequences are arithmetic and geometric sequences;
they have linear and exponential formulas, respectively. A formula for an arith-
metic sequence can be found using first differences, and a formula for a generalized
geometric sequence can be found using a characteristic equation. We will explain
how and why these solution techniques work. As frosting on the cake, we will
show how to find a closed form for the Fibonacci sequence!

8.2 Fibonacci Numbers and Identities

You are well aware that 1+ 1 = 2 (one hopes). Similarly, you must know that
1+2 = 3 and that 2+3 = 5 and also that 3+5 = 8. But you may not have detected
the pattern in these three statements—they look like statements about addition, but
secretly they are away of generating a sequence of numbers. Let’s take some notes.

245
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The numbers that appear above are first 1,1, and these are added together to
produce 2 (duh). This gives us 1,1,2 so far. Then we add the last two numbers
in our short sequence together and append the result to the end, yielding 1,1,2,3.
If we continue, we have 1,1,2,3,5,8,13, . . . . (You might enjoy generating some
more of this sequence yourself.) If we name the nth one of these numbers Fn, then
the general rule via which we extend our sequence is Fn = Fn−1 +Fn−2. Notice
that in order to begin, we need a first and second number so that we have enough
information to generate a third number.

This, in case you haven’t encountered it before, is the famous Fibonacci se-
quence, named after some guy from the Middle Ages who liked to talk about rab-
bits. (That’s only sort of true, and also only sort of untrue. See the “MacTutor
History of Mathematics Archive” biography at http://www-groups.dcs.st-and.ac.
uk/~history/Biographies/Fibonacci.html for more and more interesting informa-
tion.) We may consider Fn = Fn−1 +Fn−2 to be the defining characteristic of the
Fibonacci sequence.

There are all sorts of interesting facts about Fibonacci numbers. For example,
let’s try adding them up as follows:

1 = 1.

1+1 = 2.

1+1+2 = 4.

1+1+2+3 = 7.

1+1+2+3+5 = 12.

1+1+2+3+5+8 = 20.

1+1+2+3+5+8+13 = 33.

Perhaps you don’t yet see a pattern. But if we add 1 to both sides of each of these
statements, you will:

1+1 = 1+1 = 2.

1+1+1 = 2+1 = 3.

1+1+2+1 = 4+1 = 5.

1+1+2+3+1 = 7+1 = 8.

1+1+2+3+5+1 = 12+1 = 13.

1+1+2+3+5+8+1 = 20+1 = 21.

1+1+2+3+5+8+13+1 = 33+1 = 34.

http://www-groups.dcs.st-and.ac.uk/~history/Biographies/Fibonacci.html
http://www-groups.dcs.st-and.ac.uk/~history/Biographies/Fibonacci.html
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Aha! We get the Fibonacci sequence back (minus the first few terms)! In general,
it appears that F1+F2+ · · ·+Fn+1 = Fn+2. And you know what comes next—we
need to prove this statement. Our old friend induction will be of use.

Theorem 8.2.1. For n ∈ N, 1+
n

∑
j=1

Fj = Fn+2.

Proof: We begin with a base case. However, we have already done a bunch of
base cases just above (in creating the statement of the theorem), so we can safely
dispense with that. Our inductive hypothesis should be that as long as n ≤ k,
1+∑n

j=1 Fj = Fn+2. So we look at 1+∑k+1
j=1 Fj and recognize that 1+∑k+1

j=1 Fj =

1+∑k
j=1 Fj +Fk+1. This allows us to use our inductive hypothesis, so by sub-

stituting in, we have 1+∑k
j=1 Fj +Fk+1 = Fk+2 +Fk+1. But, aha! The rule for

how Fibonacci numbers are generated, Fn = Fn−1 +Fn−2, can be rewritten by sub-
stituting k + 2 for n, so that it says Fk+2 +Fk+1 = Fk+3. Notice that this rule is
exactly what we need to complete the inductive step. Putting it all together, we
have 1+∑k+1

j=1 Fj = Fk+3, and hey, that’s what we wanted to prove, so our inductive
step is complete. We. Are. Done. �

Here’s another wild property of the Fibonacci numbers: take three Fibonacci
numbers in a row from the sequence, multiply the two outer Fibonacci numbers
together, and you’ll be 1 off from the square of the middle Fibonacci number.
What?!? Check it out!

2,3,5 → 2 ·5 = 10 and 32 = 9 = 10−1.

1,2,3 → 1 ·3 = 3 and 22 = 4 = 3+1.

3,5,8 → 3 ·8 = 24 and 52 = 25 = 24+1.

21,34,55 → 21 ·55 = 1,155 and 342 = 1,156 = 1,155+1.

Holy cow. Here is the general theorem.

Theorem 8.2.2. For n > 1,n ∈ N, Fn−1Fn+1 = (Fn)
2 +(−1)n.

Proof: Again, induction will come to our aid. Here’s a base case (in addition to
our experimentation above, for good measure): Considering 1,1,2, we see that
1 ·2 = 2 and 12+1 = 2. This is lovely, but we need to make sure the sign (addition
versus subtraction) works out! Therefore, we must look at the power to which
−1 is raised. Here, the first number is 1 = F1, so this tells us n− 1 = 1 so that
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n = 2. This gives 12 + (−1)2 = 1+ 1 = 2, as desired. Now for the inductive
hypothesis; it should say that for any n ≤ k, Fn−1Fn+1 = (Fn)

2 + (−1)n. So, let
us look at FkFk+2 as this is the left-hand side of the statement for the case n =
k+ 1. Again we will use the fact that Fn = Fn−1 +Fn−2 as the crucial ingredient
for the inductive step; here, we will note that substituting k + 2 for n gives us
Fk+2 = Fk+1 +Fk. Substituting into FkFk+2 produces FkFk+2 = Fk(Fk+1 +Fk) =
FkFk+1 + (Fk)

2. Our inductive hypothesis says that (Fk)
2 = Fk−1Fk+1 − (−1)k,

so FkFk+1 +(Fk)
2 = FkFk+1 +Fk−1Fk+1 − (−1)k. Factoring out an Fk+1, we have

Fk+1(Fk+Fk−1)−(−1)k, and using the definition of the Fibonacci sequence again,
this equals Fk+1(Fk+1)− (−1)k. That’s almost what we desire—we want to obtain
the statement that FkFk+2 = (Fk+1)

2+(−1)k+1. But aha,−(−1)k = (−1)(−1)k =
(−1)k+1, so we can substitute and achieve our desired conclusion. �

As you will soon discover, there are many more such identities—more than
you can shake a stick at. (You can, in fact, shake a stick at a multitude of items
at once. See http://www.gocomics.com/theargylesweater/2012/03/22.) You are
encouraged to experiment—really, play around—with the Fibonacci numbers and
see what you can discover.

Check Yourself

These won’t take long—do them all.

1. List the third, sixth, and seventh Fibonacci numbers.

2. Write out the ten Fibonacci numbers after 55.

3. Find a formula for the sum of the first n odd-index Fibonacci numbers (F1,F3, etc.).

4. Find a formula for the sum of the first n even-index Fibonacci numbers (F2,F4,
etc.).

8.3 Recurrences and Integer Sequences and Induction

The Fibonacci sequence has three properties that we have been exploiting:

It is an integer sequence.

It is defined by a recurrence.

Induction is useful in proving identities involving it.

http://www.gocomics.com/theargylesweater/2012/03/22
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We will deal with these in turn, though it turns out that only two of the prop-
erties matter—the third one follows logically from the other two.

Integer sequences are just what they sound like—they are integers listed in
some order. Technically, an integer sequence is a function s : N→Z or s : W→Z,
but rarely do we think of a sequence in this manner. A generic integer sequence is
denoted a1,a2,a3, . . . ,an, . . . or a0,a1,a2, . . . ,an, . . . ; in either case, an is called the
nth term of the sequence. Usually, though not always, the integers count some-
thing. Often, we know the first few numbers of an integer sequence and would like
to know what sort of rule produces the rest of the sequence. Such a rule could be a
formula into which one plugs n and gets out the nth integer in the sequence; this is
called a closed form or a closed-form formula for the sequence. Or, the rule could
be a way to generate more terms of the sequence, knowing some of the previous
terms; this is called a recurrence or a recurrence relation, and the process of using
a recurrence is called recursion. Sometimes a closed form is called an explicit for-
mula, in contrast to the implicit expression of a recurrence. More excitingly, we
would also like to know what else is counted by our proposed integer sequence.
(This can be an excellent source of ideas for combinatorial proof.)

The easiest way to find out what’s going on with a particular sequence of num-
bers is to consult the Online Encyclopedia of Integer Sequences (OEIS). The OEIS
is described at http://oeis.org/wiki/Welcome, and you can look up sequences as
in a dictionary at http://oeis.org/. Once upon a time, a long, long time ago now,
there was a small blue book called A Handbook of Integer Sequences (1973) that
really was like a dictionary—first were sequences starting with 1, then those start-
ing with 2, and so on. (This later became The Encyclopedia of Integer Sequences
(1995).) The whole thing started when Neil J. A. Sloane was in graduate school
and started collecting sequences. Sloane still does a lot of personal maintenance
on the OEIS database.

Anyway, because the OEIS is an encyclopedia, the information is abbreviated.
It gives many terms for each sequence and a recurrence or closed form if they are
known, as well as different descriptions for what the sequence counts and refer-
ences to literature that discusses the sequence. There are no explanations, just lists
of facts, so it is still quite worthwhile to learn how to go between recurrences and
closed forms and how to prove facts about sequences.

Furthermore, for any given initial set of terms of a sequence, there may be
many, many different sequences that have those same initial terms! For example,
1,1,2,3, . . . leads to at least 3,776 different sequences, and even 1,1,2,3,5, . . .
leads to at least 672 different sequences. So we must understand the mathemati-
cal situation that leads to a sequence in order to know how it continues and what
defines it.

http://oeis.org/wiki/Welcome
http://oeis.org/
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Definition 8.3.1. A recurrence is a statement of the form an = (some stuff, some
of which involves asmaller than n).

Example 8.3.2 (of recurrences). The recurrence an = 2an−2 + 1 governs the se-
quence 1,0,3,1,7,3,15,7, . . . , as well as the sequence 2,4,5,9,11,19,23, . . . . The
recurrence an = 3nan−1 − 6an−2 + an−5 governs the sequence −1,1,0,−1,3,23,
466,1,260,983, . . . .

Just as the Fibonacci recurrence relation indicates that two initial values are
needed to generate the rest of the sequence, we can determine how many initial
values are required by any recurrence relation. Any term asmaller than n can be writ-
ten as an−ℓ for some ℓ, and the largest such ℓ that appears in the recurrence relation
is the number of initial values needed.

Example 8.3.3 (of generating terms from a recurrence). Consider the recurrence
a1 = 1,a2 = 1,an = −an−1an−2 + n. We already have a1,a2, so let’s start with
n = 3.

a3 =−a2a1 +3 =−1 ·1+3 = 2. Keep going. a7 =−4 ·1+7 = 3.
a4 =−a3a2 +4 =−2 ·1+4 = 2. a8 =−3 ·4+8 =−4.
a5 =−a4a3 +5 =−2 ·2+5 = 1. a9 =−(−4)3+9 = 21.
a6 =−a5a4 +6 =−1 ·2+6 = 4. a10 =−21(−4)+10 = 94.

Our first 10 terms are thus 1,1,2,2,1,4,3,−4,21,94.

Example 8.3.4. The recurrence an = an−2+an−4 requires four initial values. If we
let those be 1,0,0,1, we obtain the sequence 1,0,0,1,1,1,1,2,2,3, . . . .

Notice that recurrence relations are great in that they define sequences entirely.
But they are terrible in that if you want to know the 1,000th term of the sequence,
you first have to compute the 999 previous terms. And while that might not take a
computer very long, it is a huge pain if those terms have to be recalculated every
time you want a new value, and that is just a waste of processor time and memory.
It is therefore quite useful to have a closed form in addition to a recurrence.

Whenever you encounter a recurrence and the word “proof” is floating in the
air or your mind nearby, you should immediately have a flashing sign light up in
your head that reads INDUCTION. Why is this? Recall that induction is effective
for statements indexed by the natural numbers, and an integer sequence is indexed
by the natural numbers. Also, the process of induction involves a base case or
two and then a reduction from the (k+1)st case to earlier case(s) (the kth case or
before). A recurrence exactly translates the nth term of a sequence into a formula
involving earlier terms—rewriting, it can translate the (k+1)st term of a sequence
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into a formula involving earlier terms. Basically, a recurrence is the key to an
inductive step—and in the case of proving that a closed-form formula is correct, it
is the inductive step!
Example 8.3.5. Consider the sequence 1,2,4,8, . . . , recursively defined by an =
2an−1. We suspect that a closed form for this sequence is an = 2n. Let’s prove
it—by induction, of course.
(Base cases) As base cases, note that 21 = 2 and 22 = 4. Hmm. This must mean
that the first element of the sequence is a0 = 1 = 20.
(Inductive hypothesis) Our inductive hypothesis is that for n ≤ k, an = 2n.
(Inductive step)Now we will consider ak+1 in service of the inductive step. We
immediately notice that the recursive definition of the sequence can be rewritten to
read ak+1 = 2ak+1−1 = 2ak. But, we know that ak = 2k by our inductive hypothesis,
so substitution gives us ak+1 = 2 ·2k = 2k+1 as desired.

We can generalize this procedure to a mock induction proof for verifying that
a closed form matches a recurrence.

How to prove that a closed form for a recurrence is correct. Suppose that
we have a sequence with initial values a1,a2,a3,a4, . . . , a recursive definition
an = (some stuff, some of which involves asmaller than n), and a formula an =
(a function of n).

1. Decide to proceed by induction.

2. Check base cases by plugging n = 1,2,3 into (the given function of n);
hopefully the result will be a1,a2,a3.

3. State the inductive hypothesis: for n ≤ k, an = (the proposed function
of n).

4. Consider the (k+1)st term, ak+1.

5. Rewrite the recurrence by substituting k+1 in for each copy of n, ob-
taining something like ak+1 = (some stuff, some of which involves
asmaller than k+1).

6. For every asmaller than k+1 in the rewritten recurrence, use the inductive
hypothesis to substitute the formula for (the given function of smaller
than k + 1).
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7. Do some symbolic manipulations so that the rewritten recurrence be-
comes a function of k+1.

8. Notice that you now have ak+1 = (the given function of k + 1) and
therefore you’re done.

There is a sequence-y situation in which induction is not necessary. Suppose
you know some sequence an, with its initial terms and recurrence relation and
closed form, and you encounter a sequence bn. You intuit (and then prove) that
bn has the same recurrence relation as an and then discover that bn has the same
initial terms as an. That means that bn = an, so it has the same closed form!

A special case. If sequences an and bn can be defined by the same recurrence
relation and have the same initial terms, then an = bn.

The remainder of this chapter focuses on finding closed forms for recurrences.
We will build up our understanding from looking at recurrences from an intuitive
standpoint to learning how to recognize some specific types of recurrences and
solve for their associated closed forms.

Check Yourself

Sample enough of these problems that you are comfortable with using the ideas of this
section.

1. Find a closed form for each of these sequences:

(a) 1,2,3,4,5, . . . .
(b) 1,2,4,8,16, . . . .
(c) 1,2,6,24,120, . . . .
(d) 1,4,9,16,25, . . . .
(e) 1,−4,16,−64, . . . .

2. Write out the first five terms of each of the sequences defined by these closed-form
formulas:

(a) an = n2 −3n+4.
(b) an = n−n2 +5.
(c) an = 3Fn −1.
(d) an = 3

(n
2

)
.

(e) an = 2n −2.
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(f) an =
(n+2

3

)
.

(g) an = (n−2)2.

3. Give an example of a sequence that is not an integer sequence.

4. Find a sequence different from an = 2n that satisfies the recurrence an = 2an−1.

5. Find the recurrence that defines the sequence 1,3,6,10,15, . . . .

6. Find a description for the sequence 2,3,5,7,11,13, . . . . Can you find a closed form
or a recurrence that defines this sequence?

8.4 Try This! Sequences and Fibonacci Identities

Some of these problems will be done much more efficiently with collaboration.
(That’s one way of warning you of a challenge.) You will need internet access in
order to complete Problem 4.

1. Write out the first several terms of the integer sequence defined by a1 = 1,
a2 = 2,an = an−1 +2an−2.

(a) How do things change if you begin with a1 = 2,a2 = 1?
(b) What if you begin with a1 = a2 = 1?

2. For each of the following closed forms, write out the first several terms of the
sequence (at least five) and use this to create a recurrence for the sequence.

(a) an = 3n+1.
(b) an = 2n+7.
(c) an = 3n2 +n.
(d) an = 22n−1 −1.

3. For each of the following recurrence relations, write out the first several
terms of the sequence (at least five) and use this to find a closed form for
the sequence. Then prove that each conjectured closed form is correct. (Is
there a flashing sign in your head that indicates a fruitful approach?)

(a) a1 = 3;an = 2an−1.
(b) a1 = 4;an = 4+an−1.
(c) a1 = 1;an = 4+an−1.
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1

1

1

1

1

1

2 1

3 3 1

4 6 4 1

Figure 8.1. Marking certain entries in Pascal’s triangle.

4. Choose one of the sequences you generated above, and input the first five
terms into theOnline Encyclopedia of Integer Sequences at http://www.oeis.
org. How many different known sequences contain these terms? Find the
specific sequence you were working with; how many different things does
it count? (Can you figure out why it counts any of them?)

5. Write out several rows of Pascal’s triangle. Circle the first 1 of any row. Go
over one entry to the right and then one entry up and to the right, and circle
that second entry (see Figure 8.1). Repeat this procedure until you run out
of triangle. Then compute the sum of the entries you marked.

Do this procedure for several rows. What numbers do you get? Make a
conjecture, then formulate your conjecture as an identity involving binomial
coefficients. Finally, prove your conjecture is correct.

6. Prove or disprove that Fn +
k

∑
j=1

Fn+2 j+1 = Fn+2k+2.

7. Prove that F2
n+1 −Fn+1Fn −F2

n = (−1)n.

8. Prove a few things:

(a) Show that Fn+3 = 2Fn+1 +F2Fn.

(b) Show that Fn+4 = 3Fn+1 +2Fn.

(c) Show that Fn+5 = 5Fn+1 +3Fn.

(d) Now show that for a fixed k, Fn+k = FkFn+1 +Fk−1Fn.

9. Prove that F2n = FnFn+1 +Fn−1Fn.

http://www.oeis.org
http://www.oeis.org
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8.5 Naive Techniques for Finding Closed Forms
and Recurrences

The least formulaic way to find a closed form associated with a given recurrence
is to generate a lot of terms and stare at them until you have a conjecture for a
possible closed form. Then try to prove it. This sort of naive attempt frequently
does not work, so we will introduce progressively more sophisticated techniques
for finding closed forms.

A method that is very bash-y (and only sometimes works) is to iterate the re-
currence. (This process is known as recursing, as it performs recursion.)

Example 8.5.1. Let us start with an = an−1 +(n−3),a1 = 1. We will plug in the
recurrence, but translated for an−1. First, note that an−1 = a(n−1)−1+((n−1)− 3)
= an−2+(n−4). So an = an−2+(n−4)+(n−3).A fewmore iterations produces
an = an−5 +(n−7)+(n−6)+(n−5)+(n−4)+(n−3). Eventually, we get the
statement an = an−(n−2)+(n−(n−2)−2)+ · · ·+(n−4)+(n−3)= a2+0+ · · ·+
(n−4)+(n−3). We compute a2 = 0, and then have an = 0+0+1+· · ·+(n−3)=
∑n−3

j=1 j. Some experimentation shows that the sum is (n−2)(n−3)
2 , so we conjecture

that an =
(n−2)(n−3)

2 . We can prove this is correct using induction (but we will not).

If you try either of these techniques in an attempt to find a closed form for
the Fibonacci sequence, or even on an = an−2 +8n2 +3, it won’t work. For some
sequences you may get lucky—you might reformulate a sequence so that it be-
comes clear that it has the same recurrence and initial terms as a sequence you
know about. And you can look up a closed form for the Fibonacci sequence (but
don’t do it! We’ll compute one later in Example 8.8.5).

Check Yourself

Figure out closed forms for some of these recurrences and check (briefly) by induction
that they’re correct.

1. a0 = 1,an = 3an−1.

2. a1 = 1,an =−2an−1.

3. a0 = 1,an = 2an−1 −1.

4. a1 = 0,a2 = 1,an = an−1an−2.

5. a1 = a2 = 1,an = an−1an−2.
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8.6 Arithmetic Sequences and Finite Differences

Let’s start with an example. Consider the recurrence

an = an−1 +3,a0 = 2.

It produces the sequence
2,5,8,11,14, . . . .

Examine the differences between consecutive terms, an+1 −an.

2 5 8 11 14 …
3 3 3 3

Notice that all of the differences are 3. All of them. And, the closed form for
this recurrence is an = 2+3n. (Check it—it works.)

A sequence with constant differences is called an arithmetic sequence. In fact,
if an = an−1 +d,a0 = c, then the closed form is an = c+dn. We can see why by
examining the differences between terms.

a0 a1 a2 a3 a4 …
d d d d

With each successive term, we add another d, so by the nth term we’ve added
dn. This approach generalizes to recurrence relations of the form an = an−1 +
pk(n),a0 = c0, where pk(n) denotes a polynomial of degree k (i.e., the highest
power is k) with input variable n.

Example 8.6.1. The recurrence an = an−1−10n+8,a0 = 2 produces the sequence
2,0,−12,−34,−66, . . . . Let us check the differences between consecutive terms
as before.

2 0 −12 −34 −66 …
−2 −12 −22 −32

Uh-oh. We didn’t get constant differences. Well, let us forge ahead and take
differences again in case that helps. (We already took first differences, and now
we will take second differences.)

2 0 −12 −34 −66 …
−2 −12 −22 −32

−10 −10 −10
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Hey! Those are constant! Cool. Uh… so how do we use this to get a closed
form? Well, we had a linear function before, and this time it will be quadratic.
Why? Before, the closed form was linear because we were adding the same thing
over and over. The first differences were constant. Now, the second differences are
constant, so the first differences will be linear. Then, adding linear terms over and
over produces a quadratic function. Therefore, the closed formwill look something
like an = c+dn+ f n2, and we need to determine c, d, and f .

When n = 0, we have a0 = 2 = 2+d0+ f 02, so we know c = 2.
When n = 1, we have a1 = 0 = 2+ d + f . That doesn’t seem helpful yet,

but if we combine it with a2 =−12 = 2+2d +22 f = 2+2d +4 f , we can make
progress. We now have two linear equations and two unknowns, and using high-
school algebra, we can solve for d and f .

The equation 0 = 2+ d + f is the same as f = −d − 2, and substituting that
into −12 = 2+2d +4 f gives us −12 = 2+2d +4(−d −2) = 2+2d −4d −8 =
−6−2d or −6 =−2d so that d = 3.

Then f =−3−2 =−5, so our closed form is an = 2+3n−5n2.

As promised, this process generalizes to polynomials of higher degree! Then
the kth differences of the corresponding sequence will be constant, and the closed
form will be an = c0 + c1n+ c2n2 + · · ·+ cknk. Looking at a0,a1,a2, . . . ,ak will
give us c0 and k linear equations in k unknowns, and we can solve them by hand
as done above (though solving them is faster if you know some linear algebra).

How to find a closed form for a recurrence relation of the form an = an−1 +

pk(n),a0 = c0:

1. Check to see whether the sequence has constant differences. If so, then
the closed form is an = c+dn.

2. The kth differences of the corresponding sequence will be constant, so
figure out k. (It is one more than the highest power in the polynomial.)

3. Use a0,a1,a2, . . . ,ak to get c0 and k linear equations in k unknowns.

4. Solve these by hand, either using high-school algebra or linear algebra.
Or feed them to a computer-algebra system.

5. The k unknowns are c1, . . . ,ck. The closed form is an = c0 + c1n +
c2n2 + · · ·+ cknk.
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Side note. The calculus-savvy and adventurous reader can attempt to understand
why taking successive finite differences should determine a closed form for some
recurrences. Envision a discrete version of calculus—where taking differences is
like taking a derivative discretely. Finding a closed form from kth differences is
then like integrating k times (again, discretely). Yes, that’s not really an explana-
tion… but it is a hint towards investigations you might do in order to justify this
process to yourself.

Finally, please notice that this solution technique is only useful for a very lim-
ited sort of recurrence relation (a0 = c0,an = an−1+ pk(n)). The recurrence has to
have one lower term, with a coefficient of 1. And the extra stuff added on has to
be a polynomial, not any other sort of function. But, that’s the way things are—in
general, it is not easy to find closed forms for recurrence relations.

Check Yourself

Do a representative sampling of these problems.

1. Can a closed form for the recurrence a0 = 2,an = 3an−1 − 7 be found using the
techniques of this section? Why or why not?

2. Can a closed form for the recurrence a0 = 22,an = an−1+9n9−12n7+n6−43n−7
be found using the techniques of this section? Why or why not?

3. Can a closed form for the recurrence a0 = 2,an = an−1 +3n−7 be found using the
techniques of this section? Why or why not?

4. Can a closed form for the recurrence a0 = 2,a1 = 22,an = an−1 + an−2 − 22 be
found using the techniques of this section? Why or why not?

5. Try to use kth differences to find a closed form for the recurrence a0 = 1, an = 2an−1.
What happens?

6. Try to use kth differences to find a closed form for the recurrence a0 = 0, an =
an−1 +(n+1)(−1)n+1. What happens?

7. Find a closed form for a0 = 8,an = an−1−4 and check that your formula is correct.

8. Find a closed form for a0 = 3,an = an−1+2 and check that your formula is correct.

9. Challenge: Create your own recurrence for which a closed form can be found using
kth differences, and find that closed form.
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8.7 Try This! Recurrence Exercises

The power of combined minds will produce the creativity necessary to solve these
problems.

1. Variations on a recurring theme:

(a) In the first Check Yourself problem on page 255, you found a closed
form for the recurrence a0 = 1,an = 3an−1. Recall that closed form.

(b) Examine a0 = 1,a1 = 3,an = 2an−1 +3an−2. Generate some terms of
the sequence, conjecture a closed form, and then prove that your closed
form is correct.

(c) Now examine a0 = 1,a1 = −1,an = 2an−1 + 3an−2. Generate some
terms of the sequence, conjecture a closed form, and then prove that
your closed form is correct.

(d) This time, look at a0 = a1 = 2,an = 2an−1 + 3an−2, and conjecture
what kind of closed form an might have. Now generate some terms
of the sequence, conjecture a closed form, and then prove that your
closed form is correct.

(e) How do things change if we examine a0 = a1 = 2,an = 2an−1+3an−2?

2. Consider the sequence given by a1 = 1,an = an−1 +(2n− 3). Can a tech-
nique from this chapter be used to find a closed form? Write out the first
several terms of the sequence. Can you intuit a closed form based on the
terms of the sequence? (Hint: �.) Find a closed form for this recurrence
and use induction to prove that the closed form is correct.

3. For each of the following recurrence relations, first determine whether a
closed form can be found using a technique introduced in this chapter or
whether you must experiment and use your intuition to find a closed form.
Then, find a closed form and show that it is correct (using, of course, induc-
tion).

(a) a1 = 1,an = an−1 +2n.
(b) a0 = 0,an = an−1 +2n.
(c) a0 = 4,an = an−1 +6.
(d) a1 = a2 = 2,an = an−1an−2.
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8.8 Geometric Sequences and the Characteristic
Equation

In this section, we will learn how to find closed forms for linear homogeneous
recurrence relations with constant coefficients. (Try to say that three times fast!)
Of course, you have no clue what those are—nor should you.

Definition 8.8.1. A linear recurrence relation is one where none of the an− j terms
are raised to powers other than 1 and none are multiplied by each other.

For example, an = an−1 +n2 is linear, whereas an = (an−1)
2 −n is not, nor is

an = an−3an−1.

Definition 8.8.2. A homogeneous recurrence relation is one that evaluates to 0
when 0 is plugged in to the a j on the right-hand side.

For example, an = an−1 + 346an−7 + 2an−74 gives 0+ 346 · 0+ 2 · 0 = 0 and
so is homogeneous, but an = an−11 +n2 −5 gives 0+n2 −5 ̸= 0 and so is nonho-
mogeneous.

Definition 8.8.3. A recurrence relation with constant coefficients has coefficients
of a j terms that are not variable.

For example, an = 342an−2+978an−62 has constant coefficients, whereas an =
(3n2 −2n)an−1 +an−7 does not.

Essentially, a linear homogeneous recurrence relation with constant coeffi-
cients has the form an = c1an−1 + c2an−2 + · · ·+ ckan−k. Believe it or not, there
is an algorithm for finding a closed form for any linear homogeneous recurrence
relation with constant coefficients. We will not explore it in full generality here
because it’s long (and at a certain point repetitive and boring), but we will deal
with the simplest cases.

Now we will see how the content of this section is related to the title of the
section. Recall that an = 2an−1 with a0 = 1 has closed form an = 2n. Similarly,
the recurrence relation an = qan−1 generates the sequence a1,qa1,q2a1,q3a1, . . . ,
qna1, . . . , and has closed form an = qna0. This is a geometric sequence because
consecutive terms are related by multiplication by a constant q (much as an arith-
metic sequence has consecutive terms related by addition of a constant). The
closed form is an exponential function of n. Thus, one might suspect (or at least
hope) that a recurrence relation that is a sum of terms like qan−1 (namely, a linear
homogeneous recurrence relation with constant coefficients) would have a closed
form that is a sum of exponential functions. And it turns out to be true!

First we will describe the algorithm that produces a closed form for a linear
homogeneous recurrence relation with constant coefficients, then we will give an
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example of how to use the algorithm, and then we will explain why the algorithm
works. First read the algorithm (you might not understand it just yet), then read
Example 8.8.4 and compare it to the algorithm to see how to execute the algorithm.

How to find a closed form for a recurrence relation of the form an = c1an−1 +

c2an−2 + · · ·+ ckan−k:

1. Rewrite an = c1an−1+c2an−2+ · · ·+ckan−k as xn = c1xn−1+c2xn−2+
· · ·+ ckxn−k.

2. Every term has at least an xn−k in it, so divide through to get xn−(n−k) =
xk = c1xk−1 + c2xk−2 + · · · + ck. This is called the characteristic
equation.

3. Move all the terms to one side, as in xk−c1xk−1−c2xk−2−·· ·−ck = 0,
to obtain a polynomial that we have some chance of factoring.

4. Find the roots r1, . . . ,rk of this baby. This can be done by factoring into
linear terms (x− r1) · · · · · (x− rk) = 0 or by getting a computer or
calculator to produce the roots.

5. Hope that r1, . . . ,rk are all different because otherwise the rest of this al-
gorithm won’t apply, and hope that r1, . . . ,rk are all real because we are
not addressing complex numbers in a discrete mathematics textbook.
(By the way, none of the r j are 0 because if some r j = 0, then we could
factor x out of the characteristic equation, and that would have been
canceled in step 2.)

6. Write out the closed-form equation an = q1rn
1 + q2rn

2 + · · ·+ qkrn
k . All

that’s left is to figure out what the q j are.

7. Go find the first k terms of the sequence a1,a2, . . . ,ak (you must have
left them lying around somewhere…). Use these to generate the k equa-
tions

a1 = q1r1
1 +q2r1

2 + · · ·+qkr1
k = q1r1 +q2r2 + · · ·+qkrk,

a2 = q1r2
1 +q2r2

2 + · · ·+qkr2
k ,

...
...

...
ak = q1rk

1 +q2rk
2 + · · ·+qkrk

k,
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and if you happen to have an a0 lying around, you get a bonus simple
equation

a0 = q1r0
1 +q2r0

2 + · · ·+qkr0
k = q1 +q2 + · · ·+qk.

8. If you don’t happen to have an a0 lying around, figure out what value
you can assign to a0 that is consistent with your recurrence and initial
values. That gives you the bonus simple equation.

9. Use lots of high-school-algebra symbolic manipulation to determine q1,
q2, …, qk from the equations you generated in steps 7 and 8.

10. Plug these values back in to an = q1rn
1 + q2rn

2 + · · ·+ qkrn
k and rejoice

in your closed-form formula.

Example 8.8.4. Consider the recurrence an = 2an−1 + 3an−2 with initial terms
a1 = 0,a2 = 2. (This should look familiar from Section 8.7. Do you have any
conjectures as to what results we will find here?) Notice that it is linear and homo-
geneous and the coefficients are constant; it is in the form an = c1an−1 + c2an−2,
where c1 = 2 and c2 = 3. We will follow the algorithm.

1. We rewrite as xn = 2xn−1 +3xn−2.

2. We divide through by xn−2 to get x2 = 2x+3.

3. We rewrite as x2 −2x−3 = 0.

4. We factor as (x−3)(x+1) = 0 to see that the roots are r1 = 3,r2 =−1.

5. We do a tiny happy dance because r1 ̸= r2 so we can continue.

6. Now we have an = q13n +q2(−1)n and need to determine q1 and q2.

7. Using the initial terms, a1 = 0 = q13−q2 and a2 = 2 = q19+q2.

8. We do not need any additional equations, but let us see how we might obtain
one anyway. We have that a2 = 3a1+2a0, or 2= 2 ·0+3a0, so a0 =

2
3 . Then

we have that 2
3 = q1 +q2.

9. From the first equation in step 7, we find that q2 = 3q1, which we can then
use to see that 2 = 9q1 +3q1 = 12q1, so that q1 =

1
6 and q2 =

1
2 .

10. Finally, we arrive at an =
1
6 3n + 1

2(−1)n, which is the desired closed form.
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Example 8.8.5 (the Binet formula). Consider now the recurrence an = an−1+an−2
with initial terms a1 = 1,a2 = 1. This is as linear and homogeneous as recurrences
get, with coefficients so constant they’re invisible. And if you haven’t noticed yet,
notice now: this is the Fibonacci sequence. Again we will follow the closed-form
algorithm, though a bit less formally than before.

We start with xn = xn−1 + xn−2 and reduce to x2 = x + 1. This becomes
x2 − x− 1 = 0, which does not have a nice factorization; however, the quadratic
formula reveals that its roots are 1±

√
5

2 . This tells us an = q1(
1+

√
5

2 )n+q2(
1−

√
5

2 )n.
We know that a1 = 1 = q1(

1+
√

5
2 ) + q2(

1−
√

5
2 ) and a2 = 1 = q1(

1+
√

5
2 )2 +

q2(
1−

√
5

2 )2. A simpler equation would be nicer, so let’s notice that a2 = a1 + a0,
i.e., 1 = 1+a0 so a0 = 0. This gives us 0 = q1+q2, or q2 =−q1. Substituting into
the equation we got from a1, we have 1 = q1(

1+
√

5
2 )− q1(

1−
√

5
2 ) = q1

√
5. Thus,

q1 =
1√
5
and q2 =

−1√
5
.

Finally, we have an = 1√
5
(1+

√
5

2 )n − 1√
5
(1−

√
5

2 )n. This is known as the Binet
formula for the Fibonacci numbers, after Jacques Binet (1786–1856), though he
was by far not the first to have discovered the formula.

Now for an explanation of why the algorithm works. (It’s kind of long but not
too bad, and really interesting… you don’t believe that, do you?) We will proceed
by proving a lemma first.

Lemma 8.8.6. The formula an = rn
j is a closed form for the recurrence an =

c1an−1 + c2an−2+ · · ·+ckan−k ⇐⇒ r j is a root of an’s characteristic equation.

This says that there is a different closed form for every root of the recurrence
relation an = c1an−1 + c2an−2 + · · ·+ ckan−k. Don’t freak out yet; notice that no
mention was made of the initial conditions (a0,a1,a2, . . . ). So Lemma 8.8.6 is not
actually claiming there are multiple closed forms for any particular sequence.

Proof of Lemma 8.8.6: (⇒) Suppose that an = rn
j is a closed form for an = c1an−1

+ c2an−2+ · · ·+ckan−k. Then, rn
j = c1rn−1

j +c2rn−2
j + · · ·+ckrn−k

j by substitution.
This implies that rk

j −c1rk−1
j −c2rk−2

j −·· ·−ck = 0. That is exactly the character-
istic equation with r j plugged in to x; because the left-hand-side evaluates to 0, r j
is a root of the characteristic equation.
(⇐) Now suppose that r j is a root of the characteristic equation of an = c1an−1 +
c2an−2+ · · ·+ckan−k. That means that when r j is substituted for x in xk = c1xk−1+

c2xk−2 + · · ·+ ck, the equation still holds. Thus, rk
j = c1rk−1

j + c2rk−2
j + · · ·+ ck.
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We can multiply through by rn−k
j to obtain rn

j = c1rn−1
j + c2rn−2

j + · · ·+ ckrn−k
j ,

which exactly means that an = rn
j is a closed form for an = c1an−1 + c2an−2 +

· · ·+ ckan−k. �

Lemma 8.8.6 produces k closed forms, one for every root of the characteris-
tic equation, or, equivalently, one for every term in the recurrence relation. We
will now combine these closed forms into a masterpiece of equation-ness. If
rn

1,r
n
2, . . . ,r

n
k are each closed forms for an = c1an−1 + c2an−2 + · · ·+ ckan−k, this

means that

rn
1 = c1rn−1

1 + c2rn−2
1 + · · ·+ ckrn−k

1 ,

rn
2 = c1rn−1

2 + c2rn−2
2 + · · ·+ ckrn−k

2 ,

...
...

...
...

...

rn
k = c1rn−1

k + c2rn−2
k + · · ·+ ckrn−k

k .

Let’s multiply the first of those by q1, the second by q2 (and the jth by q j), and
the last by qk, and add the whole shebang together. On the left-hand side, we get
q1rn

1 + q2rn
2 + · · ·+ qkrn

k . That’s what the last step of our algorithm produces, so
we hope it turns out that this is a closed-form formula for an = c1an−1 +c2an−2 +
· · ·+ ckan−k. Now examine what happens with the right-hand side of the sum of
the equations. We get q1(c1rn−1

1 + c2rn−2
1 + · · ·+ ckrn−k

1 )+ q2(c1rn−1
2 + c2rn−2

2 +

· · ·+ ckrn−k
2 )+ · · ·+ qk(c1rn−1

k + c2rn−2
k + · · ·+ ckrn−k

k ), and by collecting terms,
this is the same as c1(q1rn−1

1 +q2rn−1
2 + · · ·+qkrn−1

k )+c2(q1rn−2
1 +q2rn−2

2 + · · ·+
qkrn−2

k )+ · · ·+ ck(q1rn−k
1 + q2rn−k

2 + · · ·+ qkrn−k
k ). And yes, this is exactly what

we want to see—inside the first set of parentheses is the (n− 1)st version of our
proposed an, inside the second set of parentheses is the (n− 2)nd version of our
proposed an, and more generally, inside each set of parentheses is the appropri-
ately indexed version of the proposed an. This shows that our convoluted formula
truly is a closed-form formula for the linear homogeneous recurrence with constant
coefficients an = c1an−1 + c2an−2 + · · ·+ ckan−k.

In fact, it turns out that every possible closed form of a linear homogeneous
recurrence with constant coefficients is of the form an = c1rn−1

1 + c2rn−2
2 + · · ·+

ckrn−k
k , but that proof is a bit beyond this text. (If you know linear algebra, do try

to figure it out!)
It probably seems super-strange to you that no matter how yucky the roots

r j are, integers always come out of the closed-form equation. They have to, of
course—an is an integer sequence and we proved that this equation is a closed
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form for it—but it’s still weird that, for example, all those
√

5s turn into Fibonacci
numbers.

Check Yourself

Do a representative sampling of these problems.

1. Which parts of the definition of a linear homogeneous recurrence relation with con-
stant coefficients do each of these recurrences violate?

(a) an = nan−3 +6.

(b) an = an−1an−43 +23n.

(c) an = 5n2an−3 − (−1)nan−6.

2. Find the characteristic equation for …

(a) … an = 4an−1.

(b) … an = an−1 −3an−2.

(c) … an = 2an−2.

3. Determine a0 for each of these recurrences.

(a) a1 = 3,an = 4an−1.

(b) a1 = a2 = 1,an = an−1 −3an−2.

(c) a1 = 1,a2 = 2,an = 2an−2.

4. Determine the characteristic equation for an = 2an−1. What are its roots? Using
this information and the initial condition a1 = 42, determine a closed-form formula.

5. For each of the following recurrences, decide whether one could use (i) kth differ-
ences, (ii) the characteristic equation, or (iii) neither in order to find a closed form
for the recurrence.

(a) an = 2an−1 +2.

(b) an = an−1 +2an−2 +3an−3 +4an−4.

(c) an = 3an−3 +3n.

(d) an = an−1 −2n2.
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8.9 Try This! Find Closed Forms for These Recurrence
Relations!

For each of the recurrence relations given here, find a closed-form formula. You
may wish to first identify the type of recurrence relation, then generate a few terms
to see if intuition will produce a closed form quickly, and then proceed with your
chosen closed-form-producing technique.

1. a1 = 2,an = an−1 +n+6.

2. a0 = 3,a1 = 10,an = 10an−1 +25an−2.

3. a0 = 62,an =−an−1.

4. a0 =−2,an = an−1 +n−7.

5. a0 = 1,a1 = 2,an = 4an−2.

6. a0 = 0,an = an−1 +2n2 −n.

7. a0 =−3,a1 = 1,an = 12an−1 −35an−2.

8. a1 = 1,a2 = 1,an = an−1an−2 −1.

9. a0 = 1,a1 = 2,a2 = 3,an = 2an−1 +5an−2 −6an−3.

8.10 Where to Go from Here

Recurrence relations are a class of examples of the more general process of recur-
sion, in which one defines an object or procedure in terms of smaller or previous
cases of the object or procedure. As a process, recursion is used throughout com-
puter science and arises particularly in function definitions and algorithm execu-
tion. For example, binary search, which we will discuss in Chapter 10, is recursive
in nature. Computer science courses in algorithm design and analysis will include
further study of recursion, as will combinatorics courses in mathematics.

To learn more about producing closed forms for recurrences, see [5, Sec-
tion 2.3]. The authors address linear homogeneous recurrence relations with con-
stant coefficients for which the characteristic equation has multiple roots, some
linear inhomogeneous recurrence relations, andmore advanced techniques for sim-
plifying complicated recurrence relations.
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If you are particularly interested in Fibonacci numbers, you may want to learn
more about number theory—in which case, see Chapter 16 and the resources given
there. The journal The Fibonacci Quarterly publishes the latest research and ex-
position related to Fibonacci numbers. Back issues are freely downloadable via
http://www.fq.math.ca/.

For integer sequences in general, no source beats the OEIS. (Many examples
and exercises in this chapter derive from this source!) Integer sequences are a topic
of active research, and in fact, the Journal of Integer Sequences is devoted to the
area. Articles are available free online at http://www.cs.uwaterloo.ca/journals/
JIS/. Some chemists and physicists are also interested in integer sequences that
count the number of ways of folding particular proteins, the number of benzenoid
chains in a hydrocarbon structure, and the number of states in a Potts model.

Credit where credit is due: Section 8.8 and many problems in Section 8.14 were inspired
by [1]. Section 8.6 was derived from notes written by Tom Hull. New problems at the
start of Section 8.7 were suggested by a very helpful and gracious anonymous reviewer.
Bonus Check-Yourself Problem 1 and Problem 30 of Section 8.14 were donated by Tom
Hull. Obviously, many aspects of this chapter were inspired by Neil J.A. Sloane’s OEIS!
The unusual phrase on page 249 was the start of the first sentence of a story written by the
author’s father, about the origin of fractions: Once upon a time, a long, long time ago now,
so long ago that animals could talk and teachers were human beings, it was that long ago
that there lived on the moon a fairy snow queen.

8.11 Chapter 8 Definitions

Fibonacci numbers: Collectively these
form an integer sequence defined by the
recurrence Fn = Fn−1 +Fn−2 with initial
values 1,1.

integer sequence: Integers listed in some
order.

closed-form formula (or closed form): A
rule for producing the nth term of a se-
quence given only the number n.

recurrence relation (or recurrence): A
statement of the form an = (some stuff,
some of which involves asmaller than n); a

rule for generating more terms of a se-
quence by knowing only some of the
previous terms.

recursion: The process of using a recur-
rence.

explicit formula: A closed-form formula,
in contrast to the implicit expression of
a recurrence.

recursing: The process of iterating a recur-
rence.

arithmetic sequence: A sequence with con-
stant differences.

http://www.fq.math.ca/
http://www.cs.uwaterloo.ca/journals/JIS/
http://www.cs.uwaterloo.ca/journals/JIS/
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linear recurrence relation: A recurrence re-
lation where none of the an− j terms are
raised to powers other than 1 and none
are multiplied by each other.

homogeneous recurrence relation: A re-
currence relation that evaluates to 0 when
0 is plugged in to the a j on the right-hand
side.

constant coefficients: A recurrence rela-
tion with coefficients of a j terms that are
not variable.

linear homogeneous recurrence relation
with constant coefficients: A recurrence
with the form an = c1an−1 + c2an−2 +
· · ·+ ckan−k.

geometric sequence: A sequence where
consecutive terms are related bymultipli-
cation by a constant.

characteristic equation: The equation
xk = c1xk−1 + c2xk−2 + · · · + ck asso-
ciated to a linear homogeneous recur-
rence relation with constant coefficients
an = c1an−1 + c2an−2 + · · ·+ ckan−k.

8.12 Bonus: Recurring Stories

Story 1. People walk up stairs in many different ways. The author’s mother
usually climbs them one at a time; her father always climbs them two at a time.
As a result, the author sometimes takes stairs one at a time and sometimes takes
stairs two at a time and often combines these two approaches. How many ways
are there for her to walk up a flight of n stairs?

First, of course, we must experiment. Check out n = 1; there is only one way
to climb one stair (notice that it’s one at a time). If there are two stairs, the author
could climb them as 1-1 or as 2. That’s two ways. If there are three stairs, she
could climb them as 1-1-1 or as 1-2 or as 2-1. That’s three ways. Lest you think
n = 1,2,3 is enough experimentation, go to OEIS and discover that there are at
least 14,709 different sequences that begin in this fashion. So at least let’s look
at n = 4. The author could take those stairs as 1-1-1-1 or 2-2 or 2-1-1 or 1-2-1 or
1-1-2. That’s five ways. But sadly, the OEIS tells us that there are at least 2,262
sequences that begin with 1,2,3,5.

How can we determine which sequence we’re dealing with? The answer is to
try to create a recurrence, as this will specify the rest of the sequence. In other
words, we want to break down the different ways the author could have gotten to
the nth step into ways of getting to previous steps. We’ll call the number of ways
of climbing n stairs sn. Let’s see… if the author most recently climbed a single
step, then there were n−1 previous stairs and so sn−1 ways to climb them. If her
last movement didn’t go up a single step, she must have gone up two steps at once
(there are no other ways to climb), so there were n− 2 previous stairs and sn−2
ways to climb them. By the sum principle, we add these two numbers of ways and
discover that sn = sn−1 + sn−2.
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Figure 8.2. A Tower of Hanoi toy, before play (left) and during play (right).

Hopefully that recurrence looks familiar to you. Remember that if two se-
quences have the same recurrence relation and the same initial values, then they
are the same sequence. The only problem here is that the Fibonacci sequence starts
with 1,1,2, 3,5 . . . , not with 1,2,3,5 . . . . We can fix this by noting that s1 = F2
and s2 = F3, so in general sn = Fn+1.

Let’s unpack that process a little bit. In addition to creating a recurrence, we
provided a combinatorial explanation. Giving a combinatorial proof that the re-
currence works assures us that it is the correct recurrence. This, in turn, allows us
to identify our sequence with a known sequence or to find a correct closed-form
formula.

Story 2. In many libraries and classrooms, one can find a toy consisting of a
board with three pegs and a pile of discs on one of the pegs. A small example is
shown in Figure 8.2. In playing with this toy, the goal is to move all discs from
one peg to a different peg, while only moving one disc at a time (from one peg
to another) and never placing a larger disc atop a smaller disc. This toy is known
as the Tower of Hanoi (though no one seems to know why Edouard Lucas (1842–
1891), its inventor, called it that).

Of course, once one has moved all discs from one peg to another according
to the rules, the question arises, How can this be done in the smallest number of
moves? And, for that matter, what is the smallest number of moves?

If you have not played with this toy, you should stop reading now, close the
book, and go play with the Tower of Hanoi for a while (perhaps at https://www.
mathsisfun.com/games/towerofhanoi.html). (However, if you actually followed
the directions in the previous sentence, you would not have made it to the end of
the sentence, or to this parenthetical remark.)

Now then, let us think about strategy. We think you will agree that what the
smallest number of moves is depends on the number of discs involved. Therefore,

https://www.mathsisfun.com/games/towerofhanoi.html
https://www.mathsisfun.com/games/towerofhanoi.html
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let us denote the smallest number of moves it takes to move n discs from one peg
to another by mn.

Because we can only move one disc at a time, we certainly have to move the
first n−1 discs off of the largest (nth, bottom) disc before we can move the largest
disc onto another peg. The peg to which we move the largest disc must be empty,
because we cannot move a larger disc onto a smaller disc, so all of the first n−1
discs must be moved to the same peg. That takesmn−1 moves. And for that matter,
once we have moved the largest disc onto another peg, we have to put the first
n− 1 discs back onto it. That also takes mn−1 moves. So, in total (not forgetting
the movement of the largest disc onto an empty peg), mn = mn−1 + 1+mn−1 =
2mn−1 +1. Again, we constructed a recurrence using combinatorial proof.

Hmm… if we have but a single disc, it takes exactly onemove to place that disc
on a different peg. (We can’t even be inefficient and use more than one move—the
moment we make a single move, the disc is irrevocably on a different peg.) There-
fore, m1 = 1 and we can use the recursion we developed to write down a sequence:
1,3,7,15,31, . . . . Use your intuition to find a closed form for this sequence. (The
OEIS lists 53 sequences with this beginning, so you’ll get no satisfaction there—
unless you choose a closed form and prove by induction that it is correct.)

Story problems:

1. You are in a strange multifloor shopping mall. What’s strange about it
is the placement of the escalators. For every floor (except the first and
second) there are two escalators that go down a single floor and three
escalators that go down two floors at once, without letting shoppers get
off at the intermediate floor. (The first floor has no down escalators,
and the second floor has the expected two escalators that go down a
single floor.) This makes navigation somewhat confusing. Still, for an
n-floor shopping mall, how many ways are there to get from the top
floor to the first floor so you can leave?

2. The puzzle Trench consists of a board and a number of tiles. There is a
long groove cut into the board, 1′′ tall and quite long with lengths of 1′′

marked on it. The tiles are of two shapes, 1′′×1′′ squares and 1′′×2′′

right triangles. The goal of Trench is to find all possible ways of filling
the groove with the tiles; a few examples are shown in Figure 8.3. Let
us denote the number of ways of filling the first n inches of Trench
as Tn.
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1

1 2 3 4 5 6 7

1

1 2 3 4 5 6 7

1

1 2 3 4 5 6 7

Figure 8.3. A mock-up of the puzzle Trench.

(a) What are the first few Trench numbers T1,T2,T3,T4, . . .?
(b) Construct a recurrence for Tn and explain why it is correct.
(c) Find a closed form for your recurrence.

3. Now suppose that you want to solve the Restricted Trench puzzle. The
setup is the same as the Trench puzzle of the previous problem, but
only one direction of slant is allowed for the triangle’s diagonal. Let
us denote the number of ways of filling the first n inches of Restricted
Trench as Rn.

(a) What are the first few Restricted Trench numbers R1,R2,R3,
R4, . . .?

(b) Construct a recurrence for Rn and explain why it is correct.
(c) Find a closed form for your recurrence.

4. When building a wall, all the bricks in a row should be directly next
to each other and every brick should be set on top of exactly two other
bricks. A few stacks of bricks are shown in Figure 8.4.

Figure 8.4. Some stacks of bricks.
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We shall denote the number of different stacks of bricks with n bricks
along the bottom by bn.

(a) What are the first few brick-stack numbers b1,b2,b3,b4?
(b) Construct a recurrence for bn and explain why it is correct.

8.13 Bonus Check-Yourself Problems
Solutions to these problems appear starting on page 611. Those solutions that model a
formal write-up (such as one might hand in for homework) are to Problems 1 and 10.

1. Dandelions reproduce very quickly, as
anyone whomaintains a lawn knows. In
fact, did you know that on any given
day, if you went to your lawn and
counted the dandelions, then the next
day twice as many new dandelions will
have emerged from the ground? Luck-
ily, dandelions die after two days, so
that helps keep the numbers down. Still,
if on day 0 you had 1 dandelion, then on
day 1 you would have 3 dandelions, on
day 2 you’d have 8 dandelions, and then
on day 3 you’d have 22 dandelions.
(a) Write a recurrence equation for dn =

the number of dandelions on day n.
(b) Find a closed-form formula for dn.

2. Generate the first 30 terms of the se-
quence an = an−1+an−2−an−3,a0 = 0,
a1 = 1,a2 = 1.

3. Suppose that an = (−4)n, an = 1, and
an = 2n are all closed forms for the same
recurrence. Find a recurrence that fits
this criterion and verify that it really
does work for all three closed forms.

4. Consider the sequence 1,3,4,7,11,18,
29, . . . .

(a) Find a recurrence that Ln satisfies.
(b) Prove that Ln = Fn−1 +Fn+1.

5. Find a closed-form formula for the se-
quence a0 =−1,an = an−1 +3n+1.

6. Consider the recurrence relation an =
3an−1 −an−2 with a0 = 0,a1 = 1. Gen-
erate some terms, make a conjecture as
to what sequence this is, try to find the
closed form, and try to explain what is
going on here.

7. Consider the sequence 5,−3,5,−3,5,
−3,5,−3,5,−3,5, . . . . Find a recur-
rence for this sequence, and find two
more (different) sequences that satisfy
that recurrence.

8. Find a closed form for the sequence
defined by the recurrence an =
−an−1an−2 + 2,a0 = 1,a1 = 1. How
do things change if a0 = 0, a1 = 0?

9. Here is a characteristic equation: x5 +
4x3 − 3x2 − 1 = 0. What is the associ-
ated recurrence?

10. Find a closed-form formula for the se-
quence a0 = 1,an = an−1 +n2 −2n.
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8.14 Recurring Problems

1. Write F1+F3+F5+ · · ·+F2n−1 in sum-
mation notation. Then show that F1 +
F3 +F5 + · · ·+F2n−1 = F2n.

2. Write F2+F4+F6+ · · ·+F2n in summa-
tion notation. Then show that F2 +F4 +
F6 + · · ·+F2n = F2n+1 −1.

3. Prove that F3n is even.
4. Write F1 −F2 +F3 −F4 + · · ·+F2n−1 −

F2n in summation notation. Then show
that F1 − F2 + F3 − F4 + · · ·+ F2n−1 −
F2n = 1−F2n−1.

5. The first two terms of the Fibonacci se-
quence are 1,1. Find two other inte-
gers that, together with the recurrence
an = an−1 + an−2, do not generate Fi-
bonacci numbers. Then, find two other
integers that, together with the recur-
rence an = an−1 +an−2, do generate Fi-
bonacci numbers. What kinds of inte-
gers do this?

6. Consider the sequence 0,1,5,12,22,35,
51,70,92,117,145,176, . . . . Find both
a recurrence and a closed form for this
sequence.

7. Find a closed form for a0 =−1,a1 = 1,
an = 2an−1 −an−2.

8. Consider binary numbers with n digits
(e.g., 1010,00101,011). How many bi-
nary numbers of length n do not contain
the substring 000? Denote this num-
ber by zn; find a relationship between
zn,zn−1, and (we’re not going to tell you) in
order to form an appropriate recurrence
relation. (Do not, oh, please, do not
try to find a closed form for this recur-
rence.)

9. Find a closed form for a1 = 2,an =
an−1 +2n.

10. What proof technique(s) was/were used
in the proof of Lemma 8.8.6?

11. Find a recurrence that defines the
sequence 1,1,1,3,5,9,17,31, . . . . Now
find a different sequence that satisfies
this recurrence.

12. Look through the sequences you have
generated since working on Section 8.4.
Are there any that do not appear in the
OEIS?

13. What proof method has been most com-
monly used in this chapter?

14. Find a closed form for a0 = −1,a1 =
−2,an = 4an−1 −3an−2.

15. Find a recurrence that defines the se-
quence 2,3,5,9,17,33,65, . . . . Now
find a different sequence that satisfies
this recurrence.

16. Mini-project: More Fibonacci iden-
tities than you can shake a stick at:
Prove each of the following identities.
(a) F2n = Fn(Fn+1 +Fn−1).
(b) Fn | F2n.
(c) F2n = Fn(Fn +2Fn−1).
(d) F2n = (Fn+1)

2 − (Fn−1)
2.

(e) F2n = Fn(2Fn+1 −Fn).
(f) (Fn)

2 +(Fn+1)
2 = F2n+1.

(g) F(k+1)n = Fn−1Fkn +Fkn+1Fn.
(h) Fn = FkFn−k+1 +Fk−1Fn−k.
(i) Fn = FkFn−k−1 +Fk+1Fn−k.
(j) F3n = F3

n+1 +F3
n −F3

n−1.
(k) F2

n+1 = 4FnFn−1 +F2
n−2.

17. Find a closed form for the recurrence
an = 5an−1 − 4an−2, with a0 = 0,
a1 = 1.
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18. Suppose that you are presented with the
equation x4−2x2+3x−3 = 0. To what
recurrence does this correspond?

19. Find a closed form for a1 = 1,an =
an−1 +3.

20. Suppose that an = (−3)n and an = 4n

are both closed forms for the same re-
currence. Find a recurrence that fits this
criterion.

21. Consider the recurrence an = an−3 + 1,
with a0 = 1, a1 = 0, and a2 = 1. Gen-
erate the first 30 terms of this sequence.
Laugh delightedly. Challenge: find a
closed-form formula for this sequence.

22. Suppose that you are given the roots to a
characteristic equation, and they are−1,
2, and −3.

(a) What is the characteristic equation?
(b) To what recurrence does that corre-

spond?
(c) Find initial conditions so that an =

(−1)n is the closed form for the re-
currence. Use the recurrence to gen-
erate a few more terms to be sure
your initial conditions work.

(d) Find initial conditions so that an =
(−1)n+2n is the closed form for the
recurrence. Use the recurrence to
generate three additional terms to be
sure your initial conditions work.

(e) Find initial conditions so that an =
(−1)n + 2n + (−3)n is the closed
form for the recurrence. Use the re-
currence to generate three additional
terms to be sure your initial condi-
tions work.

23. Find a closed form and a recurrence
relation for the sequence 0,2,8,24,64,
160,384,896,2048,4608,10240, . . . .

24. Find a closed form for the sequence
0,2,10,28,60,110,182,280,408,570,
770, . . . .

25. Consider the recurrence an = 2an−1 +
an−2 −2an−3.
(a) The characteristic equation has three

roots, r1,r2,r3. What are they?
(b) Find initial conditions so that an =

(r1)
n is the closed form for the recur-

rence. Use the recurrence to gener-
ate a few more terms to be sure your
initial conditions work.

(c) Find initial conditions so that an =
(r1)

n + (r2)
n is the closed form for

the recurrence. Use the recurrence
to generate three additional terms to
be sure your initial conditions work.

(d) Find initial conditions so that an =
(r1)

n + (r2)
n + (r3)

n is the closed
form for the recurrence. Use the re-
currence to generate three additional
terms to be sure your initial condi-
tions work.

26. Find a closed-form formula for the se-
quence given by a0 = 1,an = an−1 +
n2 −3n+1.

27. Find a closed form for the recurrence
a0 = 1,an = an−1 −9n+5.

28. Find a closed form for the recurrence
an = 2an−1+an−2−2an−3,a0 = 1,a1 =
0,a2 =−1.

29. Which of these are linear homogeneous
recurrence relations with constant coef-
ficients? For those that are not, which
part(s) of the definition is/are violated?
(a) an = 2an−2an−3 +3nan−4 +2.
(b) an = 5an−1 − 4an−2 + 3an−3 −

2an−4 +an−76

(c) an = 62an−1 +2n−1.
(d) an = a3

n−2 +15nan−5.
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30. Find a closed form for the recurrence
an = an−1 +6an−2, a1 = 2, a2 = 8.

31. Find a closed form involving (?)n for
the recurrence an = 2an−1 +2,a1 = 4.

32. Find a closed form for the sequence
111,109,105,99,91,81,69,55, . . . .

33. Find a closed form for the recurrence
an = an−1 −4,a0 = 126.

34. Find a closed form for the sequence
12,43,74,105,136,167,198, . . . .

35. Find a closed form for the recurrence
an = an−1 +6n−1,a0 =−23.

8.15 Instructor Notes

It has been a few weeks since students studied induction intensively, so they will probably
need some review as they start their study of recurrences. Such a review can be built in
to a warm-up interactive lecture that introduces the chapter. First, assign students to read
Sections 8.1–8.3 as preparation for class. Then give an example of a simple recurrence
(an = 5an−1,a0 = 2 works well), have students generate the first few terms, propose a
closed form, and prove that the closed form is correct. While doing the proof with them,
recall the basic structure of base case, inductive hypothesis, and induction step and em-
phasize that the first terms of the sequence are base cases, while the recurrence itself is
the key to completing the inductive step. You might also review a proof of a Fibonacci
identity the students have seen (or give one that is not in the text). Then have the students
work in groups on the problems in Section 8.4. It is useful to ask students to bring laptops
(or other internet-capable devices) to class that day in order to use the OEIS. The problem
in which students discover Fibonacci numbers hiding in Pascal’s triangle is challenging,
not because the discovery or proof is hard but because it is difficult for students to state
their conjectures using mathematical notation.

For the second class, students could be assigned to read Sections 8.5 and 8.6. Start by
asking for questions over the reading, and then arrange the students into groups to work
on Section 8.7. The first problem will let students discover the connection between linear
homogenous recurrences and geometric sequences, and thus prepare them for Section 8.8.
Problem 2 is included as a transition from experimentation to recognition of recurrence
types; a closed form can be found for that recurrence more quickly by using intuition than
by using kth differences. The last problem is designed to have students begin to recognize
recurrence formats for which closed forms can be found in a straightforward way. It is
likely that students will have forgotten some of the details of solving simultaneous linear
equations, so do not be surprised if this technique is where they get stuck.

After this, assign students to read Section 8.8. Some will simply take it on faith that
the presented algorithm works, whereas others will struggle with the explanation. Decide
how deeply you would like the students to understand this topic and perhaps start class by
reviewing the material at that level. Start the students on Section 8.9 by discussing how
to “type” recurrences and then letting them loose to work in groups. These problems take
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longer than you might expect because students may get bogged down in the arithmetic or
symbolic details.

There is a question as to why we teach methods for finding closed forms for recur-
rences in a lower-level discrete mathematics course, given that WolframAlpha can do this
quickly and for the low price of an internet connection. There are several cognitive aspects
of the material that make it useful for these students. For example, the material reinforces
the concept of algorithm in a concrete way. It links the familiar technique of solving simul-
taneous equations from high school with higher mathematics. More generally, acquiring
facility with symbolic language (here, indexing and index substitution) is valuable. The
linkage between a given symbolic notation and what it means is being reinforced when
we do technical computations of some complexity. This, in turn, allows students to more
easily recognize the situations in which the given symbolic notation applies.

You may choose to de-emphasize some of these methods; every class has different
needs. Because this chapter hammers the connection between recurrence and induction,
it would be a good idea in most classes to remind students that when two sequences have
the same recurrence relation and initial terms, they are in fact the same sequence. This is
mostly applicable when creating a recurrence to solve a problem but can also arise when
a student finds a sequence and then discovers it is familiar.



Chapter 9

Cutting Up Food:
Counting and Geometry

9.1 Introduction and Summary

There are lots and lots of applications of combinatorics to geometry (robot arms,
minimal-length paths between sets of objects, origami, …) but most of them re-
quire additionalmathematical background and thus are too advanced for this course.
So we will just investigate one example—but it’s enough, as you will see! Interest-
ingly, this family of geometric problems involves both recurrences and binomial
coefficients, so it provides a review of some material from the previous two chap-
ters, while also setting that material in a larger context.

We will begin with pizza (yum) and will want to know the largest number
of pieces of pizza we can get using k cuts. We will then consider food of other
dimensions (yams, spaghetti, hyperbeets, etc.).

9.2 Try This! Slice Pizza (and a Yam)

These problems are interrelated, so you will probably want to change which prob-
lem you are working on somewhat frequently. Insight from a later problem can
help you finish an earlier problem.

Imagine a (round) pizza. We are going to slice it with a laser cutter, for exam-
ple, as in Figure 9.1. It is expensive to use a laser cutter (but we need the accuracy),
so we want to use the least number of cuts and obtain the largest number of pieces.

1. What is the largest number of pieces of pizza you can obtain using exactly
three cuts? Try drawing a few pizzas of your own to experiment.

2. Cut up some more (drawn) pizzas. What is the largest number of pieces of
pizza you can obtain using exactly four cuts?

277
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Figure 9.1. Using two cuts garners at most four pieces.

3. Experiment to discover what the largest number of pieces of pizza is that
can be obtained using exactly five cuts. You may find that you need to draw
fairly large pizzas so your cuts don’t blur into each other.

4. Fill in as much of this table as you can:

Number of cuts on a pizza 0 1 2 3 4 5 6 7 8
Maximum number of pieces possible 4

It would be a good idea to collaborate with other groups of people to share
information and compare answers.

5. Start conjecturing if you haven’t already. What are the next terms in this
sequence? Do you see a recurrence relation? How about a closed-form
formula? Share your conjectures with others.

6. What properties do your sets of cuts need to have in order to obtain the
maximum number of pieces?

7. Try to prove any conjectures available to you. Notice that because the only
information you started with was a pizza and a cutting instrument, you will
have to use that information in any proof you craft. (You may be able to
show that some of your conjectures are logically equivalent to others, but
to complete a combinatorial proof of a recurrence relation or closed-form
formula, you must link back to the situation of the pizza.)

Now consider a large yam. Your mad scientist laboratory has a laser-cutter
chamber in which you can mount the yam; the lasers are able to rotate around it so
that cuts can be made at any angle. A cut yam is shown in Figure 9.2.

8. How many chunks of yam can you obtain when using exactly two cuts?
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Figure 9.2. A singly cut yam.

9. What is the largest number of yam chunks obtainable using exactly three
cuts? It is much more difficult to draw cut yams than to draw sliced pizza,
but attempt it anyway.

10. What is the largest number of pieces of yam you can obtain using exactly
four cuts? If you cannot get an exact number, then try to find upper and
lower bounds on the number.
(If you have access to a computer and would like a visual aid for your experi-
ments or for communicating your ideas, see http://demonstrations.wolfram.
com/CuttingSpaceIntoRegionsWithFourPlanes/—you can move planes
such as those shown in Figure 9.3.)

1.0

–

–

1.0

–

–

–

–

Figure 9.3. Four sample planes cutting space into regions.

http://demonstrations.wolfram.com/CuttingSpaceIntoRegionsWithFourPlanes/
http://demonstrations.wolfram.com/CuttingSpaceIntoRegionsWithFourPlanes/
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9.3 Pizza Numbers

Hey! You! Don’t read this unless you have worked through the problems in Sec-
tion 9.2. I mean it!

By now, you have generated a sequence of numbers, 1,2,4,7,11,16, . . . , that in-
dicate the maximum number of pieces of pizza obtainable using n cuts. Let us
denote the nth term of this sequence as pn. You have probably conjectured a re-
currence for pn; for example, you might have noticed that the first differences
begin as 1,2,3,4,5, . . . and so suspect that pn = pn−1 +n. (Be sure to check that
your indexing is correct: the polynomial term must be n, not n−1 or n+1.) Us-
ing techniques from Chapter 8, you can find a closed form for this recurrence of
n2

2 + n
2 +1.
That’s lovely, but flawed. How do we know that the pattern of the first six

numbers continues? How do we know that the conjectured recurrence is correct?
Even if it is correct, does there exist a more interesting or insight-giving closed
form? To answer these questions, we must analyze the situation and construct a
combinatorial proof. Such a proof will assure us that the conjectured recurrence is
correct and that the pattern observed in the sequence continues.

Let us begin to analyze the situation with ideal placement of the n cuts. How
should they be placed so that the resulting number of pieces is maximized? You
probably noticed that in the case of three cuts, if all go through a single point, only
six pieces are obtained. If the three cuts intersect only pairwise, then seven pieces
are obtained, and this is the maximum number. More generally, when three cuts
pass through a single point, fewer pieces are obtained than when the cuts intersect
pairwise. Additionally, placing a cut parallel to another cut yields fewer pieces
than placing the cut so that it can intersect the previous cut. Lines that are placed
so that no two are parallel and no three intersect at a single point are said to be in
general position. Therefore, in order to maximize the number of pieces of pizza,
we want the cuts to be placed in general position.

While we are getting all abstract and line-y, let’s go all the way. In mathemati-
cal language, what youwere doing in Section 9.2 was dividing a plane into regions;
the fact that the pizza was allowed to be arbitrarily large means that it might have
been as infinitely expansive as a plane. The cuts on the pizza correspond to lines
that separate regions on the plane. In this view, our pizza drawings become those
in Figure 9.4. We can now look at pn, the maximal number of regions into which n
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Figure 9.4. Without a crust, a collection of pieces of pizza (left) might as well be regions
in the plane (right).

lines can divide a plane, from a recursive standpoint or from a closed-form stand-
point. We will consider the closed-form standpoint in Section 9.5.

If we look at the situation recursively, then we want to consider what the rela-
tionship is between the maximum number of regions obtainable from n lines and
from n−1 lines. The difference, of course, is the placement of that last line. Let us
assume that we have n−1 lines placed such that the maximum number of regions
is attained. How shall we place the last line?

Every time a line passes through a region, it cuts the region in two and produces
an additional/new region. So we want to maximize the number of regions the last
line passes through. Each region is bounded by lines, so we want to maximize the
number of other lines that the last line intersects. The most that number can be is
n−1 because that’s how many lines there are. So the question becomes, “Can we
achieve this number?” Always? Sometimes?

From geometry we know that two lines that are not parallel must intersect.
Thus, as long as we place an nth line so that it is not parallel to any of the al-
ready placed n− 1 lines, it will intersect each of them. The intersection may be
quite far away, but it will exist. Moreover, we can nudge the angle of the line and
slide the line in various directions to avoid having three lines intersect at a single
point. (There are only finitely many intersections to avoid and an infinite number
of different angles at which the nth line can be inclined.)

We may conclude that when placing an nth line, we can make it intersect n−1
existing lines. This creates n new regions (one “above” each line intersected and
one “below” the lowest line), and therefore pn = pn−1 + n. We know that this
recurrence, together with the initial values of p0 = 1, p1 = 2, produces the closed
form pn =

n2

2 + n
2 +1.
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Check Yourself

Make sure that you can do these problems, as they will prepare you for the more challeng-
ing ideas to come.

1. Prove by induction that pn = pn−1 +n, p0 = 1, p1 = 2 has closed form n2

2 + n
2 +1.

2. Howmany regions of the plane result from four lines passing through a point? What
if n lines pass through the point?

3. How many regions of the plane result from three lines passing through a point and
a fourth line intersecting the others pairwise?

4. Draw two parallel lines and then two additional lines that intersect one of the parallel
lines at a point. Make two nudges to place these four lines in general position.

9.4 Try This! Spaghetti, Yams, and More

The problems in this section are also interrelated, so you will again want to switch
the problem(s) on which you are working from time to time. Insight from a later
problem can help you finish an earlier problem.

It may seem a bit ridiculous, but sometimes you want to cut spaghetti with
your laser cutter, as in Figure 9.5.

1. Consider a long strand of (one-dimensional) spaghetti. What is the largest
number of pieces of spaghetti you can obtain using exactly four cuts? How
about five cuts?

2. Fill in as much of this table as you can:

Number of cuts on a spaghetti strand 0 1 2 3 4 5 6 7 8
Maximum number of pieces possible 1

Figure 9.5. Spaghetti is easy to cut and to eat.
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3. What are the next terms in this sequence? Develop both a recurrence and
a closed form for this sequence, perhaps labeling it as sn. Prove that your
recurrence and closed form are correct. Have you used induction yet?

4. Now return to questions 8–10 of Section 9.2. Fill in as much of this table as
you can:

Number of cuts on a yam 0 1 2 3 4 5 6 7 8
Maximum number of pieces possible 2

5. What properties do your sets of cuts need to have in order to obtain the
maximum number of chunks of yam?

6. Revisit Problem 5 of Section 9.2 and try to use the understanding you gained
in Problem 3 above to make further progress. Does this help at all with
Problem 4?

7. Start conjecturing about yams if you haven’t already. Do you see a possible
recurrence relation for yn? How about a closed-form formula? Try to prove
any yammy conjectures you have. Again, because you began with only a
yam and a laser cutter, this information must be used in your proofs.

8. Combine all the information you have into one table:

n 0 1 2 3 4 5 6 7 8
sn 1
pn 4
yn 2
?n 1

Does viewing this information together cause any new patterns to appear?
What might go in that bottom row of the table? Have you any new conjec-
tures? Do you see any connection to binomial coefficients?

9. Suppose you have a yam with n−1 cuts. Carefully slice the yam in two and
look at the freshly cut faces. What do you see? Does this explain any earlier
observations you made?

A laser cutter will cut through just about anything. It might even be able to
cut a k-dimensional vegetable such as a hyperbeet. Consider this situation if you
dare….
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10. Suppose you want the maximum number of hyperbeet pieces to result from
making n cuts. What properties should your sets of cuts have in order to
obtain the maximum number of hyperbeet pieces?

11. Consider a hyperbeet with n− 1 cuts. Carefully slice the hyperbeet in two
and look at the freshly cut faces. What do you see?

12. Write a recurrence for the k-dimensional hyperbeet numbers hn,k. Does it
remind you of anything?

13. Conjecture a closed form for the k-dimensional hyperbeet numbers hn,k.

9.5 Yam, Spaghetti, and Pizza Numbers

Hey! You! Don’t even THINK about reading this section unless you have read
Section 9.3 AND gone back and reconsidered the questions of Section 9.4!!! I
mean it!

We’re going to settle these yam questions for once and for all. First, let us deal
with the structure of cuts through yams. In order to achieve the maximum number
of chunks of yam, our cuts must again be in general position—but what does this
mean for yam cuts? No two cuts may be parallel, no three cuts may meet in a line,
and no four cuts may meet at a point.

To make the situation explicit, when we speak of cutting yams, we more pre-
cisely mean that we are arranging planes in three-dimensional space and counting
the number of regions that result. Despite your best efforts, you may have had
trouble drawing or even clearly visualizing the maximum number of regions ob-
tainable with four cuts; hopefully Figure 9.6 will help. First notice that there are
three planes at right angles to each other. These planes carve out eight regions.
A fourth plane cuts through many of these eight regions. How many? Examine
the perimeter of this fourth plane as shown in Figure 9.6: it passes through six re-
gions. In addition, it passes through the “front” region, as can be seen by the pale
triangular area there. So, in total the fourth plane passes through seven of the eight
regions. This means there are 8+ 7 = 15 regions possible. (In the Mathematica
Demonstration “Cutting Space into Regions with Four Planes,” available at http://
demonstrations.wolfram.com/CuttingSpaceIntoRegionsWithFourPlanes/, you can
create this sort of image and move the fourth cut around to see what happens at
different angles.)

http://demonstrations.wolfram.com/CuttingSpaceIntoRegionsWithFourPlanes/
http://demonstrations.wolfram.com/CuttingSpaceIntoRegionsWithFourPlanes/
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Figure 9.6. How many regions are demarcated by these four planes?

More generally, suppose we have n− 1 planes placed in general position in
three-dimensional space. In order to create a recurrence for the sequence yn, we
will need to count the number of new regions created when an nth plane is added
to the picture (in general position, of course, to achieve the maximum number of
new regions). To that end, suppose such an nth plane has been added. For each
region through which the nth plane passes, a new region is created. So, we need
to count the number of regions through which the nth plane passes. Separate the
entire space along the nth plane and look at one side of the cut (as though the nth
plane were separating a potato into two hunks and you were examining one wet
cut side—see Figure 9.7). What you see is a network of lines, separating the plane
into regions. Those lines are cross sections of the n−1 other planes that carve up
the three-dimensional space, and the regions are cross sections of the solid regions
through which the nth plane passes. Thus, we merely need to count the number

Figure 9.7. A freshly cut yam, with planar regions revealed.
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Figure 9.8. A glowing line sweeps across some intersections.

of regions into which these n−1 lines divide the plane. But, aha!, these lines are
in general position because the planes they represent are also in general position!
So the number of regions is the corresponding pizza number pn−1. In other words,
we have a combinatorial proof that yn = yn−1 + pn−1.

Now, we have a polynomial closed form for pn (and therefore for pn−1), so
we can find a closed form for yn. We will allow you to do this computation in
Problem 2 of Section 9.10. What’s neat is that we can count regions directly and
thereby obtain a closed form. To see how this goes, we will first complete such
a direct count for the simpler case of pn and then apply the same reasoning to yn.
Again, we use combinatorial proof.

Imagine that there are n lines dividing the plane into a maximum number of
regions. Then, imagine a glowing line outside of the area that contains all the in-
tersections (outside the pizza, as it were). The glowing line intersects n+1 regions
because it is cut in n places. Now, sweep the glowing line across all the intersec-
tions; each time the glowing line sweeps across an intersection, it enters a new
region. (See Figure 9.8, in which the glowing line is represented by a grey line.) If
we count the number of intersections, we will then know how many regions there
are. Ah, but the lines are in general position, so no two are parallel. That means
that every pair of lines crosses, so there are

(n
2

)
intersections. (And no three lines

intersect at a point, so this does not overcount.) Thus, the total number of regions
is pn =

(n
2

)
+n+1.

Now, on to yams. This time, we will move a softly glowing plane through all
the intersections made by n planes in general position. When the glowing plane
is outside all the intersections (outside the yam, so to speak), the glowing plane
cuts through

(n
2

)
+n+1 three-dimensional regions because that is how many two-

dimensional regions are inscribed by the n cross sections of planes (lines) on the
glowing plane itself, and each such two-dimensional region is a flat face of an un-
bounded three-dimensional region. As the glowing plane passes an intersection, it
moves into a new region, and so there are as many additional regions as intersec-
tions. And how many intersections are there? Because the planes are in general
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position, every three of them intersect at a point—so, there are
(n

3

)
of them. In

total, we have
(n

3

)
+
(n

2

)
+n+1 regions.

9.5.1 Let’s Go for It! Hyperbeet Numbers

Now we will suppose we have a k-dimensional hyperbeet. We wonder how many
hyperchunks are obtainable if we cut the hyperbeet with n hypercuts, and we will
denote this maximal number of hyperchunks by hn,k. Notice that we have two
subscripts, the first for the number of hypercuts and the second for the number of
dimensions of the hyperbeet. To make sense of the situation for hyperbeets, we
will first return to cutting spaghetti. Indeed, this is the simplest situation of all, but
it will yield insight that will help us generalize more effectively.

Examine the sequences we have generated thus far.

sn = n+1 : 1,2,3,4,5, . . . .

pn =

(
n
2

)
+n+1 : 1,2,4,7,11,16, . . . .

yn =

(
n
3

)
+

(
n
2

)
+n+1 : 1,2,4,8,15, . . . .

There are several patterns that can be observed here. One is that each of the
sequences is the first differences of the sequence below it. This suggests that
pn = pn−1 + sn−1 and yn = yn−1 + pn−1. We know both of these statements are
true by our earlier combinatorial proofs. If this pattern continues, we will expect
that hn,k = hn−1,k +hn−1,k−1.

Another pattern is that the closed-form formulas seem to involve some bino-
mial coefficients. Well, at least the formulas for pn and yn do. What about sn?
Note that

(n
1

)
= n and that

(n
0

)
= 1. This means we can rewrite our closed forms as

sn =

(
n
1

)
+

(
n
0

)
,

pn =

(
n
2

)
+

(
n
1

)
+

(
n
0

)
,

yn =

(
n
3

)
+

(
n
2

)
+

(
n
1

)
+

(
n
0

)
.

This suggests that hn,k =
(n

k

)
+ · · ·+

(n
3

)
+
(n

2

)
+
(n

1

)
+
(n

0

)
.

We will shortly justify each of these patterns by using combinatorial proof.
First, however, we must consider the placement of our hypercuts. Once again, in
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order to achieve the largest possible number of hyperchunks, we will need to place
the hypercuts in general position. To see what this should mean, we will reason by
analogy.

For pizza, no two cuts were parallel and no three intersected at a point.
For a yam, no two cuts were parallel, no three cuts intersected in a line, and no

four intersected at a point.
Therefore, for a hyperbeet, no two cuts should be parallel, no three cuts should

intersect in a (k−1)-dimensional cut, …, no k cuts should intersect in a line, and
no k+ 1 cuts should intersect at a point. This may seem an unwieldy definition
(and it is), but it simply means that all intersections are suitably separate from each
other. More brain-twisting-ly, what exactly is a hypercut? A cut in a plane is a line;
a cut in three-dimensional space is a plane; and a cut in k-dimensional space is a
(k−1)-dimensional flat space. It is quite difficult to imagine.

Now, let us justify the idea that hn,k = hn−1,k+hn−1,k−1. Suppose we have n−1
hypercuts placed in general position in k-dimensional space. We must count the
number of new regions created when an nth hypercut is added. We will suppose
that an nth hypercut has been added in general position, so that we obtain the largest
possible number of additional regions. As before, we need to count the number
of regions through which the nth hypercut passes. If we separate the entire space
along the nth hypercut—just as we did with our yam—and look at one side of
the cut, we see cross sections of hyperregions and of hypercuts. A cross section
of a hyperregion is (k−1)-dimensional (because the dimension has been reduced
by one), and a cross section of a hypercut is similarly (k−2)-dimensional. Now,
how many (k− 1)-dimensional hyperregion boundaries appear on this hypercut?
We know that there are n cross sections of hypercuts, and those cross sections
are in general position. The taking of cross sections reduces everything by one
dimension, so we have hn−1,k−1 hyperregions appearing. Technically, this claim
is true by a hidden inductive hypothesis. (You will be asked to formalize this in
Problem 5 of Section 9.10.) Each of these hyperregions corresponds to a new
region created by the nth hypercut cleaving an old region in two. So, we have the
hn−1,k regions created by the first n−1 hypercuts, and to this we add the hn−1,k−1
regions created by the nth hypercut. Thus, hn,k = hn−1,k +hn−1,k−1.

We can also count directly to see that hn,k =
(n

k

)
+ · · ·+

(n
3

)
+
(n

2

)
+
(n

1

)
+
(n

0

)
.

Much as we did with pizza and with yams, we will move a softly glowing hypercut
through all the intersections made by n hypercuts in general position. When the
glowing hypercut is outside all the intersections (i.e., outside the hyperbeet), it cuts
through

( n
k−1

)
+ · · ·+

(n
3

)
+
(n

2

)
+
(n

1

)
+
(n

0

)
k-dimensional regions because that is

how many (k−1)-dimensional regions are demarcated by the n cross sections of
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hypercuts on the glowing hypercut itself, and each such (k−1)-dimensional region
bounds an unbounded k-dimensional region. Now we move the glowing hypercut
through the hyperbeet. As the glowing hypercut passes an intersection, it moves
into a new region, and so there are as many additional regions as intersections.
Because the planes are in general position, every k of them intersect at a point—
so, there are

(n
k

)
intersections. In total, we have

(n
k

)
+ · · ·+

(n
3

)
+
(n

2

)
+
(n

1

)
+
(n

0

)
regions.

Check Yourself

Your brain may hurt, but please try these problems; they are gentle in comparison to the
challenging material just presented.

1. Show that
(n

2

)
+n+1 = n2

2 + n
2 +1 =

(n+1
2

)
+1.

2. For what sequence is yn the sequence of first differences? List the first five terms
of that sequence.

3. What are the first seven terms of hn,6?

9.6 Where to Go from Here

If you want to know more about geometric applications of combinatorics, seek out
the field of computational geometry. Rarely are courses offered in this area at the
undergraduate level. There is exactly one undergraduate-level text, and it’s fairly
new: Discrete and Computational Geometry by Satyan L. Devadoss and Joseph
O’Rourke. For an extensive directory of applications of discrete and computational
geometry, see David Eppstein’s “Geometry in Action” page at http://www.ics.uci.
edu/~eppstein/geom.html.

For more on the specific problem discussed in this chapter (counting regions
defined by hyperplane arrangements), there are three articles you may wish to
peruse.

Seth Zimmerman, “Slicing Space,” The College Mathematics Journal,
Vol. 32, No. 2 (Mar. 2001), pp. 126–128.
This is a treatment similar to that given in this chapter.

Chungwu Ho and Seth Zimmerman, “On the Number of Regions in an m-
dimensional Space Cut by n Hyperplanes,” The Australian Mathematical
Society Gazette, Vol. 33, No. 4 (Sept. 2006), pp. 250–264.

http://www.ics.uci.edu/~eppstein/geom.html
http://www.ics.uci.edu/~eppstein/geom.html
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How many of the regions in our arrangement are bounded? What happens
if the hyperplanes happen to all contain the origin? These questions are
addressed in the paper. The authors’ language is (unsurprisingly) more ad-
vanced than that used in this textbook, but most of the arguments are not
significantly more sophisticated. In other words, if you’re truly curious,
you should have a look and you’re likely to gain something.

Oleg A. Ivanov, “On the Number of Regions into Which n Straight Lines
Divide the Plane,” The American Mathematical Monthly, Vol. 117, No. 10
(Dec. 2010), pp. 881–888.
Suppose our n hyperplanes are not in general position. What numbers of
regions are possible? This is the main topic of the paper. Be warned: while
this paper is interesting, it does some of its calculations in projective space.
Don’t expect to understand the whole paper.

Credit where credit is due: The historical origin of this treatment of enumerating the num-
ber of regions determined by hyperplanes is George Polya’s Let Us Teach Guessing video.
Grover in Problem 13 of Section 9.10 lives on Sesame Street. Here is the full reference for
the paper mentioned in Problem 20 and related problems in Section 9.10: Burkhard Pol-
ster, “YEAWHY TRY HER RAWWET HAT: A Tour of the Smallest Projective Space,”
Mathematical Intelligencer, Vol. 21, No. 2 (1999), pp. 38–43. It is available electronically
at www.qedcat.com/articles/yea.pdf.

9.7 Chapter 9 Definitions

general position: In two dimensions, a
placement of lines so that no two are par-
allel and no three intersect at a single
point. In three dimensions, no two cuts
may be parallel, no three cuts may meet
in a line, and no four cuts may meet at
a point. In k dimensions, no two cuts
should be parallel, no three cuts should

intersect in a (k−1)-dimensional cut, …,
no k cuts should intersect in a line, and no
k+1 cuts should intersect at a point.

hyperbeet: A k-dimensional root veg-
etable.

hypercut: A cut in k-dimensional space, so
a (k−1)-dimensional flat space.

9.8 Bonus: Geometric Gems

Gem 1. Believe it or not, if you toss 30 dots into a 1×1 square, at least two of
the dots are no more than 0.29 units apart. Whaaa???, you say.

www.qedcat.com/articles/yea.pdf
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Figure 9.9. From left to right, n= 4,5,6,7 points marked on a circle, with each pair joined
by a line segment.

Consider this: If you divide that 1 × 1 square into a 5 × 5 grid of smaller
squares, then by the pigeonhole principle, at least two dots must be in the same
smaller square because 30 > 25. The furthest two such dots can be from each
other is the length of the diagonal of that small square, which is

√
2

5 < 0.285.

Extension:

How few dots could you toss into a 1×1 square and still know that at least
two of the dots are no more than 0.29 units apart?

Consider an n×n grid overlaid on a 1×1 square and fill in the blanks:
dots tossed into a 1× 1 square include some pair of dots that are less than

units apart.

Prove that the statement (with blanks filled in) is true.

Gem 2. Draw a circle and arbitrarily mark n points on the circle. Connect each
pair of points by a line segment. If no three line segments intersect at a single
point, then how many intersections are there?

First look at Figure 9.9 to see what we’re talking about. Essentially, we have
drawn Kn with all the vertices on a circle. This reduces our original question to,
“How many crossings are there interior to a Kn?” Interestingly, the answer is

(n
4

)
… but why? Examine the leftmost diagram in Figure 9.9; it shows that K4 has a
single crossing. One can begin with any crossing in Kn and see that it is part of
a K4 within the Kn. Because no two crossings overlap, this means that there is
a one-to-one correspondence between K4s and crossings. And every four points
determine a K4, so there are

(n
4

)
K4s and thus

(n
4

)
crossings. Yeah!

Gem 3. Have you played the card game SET? It’s totally fun. You can play a soli-
taire version of SET online (and get instructions) at http://smart-games.org/en/

http://smart-games.org/en/set/start
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set/start or https://www.lsrhs.net/faculty/seth/Puzzles/set/set.html, and there’s
lots of information about the physical card game at http://www.setgame.com/set/.
Consider a version of this game we’ll call mini-SET. Each card in the deck has
some symbols on it (one, two, or three ovals, diamonds, or squiggles). So ev-
ery card has two attributes: which symbol it has and how many symbols it has. A
dealer lays out some cards, and then the players try to find three cards that have (the
same shape but different numbers of symbols) xor (different shapes but the same
number of symbols) xor (different shapes and different numbers of symbols). On
finding such a collection, a player calls out “mini-SET!” How many cards could
be dealt without a mini-SET turning up?

Whoa-hoah! The solution involves material from Chapters 1 and 5 and some
geometry! Get ready!

There are nine different cards. Each can be denoted by an ordered pair that
indicates the symbol type and the symbol number, i.e., the deck can be written as
{(o,1),(o,2),(o,3),(s,1),(s,2),(s,3),(d,1),(d,2),(d,3)}. Now, we are about to
find it convenient to use Z3 instead of {o,s,d} and {1,2,3}, so we will instead use
a couple of one-to-one correspondences and write the deck as {(0,0),(0,1),(0,2),
(1,0),(1,1),(1,2),(2,0),(2,1),(2,2)}.

A mini-SET is characterized by all values of an attribute being the same, i.e.,
having {(k,?),(k,??),(k,???)}, and/or having all values of an attribute being dif-
ferent, i.e., having {(0,?),(1,??),(2,???)}, because there are only three values for
each attribute. In the all-the-same case, if we add the attribute values together,
we get k + k + k = 3k ≡ 0 (mod 3). In the all-different case, adding produces
0+ 1+ 2 = 3 ≡ 0 (mod 3). We therefore seek three cards where the sum of the
first coordinates and the sum of the second coordinates are both equivalent to 0
(mod 3). Examine the grid of cards shown in Figure 9.10; mini-SETs of cards
form lines on the grid. There are three horizontal lines, three vertical lines, three
left-diagonal lines, and three right-diagonal lines. Most of the diagonal lines don’t
look like lines; they wrap around the grid and so appear to be chopped up. But
they’re there.

By trial and error, you can probably find four cards that contain no mini-SET
(or if not, check out {(0,0),(0,1),(1,1),(1,2)}). Now, let us show that any five
cards we deal must contain a mini-SET. Suppose we have dealt five cards that do
not contain a mini-SET. (See? We’re doing a proof by contradiction.) At most two
of the cards are on any line in the grid. Consider the three horizontal lines. One
of them contains two cards; a second one contains two more cards; and the third
line contains the fifth card (because it can’t be on either of the other two horizontal
lines). Now, look at the card that’s on a horizontal line all by itself. It is on three

https://www.lsrhs.net/faculty/seth/Puzzles/set/set.html
http://www.setgame.com/set/
http://smart-games.org/en/set/start
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Figure 9.10. A not-very-liney-looking line
indicated on the grid of mini-SET cards.

(0,0) (0,1) (0,2)

(1,1)

(2,1)

(1,0)

(2,0)

(1,2)

(2,2)

Figure 9.11. The four lines containing a
card cover all nine mini-SET cards.

other lines (a vertical line, a left-diagonal line, and a right-diagonal line). Between
those four lines, all nine cards are covered. (Check out Figure 9.11 to see it.)

Just to repeat it, we are looking at the card C that’s on a horizontal line all by
itself. The other four cards are on the other three lines that containC, because they
are not on the horizontal line that contains C. By the pigeonhole principle, there
must be two of the four cards on one of the three lines that containC. But (wagging
a finger) no, no, no—that means there are three cards on that line (two of the four
plus the one we started with) and that’s a mini-SET! Contradiction.

Mega-challenge. Extend this analysis to the game not-as-mini-SET (with symbol
type, symbol number, and symbol color as the attributes). This is quite involved
and will require persistence! For assistance, see the paper “The Card Game Set,”
by Ben Davis and Diane Maclagan, in The Mathematical Intelligencer, Vol. 25,
No. 3 (Fall 2003), pp. 33–40, a preprint of which is available online at http://
homepages.warwick.ac.uk/staff/D.Maclagan/papers/set.pdf.

9.9 Bonus Check-Yourself Problems
Solutions to these problems appear starting on page 614. Those solutions that model a
formal write-up (such as one might hand in for homework) are to Problems 3 and 5.

1. Let fn be the maximum number of re-
gions of four-dimensional space that
are cut up by n three-dimensional cuts.
What are f0, f1, f2, f3, f4? And why?

2. If you cut a configuration with f4 pieces
with an additional cut, how many new
pieces can you get?

3. Determine and explain a recurrence re-
lation for fn.

4. Determine and explain a closed form
for fn.

5. Use induction to prove that your closed
form from Problem 4 is the correct
closed form for your recurrence from
Problem 3.

http://homepages.warwick.ac.uk/staff/D.Maclagan/papers/set.pdf
http://homepages.warwick.ac.uk/staff/D.Maclagan/papers/set.pdf
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9.10 Problems That Combine Combinatorial Topics

1. How many regions of a plane are out-
side of a pizza?

2. The yam number recurrence is yn =

yn−1 + (n−1)2

2 + n−1
2 + 1, with initial

conditions y0 = 1,y1 = 2. Use the tech-
nique of kth differences to find a closed
form for yn.

3. Give an explanation in your own words
for why yk = yk−1 + pk−1.

4. Under what conditions does making n
cuts produce 2n pieces?

5. Prove that hn,k = hn−1,k+hn−1,k−1 using
induction on k.

6. Prove that hn,k =
(n

k

)
+ · · ·+

(n
3

)
+
(n

2

)
+(n

1

)
+
(n

0

)
using induction.

7. Consider the recurrence hn,k = hn−1,k +
hn−1,k−1. Suppose that h1,0 = h1,1 =
hn,0 = 1 and that when k > n, hn,k = 0.
What familiar situation are we in?

8. Find a closed form for a0 = 0,an =
an−1 +

(n
1

)
.

9. Find a closed form for a0 = 0,an =
an−1 +

(n
2

)
.

10. Find a closed form for a0 = 0,an =
an−1 +

(n
3

)
.

11. Find a closed form for a0 = 0,an =
an−1 +

(n
4

)
.

12. Find a closed form for a0 = 0,an =
an−1 +

(n
j

)
for j fixed.

13. Imagine a number line with the integers
marked. Your old pal Grover starts at 0,
and once per second takes a step to the
left or a step to the right. (Being Grover,
he probably sings a song about left and
right as he does this.)

(a) Is it possible for Grover to take three
steps and end up back at 0?

(b) Suppose that Grover ends his mean-
dering at k. What can you say about
the number of steps n that he took?

(c) How many ways are there for
Grover to take four steps and end up
back at 0?

(d) How many ways are there for
Grover to take n steps and end up
back at 0?

(e) How many ways are there for
Grover to take n steps and end up
at k?

14. The first few pentagonal numbers are
shown in Figure 9.12. Create a se-
quence, find a recurrence, and find a
closed form.

Figure 9.12. The first four pentagonal
numbers.

15. The first few hexagonal numbers are
shown in Figure 9.13. Create a se-
quence, find a recurrence, and find a
closed form.

Figure 9.13. The first four hexagonal
numbers.
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16. Considering the previous two exer-
cises, …
(a) … draw the first four square num-

bers.
(b) … draw the first four triangular

numbers.
(c) … find a recurrence and a closed

form for the square numbers.
(d) … find a recurrence and a closed

form for the triangular numbers.
17. Challenge: Consider the k-figurate

numbers. The first k-figurate number
can be represented by a dot; the second
k-figurate number can be represented by
k dots that represent vertices of a k-gon.
Find a recurrence and a closed form for
the k-figurate numbers.

18. A triangulation of a convex polygon is
a partition of that polygon into triangles
that does not introduce any new ver-
tices.
(a) Consider a triangle. How many tri-

angles are in a triangulation of a tri-
angle?

(b) There are different ways to triangu-
late a square. How many triangles
does each have?

(c) How many triangles does any trian-
gulation of an n-sided convex poly-
gon have? Prove that your response
is correct.

19. We will triangulate (as in Problem 18)
a convex polygon that has a convex
polygonal hole cut out of its interior.
(a) Draw a large triangle and within this

draw (and shade) a smaller triangle.
Triangulate the resulting polygonal
flat doughnut. How many triangles
do you obtain?

(b) Draw a large pentagon and within
this draw (and shade) a smaller trian-
gle. Triangulate the resulting polyg-
onal flat doughnut. How many tri-
angles do you obtain?

(c) Draw a large hexagon and within
this draw (and shade) a smaller
square. Triangulate the resulting
polygonal flat doughnut. Howmany
triangles do you obtain?

(d) How many triangles does any trian-
gulation of a polygonal flat dough-
nut have? Prove that your response
is correct.

20. We are going to construct a geometric
structure from a set of lines using a fi-
nite number of points in the plane. Sup-
pose that we have four points a,b,c,d
and that we consider a set of points to be
a line if it contains exactly two points.
(a) How many possible lines are there?
(b) How many lines are parallel to the

line ab?
(c) How many lines intersect the line

ab?
(d) Suppose we want a geometric struc-

ture with no parallel lines (be-
cause they remind us of bottomless
pits—see Burkhard Polster’s paper
“YEAWHY TRY HER RAWWET
HAT”). We might start with the line
ab and all lines that intersect it; how-
ever, we would need to be sure that
no two of these lines are parallel.
How many lines can our geometric
structure have if no two are parallel?
Which lines can we choose for our
structure?

(e) Now suppose further that we want
exactly two lines to intersect at a
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point. Which lines can we choose
for our structure?

(f) Try to draw the points and lines of
this geometric structure.

21. As in Problem 20, we are going to create
a geometric structure from a finite num-
ber of points in the plane. Suppose that
we have six points a,b,c,d,e, f and that
we consider a set of points to be a line
if it contains exactly three points. We
will select some lines, no two of which
are parallel (and therefore, every pair of
which intersect).
(a) How many possible lines are there?
(b) How many lines are parallel to the

line abc?
(c) How many lines intersect the line

abc? A pair of lines should only in-
tersect at one point (otherwise they
are in some sense curved).

(d) We need to make sure that none of
the lines that intersect abc intersect
each other at more than one point.
How many lines intersect abc and
intersect each other at no more than
one point?

(e) Suppose we want a geometric struc-
ture with no parallel lines (because
they remind us of bottomless pits).
Can we select lines as in part (d)
so that there are no pairs of parallel
lines?

(f) Now suppose further that we want
exactly two lines to intersect at a
point. Which lines can we choose
for our structure?

(g) Try to draw the points and lines of
this geometric structure.

22. Let us generalize Problem 20. Suppose
we wish to create a geometric structure

from k points in the plane and that we
consider a set of points to be a line if it
contains exactly r points.
(a) How many possible lines are there?
(b) How many lines are parallel to a

given line?
(c) How many lines intersect a given

line at exactly one point?
23. As in Problem 20, we are going to create

a geometric structure from a finite num-
ber of points in the plane. Suppose that
we have seven points a,b,c,d,e, f ,g
and that we consider a set of points to be
a line if it contains exactly three points.
We will select some lines, no two of
which are parallel (and therefore, every
pair of which intersect).
(a) How many possible lines are there?
(b) How many lines are parallel to the

line abc?
(c) How many lines intersect the line

abc? A pair of lines should only in-
tersect at one point (otherwise they
are in some sense curved).

(d) We need to make sure that none of
the lines that intersect abc intersect
each other at more than one point.
How many lines intersect abc and
intersect each other at no more than
one point?

(e) Suppose we want a geometric struc-
ture with no parallel lines (because
they remind us of bottomless pits).
Can we select lines as in part (d)
so that there are no pairs of parallel
lines?

(f) Now suppose further that we want
exactly three lines to intersect at a
point. Which lines can we choose
for our structure?
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(g) Try to draw the points and lines of
this geometric structure. You will
need to draw at least one line in
an unusual way in order to succeed.
(This geometric structure is called
the Fano plane and has many inter-
esting properties—for example, the
roles of the points and the lines can
be switched.)

24. As in Problem 20, we wish to create a
geometric structure from a finite num-
ber of points in the plane. Suppose that
we have eight points a,b,c,d,e, f ,g,h
and that we consider a set of points to be
a line if it contains exactly three points.
We will select some lines, no two of
which are parallel (and therefore, every
pair of which intersect).
(a) How many possible lines are there?
(b) How many lines are parallel to the

line abc?
(c) How many lines intersect the line

abc? A pair of lines should only in-
tersect at one point (otherwise they
are in some sense curved).

(d) We need to make sure that none of
the lines that intersect abc intersect
each other at more than one point.
How many lines intersect abc and
intersect each other at no more than
one point?

(e) Suppose we want a geometric struc-
ture with no parallel lines (because

they remind us of bottomless pits).
Can we select lines as in part (d)
so that there are no pairs of parallel
lines? Explain.

25. Challenge: As in Problem 20, we wish
to create a geometric structure from a
finite number of points in the plane.
Suppose that we have eight points
a,b,c,d,e, f ,g,h and that we consider a
set of points to be a line if it contains ex-
actly four points. We will select some
lines, no two of which are parallel (and
therefore, every pair of which intersect).
(a) How many possible lines are there?
(b) How many lines are parallel to the

line abcd?
(c) How many lines intersect the line

abcd? A pair of lines should only
intersect at one point (otherwise they
are in some sense curved).

(d) We need to make sure that none of
the lines that intersect abcd intersect
each other at more than one point.
How many lines intersect abcd and
intersect each other at no more than
one point?

(e) That’s pretty lousy. Redo part (d)
with nine points a,b,c,d,e, f ,g,h, i
and see if that makes the situation
better.

(f) Do you expect the use of ten points
a,b,c,d,e, f ,g,h, i, j to resolve this
issue? Why or why not?

9.11 Instructor Notes

There are only two days of class work provided in this chapter in order to leave room for
an exam day at the end of the combinatorics section of the course. Certainly if there is
enough time in your particular course, let students explore more!
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When Polya addresses the enumeration of regions determined by hyperplanes in Let
Us Teach Guessing, he does so using interactive lecture. The treatment given in this text
uses his basic structure but breaks Polya’s content into a series of guided exercises that
students can complete collaboratively.

Very little introduction is needed before students can begin to experiment. Draw a
circle on the board, mention that it is a pizza, and explain that you want to get the largest
number of pieces possible for a given number of cuts. Then draw a couple of arbitrary
cuts on the pizza. Be sure the cuts do not pass through the center of the pizza to quickly
dispel the assumption that cuts must meet in the center. Mention that it’s okay to have tiny
pieces of pizza and that the pizza can be arbitrarily large (and do not be surprised if you
need to repeat this information later). Ask whether students have any questions about the
setup before turning them loose to experiment.

For these problems, students tend to start working in pairs to generate data and later
cluster into groups to discuss conjectures. Students will be, on the whole, more productive
if instead of completing problems in a strictly sequential manner, they attempt lots of
problems before finishing many of them. Therefore, as you manage the group work, do
encourage students to consider new questions if they seem to be bogged down at all. It
is helpful, after the students have been working for a few minutes, to draw a table on the
board such as is presented in Problem 4 of Section 9.2. Fill this in as students/groups
report results to you. Add also a heading “Conjectures:” on a separate part of the board,
and create a list of student conjectures as you hear them made while circulating among
groups. Seeing the results and conjectures of other groups will spur students to verify,
extend, and investigate further. This class may feel a bit chaotic, but that is to be expected.
Moreover, it is not important that students reach any conclusions by the end of the first
class period; it will all come together in the second class period (with your guidance, if
necessary).

One caution is that students are likely to jump to conclusions: They will believe that
they have found a pattern, but one incorrect number has led them down a blind alley. Or,
they will conjecture a correct recurrence and find a closed form for it, but they will not
have justified that this recurrence corresponds to the maximal number of pieces of pizza
obtainable with n cuts. Be sure to regularly ask groups to justify their conclusions and to
explain why their results answer the original question.

In general, students are able to draw and conceptualize pizza diagrams quickly. How-
ever, they have trouble drawing three-dimensional diagrams that illustrate ideas they can
see clearly in their heads. Be aware that this will be a source of frustration for them. Some
students find it challenging to visualize cuts in three dimensions as well.

Additionally, when students get stuck on this topic, they get very stuck. Expect that
you will do a lot of individualized triage to keep groups on track. Instead of the usual
prompting and questioning that youmight do for particular problems in a Try This! section,
here you will likely need to prompt and question across problems and at a higher cognitive
level.
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It is reasonable to expect that a class will have collectively completed a pizza-number
table and started on a yam-number table by the end of the first class. They find it difficult
to count the number of yam pieces obtainable with four cuts and will likely be stuck on
this at the end of the class. Let them be stuck and ponder. It is advantageous to let the idea
of thinking in different dimensions sink in, so as you wrap up the work on the first day,
make sure to summarize the data generated by the students, the questions addressed by
the students, and any conjectures proposed by groups of students. Review the questions
for three dimensions and suggest that students think about these same questions in more
dimensions as preparation for the next class. If they have made enough progress, assign
them to read Section 9.3 as well.

You might begin the second class meeting by introducing spaghetti numbers and see-
ing how quickly they generate a table and conjectures before letting them loose to tackle
Section 9.4. Be sure to leave at least 15 minutes at the end of class to wrap things up:
review the conjectures and reasoning the class has produced, and relate this to the more
general ideas of binomial coefficients and recurrences from previous chapters.
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Theme II Supplement: Problems on
the Theme of Combinatorics

These problems could be used for studying for (or writing!) in-class or take-home
exams, or just for more enrichment. (The problems cover Chapters 6–9.) They are
not given in any particular order. Well, they have been intentionally mixed up so
that they are not in chapter order, so that the solver cannot use the ordering of the
problems as a clue in solving them.

1. If three cats like tuna, five cats like
salmon, two cats like both tuna and
salmon, and one cat does not like fish at
all, howmany cats have been consulted?

2. Consider the word PEACH. We will
make lists from the letters in PEACH,
with repetition allowed.

(a) Howmany three-letter lists are there
that don’t begin with C or don’t end
in P?

(b) How many four-letter lists are there
in which the sequence of letters P, E,
A appears in that order?

(c) Howmany three-letter lists are there
in which the letters C, H appear con-
secutively?

3. There is a colony of gnats who all wear
hats. Each gnat wears a green, white, or
red hat (they are Italian gnats). More-
over, a single gnat wears a green or red
hat, and a partnered gnat wears a white
hat—and partnered gnats always hold

hands when they fly. Gnats often line
up while flying.
(a) How many different hat-color

strings are possible for two gnats
with hats flying in a line?

(b) How many different hat-color
strings are possible for three gnats
with hats flying in a line?

(c) Consider the sequence gn of hat-
color strings for n gnats with hats
flying in a line. Write a recurrence
and find a closed form for gn.

4. Prove that the sum of the entries in the
nth row of Pascal’s triangle is 2n using
induction.

5. Prove that the number of 1s in the binary
representation of n∈N is counted by the
function b(n), defined as b(2n) = b(n),
b(2n+1) = b(n)+1, b(1) = 1.

6. For each of the following closed forms,
write out the first several terms of the
sequence (at least five) and use this to
create a recursion for the sequence.

301
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(a) an = 5n−2.
(b) an = 3n +1.
(c) an = 7n−6.

7. Figure TII.1 shows a 2×4 grid that has
been tiled with four 1×2 rectangles.
(a) How many ways are there to tile

a 2× 1 grid with 1× 2 rectangles?
(The rectangles may be rotated so as
to be 2×1 rectangles.)

(b) How many ways are there to tile a
2×2 grid with 1×2 rectangles?

(c) How many ways are there to tile a
2×3 grid with 1×2 rectangles?

(d) How many ways are there to tile a
2×4 grid with 1×2 rectangles?

(e) How many ways are there to tile
a 2× n grid with 1× 2 rectangles?
Make and prove a conjecture.

Figure TII.1. A 2×4 grid (left) tiledwith
four 1×2 rectangles (right).

8. For each of the following recurrence re-
lations, write out the first several terms
of the sequence (at least five) and use
this to find a closed form for the se-
quence.
(a) a1 = 5;an = 5an−1.
(b) a1 = 2;an = 5an−1.
(c) a1 = 6;an = 3+an−1.

9. The organization Red Delicious—
Crappy Apples (RDCA) distributes at
farmer’s markets a variety of brochures
on the virtues of various varieties of ap-
ples and, of course, on the vices of the
hated Red Delicious apple. Passersby

are invited to take as many different
brochures as they want, but no more
than one of each kind. If there are
n different brochures available, how
many selections of brochures might a
passerby take? (Note: RDCA was a
real organization in the mid-1990s but
did not do significant outreach. It had
at least three members.)

10. Find a closed form for the recurrence
an = an−1 + 4an−2 − 4an−3 and initial
values a0 = 4,a1 = 2,a2 = 10.

11. Consider an = 2n −1 and form the new
sequence sn = a1 +a2 + · · ·+an. Fill in
the blanks in this table:

n 1 2 3 4 5 6
an 1 3
sn 1 4

What is the relationship between the
bottom two rows? Use this relationship
to write a recurrence relation for sn.

12. Howmanyways are there to place a row
of nine coins (all from the same country)
on the edge of a table?

13. Find a closed form for a1 = 1,an =
an−1 +n+1.

14. Solve the recurrence relation a1 = 1,
an = nan−1.

15. How many ways are there to distribute
5 past-their-prime vegetables (a squash,
a crown of broccoli, a tomato, a clump
of Swiss chard, and a large radish) to 14
different chickens?

16. How many nonnegative solutions are
there to the equation w1 + w2 + w3 +
w4 = 6?

17. Howmany edges does a k-regular graph
with n vertices have? Explain.
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18. At the Delicious Pie Bakery, there
are 18 banana-containing pies, 23
chocolate-containing pies, 12 peanut-
butter-containing pies, 15 chocolate-
banana-containing pies, 10 peanut-
butter-chocolate-containing pies, and
3 chocolate-peanut-butter-banana pies.
There are 27 pies total. How many
peanut-butter-banana-containing pies
are there?

19. An upper-level math class has 12 stu-
dents: 3 of them live off campus and 9
live on campus. How many ways can a
project group of three students be cho-
sen so that it has two on-campus mem-
bers and one off-campus member? Ex-
plain briefly.

20. How many ways are there to distribute
28 doses of dye to 12 skeins of (cur-
rently ugly but soon to be lovely) yarn?

21. What percentage of (theoretical, seven-
digit) phone numbers have all digits dis-
tinct?

22. At the ice-cream store from Chapter 1,
there are five flavors of ice cream
left (peppermint, hoarhound, chocolate
malt, gingerbread, and squirrel) and you
want to order three quarts. In Chap-
ter 1, you counted the number of ways
to do so by brute force; in Chapter 6,
you divided this into cases and used
choice numbers. Solve this problem
once again, but this time using the tech-
niques of Chapter 7.

23. How many seven-digit telephone num-
bers…
(a) … begin with 538–?
(b) … begin with 538– and have four

different numbers in the remaining
digits?

(c) … begin with 538– and contain a 9,
a 6, and a 2?

24. A dance company has ten members.
How many different ways can a chore-
ographer choose six dancers for a dance
piece?

25. According to Dave Perkins, a chain
reaction in the iPhone game Drop 7
can lead to scores of 7,39,109,224,
391,617, . . . . Assuming this integer
sequence continues in the fashion it
started, what should the next num-
ber be?

26. Twelve hundred students at Ördek Uni-
versity were surveyed about the Sum-
mer Olympics: 620 wanted to watch
pole vault, 730 wanted to watch gym-
nastics, and 460 were interested in the
decathlon. Additionally, 170 wanted to
watch the opening ceremonies and noth-
ing else. It also turns out that 270 of the
students favor both pole vault and de-
cathlon, 330 students are fans of both
pole vault and gymnastics, and 240 in-
tend to view both gymnastics and de-
cathlon. How many students like gym-
nastics or like decathlon? How many
students want to watch all three sports?

27. A pastry shop opens across the street
from Haddad Library, and of course,
it is very popular. The very first day,
80 people buy apple turnovers, 80 buy
blueberrymuffins, and 80 buy chocolate
croissants; 30 buy both apple turnovers
and blueberry muffins, 30 buy both ap-
ple turnovers and chocolate croissants,
and 20 buy both blueberry muffins and
chocolate croissants; and 20 people buy
apple turnovers, blueberry muffins, and
chocolate croissants. How many people
bought only apple turnovers? Give jus-
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tifications for your answer, once using
Venn diagrams and again without using
Venn diagrams.

28. Figure TII.2 shows a polyhedron with
30 vertices. (Note that at each vertex,
two triangles and two hexagons meet.)
Howmany edges does it have? Explain,
perhaps by overcounting carefully.

Figure TII.2. Reproduction of an oil
painting of a venerable icosidodecahe-
dron.

29. Solve the recurrence relation a1 = 0,
a2 = 4,an = 5an−1 −6an−2.

30. Show that
m

∑
j=0

(−1) j10m− j
(

m
j

)
= 9m.

31. How many anagrams (including non-
sensical anagrams) are there of the word
CREEPIER? Explain briefly.

32. Examine the identity
(n

k

)
= n

k

(n−1
k−1

)
.

(a) Verify the identity’s veracity us-
ing the factorial formula for bino-
mial coefficients.

(b) Now find a combinatorial proof
that the identity holds by count-
ing the same thing in two different
ways.

33. In a sample of 100 students, 43 like av-
ocados, 71 like radishes, and 36 like
olives in their salads. Each student likes
at least one vegetable. If 26 students

like both avocados and radishes, 16 stu-
dents like avocados and olives, while 22
like radishes and olives, how many stu-
dents like all the ingredients in an avo-
cado, radish, and olive salad?

34. A robot can only walk forwards. Each
step it takes is of length 1 foot or 2 feet.
So, for example, the robot may walk
6 feet by taking four steps as lengths
2,2,1,1 or as lengths 1,2,1,2. The se-
quence rn is defined as the number of
ways the robot can walk n feet. What
are r1,r2,r3,r4? Find a recurrence rela-
tion for rn. Give a combinatorial expla-
nation for why this is the correct recur-
rence relation.

35. Use the choice notation identity
(n

k

)
=(n−1

k−1

)
+
(n−1

k

)
to evaluate

(n
0

)
−
(n

1

)
+(n

2

)
−·· ·±

(n
n

)
.

36. A computer science department has
eight faculty members, three of whom
have the last name Jeong. How many
ways can two representatives to the Fac-
ulty Council be chosen so that one rep-
resentative has the last name Jeong and
the other does not?

37. We will use the letters a,b,c,d,e, f to
form words of length 4. No word can
have two of the same letter.

(a) How many words can be made?
(b) How many words end in e f ?
(c) Howmany words contain e f as con-

secutive letters?
(d) How many words contain both e

and f , but not necessarily consecu-
tively?

(e) How many words contain an e or an
f (or both)?
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38. A basket contains ten numbered balls;
seven are purple and three are teal. You
pull four balls out of the basket.
(a) How many different sets of four

balls could you pull out of the bas-
ket?

(b) How many sets of four balls are all
purple?

(c) How many sets of four balls contain
at least one teal ball?

39. Howmany ways are there to deal a stan-
dard deck of 52 cards to seven players?

40. How many different seven-digit phone
numbers begin with 231- and contain
exactly one 9?

41. In how many ways can you grab 5 pens
from a pile of 20 pens?

42. Write an algorithm for generating Pas-
cal’s triangle.

43. Solve the recurrence relation a1 = 12,
an = an−1 −7.

44. You are captured by an ogre who ties
you to a chair at a table and prepares
a diabolical puzzle for you. Squat-
ting across from you, the ogre shows
you 15 identical chocolate chips and an
eye-dropper full of sparkling liquid—
poisonous sparkling liquid, says the
ogre.
(a) Under the table, the ogre drips the

liquid onto four of the chips. In how
many ways can the ogre arrange the
11 unpoisoned and 4 poisoned chips
in a line on the table? It is impos-
sible to tell a poisonous chip from a
nonpoisonous one.

(b) The ogre forces you to choose and
consume two of the chips. Of the

total number of choices, how many
will contain at least one poisoned
chip?

45. Prove the binomial theorem by induc-
tion.

46. A small skunk stumbles upon a plover’s
nest that contains six eggs. The skunk is
only able to choose three of the six eggs
to take with hir; how many choices total
does ze have? (Fortunately for the eggs,
the plover returns while the skunk is cal-
culating and chases the skunk away.)

47. Give an expression for the number of
banana splits you could order from 31
Flavors, assuming there are three dif-
ferent scoops in a banana split and that
there are actually 31 flavors to choose
from. (Here, there are no toppings and
we do not care in what order the scoops
land in the dish.) Compute this number
directly. Compute this number recur-
sively. Explain how you did each com-
putation.

48. Farmer Jimenez hides 12 decorated
duck eggs, all colored differently, and
then lets hir three weasels out of a cage
to hunt for them. In howmany ways can
the weasels find the eggs? Bear in mind
that it is possible for a weasel to find no
eggs, or all 12, and so on.

49. Is the following statement true or false:(n−1
2

)
= ∑n

i=1 i? If the statement is true,
prove it. If it is false, revise it and then
prove it.

50. The nutritious snack shelf contains a
box of Nature Valley Trail Mix bars
(two flavors) and several bags of Crispi
Rolls (four flavors). How many ways
are there to pack two nutritious snacks
for a walk?
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Credit where credit is due: Problem 3 was inspired by a set of stories the author’s father
told when going for his evening walk near her house. Problem 33 is in honor of a student
(Jackie Kajos) who did not like lettuce. Problem 47 refers to the old subname of the
Baskin-Robbins ice cream chain. Problem 48 was derived from one of Dave Perkins’s
exam problems; Problems 44 and 46 were donated by Dave Perkins.
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Chapter 10

Trees

10.1 Introduction and Summary

You may remember from Chapter 3 that a tree is a connected graph with no cycles.
Trees are one of the most popular classes of graphs, because they have so many
applications in computer science and operations research and because they are so
useful in pure mathematics proofs. We will see a pure mathematics use for trees
in Chapter 11, and in this chapter, we will concentrate on aspects of trees that lead
to applications. First we will investigate spanning trees—given a graph, can you
find a subgraph that is a tree and covers all the vertices of (spans) the graph? If so,
how? What if the graph has values assigned to the edges, and we want the lowest
(or highest) total value in our spanning tree? Most of our approaches will involve
a particular type of algorithm (called greedy, but parsimonious in nature), so we
will briefly discuss its use across graph theory.

Then we will look at how to use trees to search efficiently through data. For
this purpose, a tree can correspond either to decisions made when searching or
to the organization of the data itself; binary trees (they have exactly two edges
emanating “downwards” from each vertex) are frequently used for searching and
storage of data. We will introduce a type of forest that solves many matching prob-
lems; finally, we will discuss backtracking as a general way of efficiently finding
solutions to problems with constraints. The Bonus section introduces the branch-
and-bound algorithm for finding best solutions to systems of linear equations in
lots of binary variables (and depends on Bonus Section 7.9).

10.2 Basic Facts about Trees

It has been many chapters since we studied graphs, but hopefully you will recall
(from Section 10.1) that a tree is a connected graph with no cycles. You may also
recall from Example 4.2.4 that if a tree has n vertices, then it has n−1 edges. Let
us show that a partial converse is true.

309
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Theorem 10.2.1. If a connected graph G has n vertices and n−1 edges, then
G is a tree.

Proof: Suppose G is connected, has n vertices, and has n − 1 edges. We will
proceed by contradiction; suppose that G is not a tree. Because G is connected, G
must have at least one cycle. If we remove one edge e1 from this cycle, G1 =G\e1
is still connected. If G1 has a cycle, then remove an edge e2 to obtain G2 = G1 \e2;
we see that G2 is still connected. Continue in this way to obtain a graph Gk with
no cycles; we know that Gk is connected, so Gk is a tree. Additionally, Gk is G
with k edges removed, and so it has n−1− k edges. However, Gk has n vertices,
so because it is a tree, it has n− 1 edges. This is a contradiction unless k = 0, in
which case G has no cycles to begin with… and thus, G is a tree. �

Well, there’s another partial converse…

Theorem 10.2.2. If a graph G with no cycles has n vertices and n−1 edges,
then G is a tree.

Proof: Suppose G is acyclic (i.e., it has no cycles), has n vertices, and has n− 1
edges. We will proceed by contradiction; suppose thatG is not a tree. BecauseG is
acyclic, G must not be connected. Consider any connected component of G. It is a
tree because it is connected and acyclic, so it has k vertices and k−1 edges. Now
consider two connected components of G; each is a tree, and they respectively
have k1, k2 vertices and k1 −1, k2 −1 edges. Together, they have k1 + k2 vertices
and k1 − 1+ k2 − 1 = (k1 + k2)− 2 edges. Considering all r components of G,
we have k1 + k2 + · · ·+ kr = n vertices and (k1 + k2 + · · ·+ kr)− r = n−1 edges.
Therefore, r = 1 (so G is connected) and G is a tree. �

Corollary 10.2.3. If a graph G has n vertices and fewer than n−1 edges, then
G is not connected.

Proof: Suppose G has n vertices and has s < n− 1 edges. We will proceed by
contradiction; suppose that G is connected. If G has no cycles, then by definition
it is a tree and has n−1 edges, which is a contradiction. Therefore, suppose that
G has at least one cycle. Using the technique in the proof of Theorem 10.2.1, we
may produce the acyclic graph Gk that has n vertices and s−k edges. Because Gk
is connected as well as acyclic, it is a tree and therefore s− k = n− 1. However,
s− k ≤ s < n−1, which is a contradiction. �
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Summary. Together, Theorems 10.2.1 and 10.2.2 and Corollary 10.2.3 tell us
that trees are the connected graphs with the least number of edges—which, if
you thought about it, perhaps you had the sense should be the case, but now
we are sure.

Theorem 10.2.4. Every tree T with at least two vertices has at least one leaf.
(Recall that a leaf is a vertex of degree 1.)

Proof: Suppose, for the sake of contradiction, that T is a tree with no leaves. Then
every vertex of T must have degree 0 or degree greater than 1. Because T is
connected, no vertex can have degree 0. Thus, every vertex of T has degree greater
than 1. Consider some vertex v of T . Walk along T , using a new edge at each step
and labeling the vertices v1,v2, . . . . If you walk to a vertex that already has a label,
then T has a cycle and this is a contradiction. If you never walk to an already
labeled vertex, then the path must end… in a leaf. �

Theorem 10.2.5. Every treeT with at least two vertices has at least two leaves.

Proof: Suppose, for the sake of contradiction, that T is a tree with only one leaf ℓ.
(We know it has at least one leaf from Theorem 10.2.4.) Begin at ℓ and walk along
T , using a new edge at each step and labeling the vertices v1,v2, . . . . If you walk
to a vertex that already has a label, then T has a cycle and this is a contradiction. If
you never walk to an already labeled vertex, then the path must end … in another
leaf. �

We’ll need these facts later. Hopefully, they have warmed up your brain to
work with graphs again.

Check Yourself

Enjoy these quick problems.

1. Draw all trees on five vertices.

2. What must be true about the degree sequence of a tree?

3. Suppose a graph G has 364 vertices and 365 edges. Can it be a tree?

4. Suppose a graph G has 28 vertices and 27 edges. Must it be a tree?

5. Suppose a connected graph G with 432,894,789 vertices has no cycles. How many
edges might it have?
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6. Draw a tree that has exactly two leaves.

7. Draw a tree that has exactly three leaves.

10.3 Try This! Spanning Trees

Every graph contains at least one tree as a subgraph (for example, a single vertex
or a single edge with both its incident vertices), but usually it has lots and lots
of trees as subgraphs. In the following exercises, we will think about the largest
possible trees we could find as subgraphs, namely, those trees that contain all the
vertices of a given graph. Such a tree is called a spanning tree. Figure 10.1 shows
three graphs along with two example spanning trees for each one.

1. Give an example of a subgraph of one of the graphs in Figure 10.1 that is
not spanning.

2. Give an example of a subgraph of one of the graphs in Figure 10.1 that is a
spanning subgraph but not a tree.

3. Show that every connected graph has at least one spanning tree by giving an
algorithm for finding one.

4. Did your algorithm begin with just the vertices, or did it begin with the whole
graph? Find a second algorithm that begins differently than your first.

Figure 10.1. The upper graphs contain the lower spanning trees.
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5. Prove that your algorithms work. That is, show that the output is a tree and
that the tree includes all the vertices of the original graph.

6. Show that every graph, connected or not, has a spanning forest.

Let’s move to reality for a little while (though it will still be abstracted reality).
Why would we want to find a spanning tree? Suppose that we need to build an
oil pipeline: it transports oil from several wells to a processing center, and it must
be built parallel to existing roads so that in the event of a leak it can be reached
and repaired quickly. It will be cheapest if the total length of pipeline is as short
as possible. So, there is a graph in which vertices are oil wells and a processing
center and in which edges are roads. In this case, distances along roads matter,
as well as which roads connect which oil wells. More generally, we may have
situations in which costs of transport or lengths of cable or amounts of energy used
are important, in addition to adjacency. Therefore, whatever physical network we
have that is represented by a graph will have labels on its edges to denote the costs
or distances or energies. These are referred to as weights, and such a labeled graph
is called a weighted graph. (Technically it is edge-weighted; one could, after all,
weight vertices.) Figure 10.2 shows a weighted graph and three of its spanning
trees.

7. Compute the total weight of each of the spanning trees shown in Figure 10.2.
Which has the smallest weight? Is that theminimum possible weight? If not,
construct a minimum-weight spanning tree.
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Figure 10.2. Three spanning trees of a weighted graph.
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8. Develop an algorithm for finding a minimum-weight spanning tree in a con-
nected graph.

9. Did your algorithm begin with just the vertices, or did it begin with the whole
graph? Find a second algorithm that begins differently than your first.

10. Try to prove that your algorithms work, in the sense that (a) they produce
trees and (b) they produce a total weight that is smallest. (This is pretty
challenging, so do not be surprised if you can only come up with part of a
proof.)

10.4 Spanning Tree Algorithms

Hey! You! Don’t read this unless you have worked through the problems in Sec-
tion 10.3. I mean it!

Spanning trees are used all the time in computer science. For example, doing
a search on a graph (see Bonus Section 5.8) requires a spanning tree. So, it is
important to have algorithms for finding spanning trees.

Chances are that in Section 10.3 you came up with the following two algo-
rithms (or at least similar algorithms) for finding a spanning tree.

Finding a spanning tree: Start big

1. Begin with a connected graph G.
2. Consider a duplicate of G and name it H.
3. Pick an edge, any edge, of H and call it e.
4. If H \ e is connected, remove e and rename H \ e as H; otherwise,
mark e as necessary (and don’t consider it again).

5. Pick any edge of H not marked as necessary and call it e. If there are
no unmarked edges left, rename H as T and be done.

6. Go to step 4.

Your algorithm was probably less formal than this one. But this algorithm still
leaves a bit to be desired—how do you pick an edge of a graph? As a human, you
can close your eyes, put your finger down on the graph, and see which edge your
finger landed on after you open your eyes. A computer, however, cannot do this.
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On the other hand (on the other bit? circuit? processor?), a graph must be stored
as some sort of computer-readable structure in order for a computer to perform
any operations on it. Two common (but not super-efficient) ways of storing a
graph are as an adjacency matrix and as a pair of lists (vertices, edges). (See
Section 3.7.2 for a bit more on this topic.) In either case, the data are ordered
and so the computer can choose the first edge in the stored structure. Moreover,
testing H \ e for connectedness requires a separate algorithm of its own. So, the
algorithm presented here is neither very formal nor complete.

In this chapter (and similarly in Chapter 12), there will be several algorithms
presented, but we will not specify how we would get a computer to perform steps
of the algorithm. Such implementation is in the purview of computer science;
for example, some aspects of implementation are dependent on the programming
language and data types used. However, for each algorithm we will point out some
aspects of implementation a coder should consider.

Finally, how do we know the start-big spanning tree algorithm works? We
begin with a connected graph and at each stage retain connectedness; the result
has no cycles, as otherwise there would be an edge not marked as necessary. Thus,
the algorithm produces a tree. Additionally, the tree must be spanning because
we began with all vertices and took no action that would remove one from the tree
(because at each stage the resulting graph is connected). Performing this algorithm
on each component of a nonconnected graph will produce a spanning forest.

Now, the previous algorithm started big. We could also start small.

Finding a spanning tree: Start small

1. Begin with a graph G.
2. Grab a copy of the null graph (no vertices or edges) and name it H.
3. Pick an edge, any edge, of G and call it e.
4. If H ∪ e is a tree, add e and its vertices to H and rename H ∪ e as H;
otherwise, mark e as superfluous.

5. Pick an edge of G incident to H and not marked as superfluous and
call it e. If there are no unmarked edges left, rename H as T and be
done.

6. Go to step 4.

How do we know this algorithm works? We need to be sure that the resulting
graph T is connected, has no cycles, and includes all the vertices of G. Because
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at each stage we only consider edges incident to H, each intermediate graph is
connected; and, because at each stage we only add edges that retain tree-ness, no
cycles are created. Thus, T is a tree. Suppose, however, that there is a vertex v of
G not included in T . It must be incident only to edges ei marked as superfluous
(as otherwise it would have been added to T at some stage), and therefore T ∪ ei
is not a tree for any i. This means that T ∪ei must contain a cycle (as ei is incident
to T , we know T ∪ ei is connected), and therefore v ∈ T .

Now let us consider finding spanning trees in graphs with weighted edges.
Example 10.4.1 (of a spanning and weighted spanning tree). In the center of Fig-
ure 10.3 is a weighted graph. At left, we have the graph with a spanning tree
highlighted, but this is not a minimum-weight spanning tree; at right, the unique
minimum-weight spanning tree is highlighted.
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Figure 10.3. A spanning tree highlighted, a weighted graph, and a minimum-weight span-
ning tree highlighted.

Example 10.4.2. Minimum-weight spanning trees are eminently practical. Sup-
pose you want to create a high-speed computer cluster from existing machines so
that the processing power of the machines can be utilized around the clock. In or-
der to do so, you will need to network the computers together using physical cables
for maximum speed. At the University of Universe City (UUC), the computer sci-
ence and mathematics departments have agreed to pool their computing resources
for a cluster. The two departments are in adjacent buildings, one of which has
two floors. Only some connections will be physically possible (because of various
obstacles between computers, such as lead-filled walls and the like). The network
is shown in Figure 10.4. Which segments should you pick in order to use the least
amount of expensive cable? A minimum-weight spanning tree will answer your
question: it assures that every computer can communicate with every other, avoids
superfluous cable, and is cheapest. Note that every spanning tree must include the
cable that runs between the two buildings.
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Figure 10.4. An edge-weighted graph representing possible routes for high-speed cabling.

We will now examine the two most famous algorithms for finding minimum-
weight spanning trees. You probably came up with one of these algorithms but not
the other.

Finding a minimum-weight spanning tree: Kruskal’s algorithm

1. Begin with a connected edge-weighted graph G. Order the edges in
increasing order of weight as e1, . . . ,en.

2. Let e1 along with its vertices be called H and set j = 2.
3. If H∪e j has no cycles, then rename H∪e j as H; otherwise, do noth-
ing.

4. If |E(H)| = |V (G)|− 1, output H as the desired tree; otherwise, do
nothing.

5. Increment j by 1 and go to step 3.

Kruskal’s algorithm is straightforward to perform by hand, but more detail
would be needed in order to implement it. For example, the edges of G must be
ordered by weight, and this is a separate procedure. (One inefficient possibility is
bubble sort; see Bonus Section 6.12.) Additionally, we must create a procedure for
determining whether a graph is acyclic. One way to make such a determination for
H ∪e j is to check whether e j’s endpoints are already in H or not. If they are, then
perform a further check to see whether they’re in the same connected component
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Figure 10.5. A small graph with Kruskal’s algorithm executed upon it.

of H. Of course, for this check to work, we need to know what the connected
components of H are; how do we determine them? Notice that there is a large gap
between understanding Kruskal’s algorithm and implementing it.

Example 10.4.3. Figure 10.5 showsKruskal’s algorithm executed on a small graph.

If you would like to examine additional examples, see https://www-m9.ma.
tum.de/graph-algorithms/mst-kruskal/index_en.html, which shows Kruskal’s al-
gorithm executed step by step on some customizable graphs, and http://students.
ceid.upatras.gr/~papagel/project/kruskal.htm, which generates a variety of
graphs with step-by-step executions of Kruskal’s algorithm.

Proof that Kruskal’s algorithm works: We will use the notation we to denote the
weight on edge e and the notation w(T ) to denote the total weight of a tree.

We need to show that the resulting H is a tree, meaning that (a) it is con-
nected and (b) it has no cycles, and we also need to show that the result has
the smallest possible weight. Criterion (b) is taken care of for us by step 3 of
the algorithm; we always maintain acyclicity. The algorithm only finishes when
|E(H)| = |V (G)| − 1, at which point Theorem 10.2.2 guarantees that H is a tree
and thus connected.

https://www-m9.ma.tum.de/graph-algorithms/mst-kruskal/index_en.html
http://students.ceid.upatras.gr/~papagel/project/kruskal.htm
https://www-m9.ma.tum.de/graph-algorithms/mst-kruskal/index_en.html
http://students.ceid.upatras.gr/~papagel/project/kruskal.htm
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It was clear that our unweighted spanning tree algorithms would terminate,
as we finished after examining every edge of the original G. However, Kruskal’s
algorithm terminates exactly when |E(H)| = |V (G)| − 1; is it possible we could
consider every edge and still have |E(H)|< |V (G)|−1?

Let’s suppose Kruskal’s algorithm does not terminate. Then, either H is not
connected or it does not span G. In either case, there must be two vertices v1 and
v2 of G between which there exists a path in G but not in H. Consider the edges of
this path in G. Now, what happened to them in Kruskal’s algorithm? When each
was encountered, its addition toH would have caused a cycle. In other words, both
vertices of the edge already belonged to H. As this is true for every edge on a path
between v1 and v2, that means that v1 and v2 are in H, which is a tree. Therefore,
there is a path in H between v1 and v2, which is a contradiction.

Finally, we need to show that Kruskal’s algorithm does produce a minimum-
weight spanning tree! (Doubt arises because perhaps we have several edges of the
same weight, and if we addressed those edges in a different order, we might be led
to choose a different set of edges later, perhaps of lower total weight.) We will do
a proof by contradiction. Thus, we will assume that there is a spanning tree with
lower total weight than that of H.

Because G has a finite number of spanning trees, we can sort them by total
weight. First, we will consider those with minimum total weight, and then among
those we will choose one with the largest number of edges in common with H.
Call our selected spanning tree T . By assumption, w(T )< w(H).

Consider the edges of T and H. We will label the edges of H in the order
Kruskal’s algorithm picked them from e1, . . . ,en and call them h1,h2, etc. We are
not given an ordering on the edges of T because we do not know how T was
produced, so we will label the edges of T in increasing order by weight, and within
a sequence of edges of the same weight, we will list those from H first (and in the
same order as in H). Using this labeling, t1 = h1, t2 = h2, and so forth, until T and
H first differ, at which point tk ̸= hk.

Consider T ∪ hk, and notice that it has V (G) edges; it’s still connected, so
it must have a cycle Y . Any edge of Y can be removed without disconnecting
T ∪hk. And, at least one edge y of Y is not any of h1, . . . ,hk−1 because otherwise
h1, . . . ,hk−1,hk would have formed a cycle in H. This means that w(hk) ≤ w(y).
So, consider (T ∪hk)\ y. It is a spanning tree because it contains all vertices of G
and is a tree by Theorem 10.2.2. Plus, w((T ∪ hk) \ y) = w(T )+w(hk)−w(y) ≤
w(T ). If w((T ∪ hk) \ y) < w(T ), then this contradicts the minimum-weight-ness
of T . If instead w((T ∪hk)\ y) = w(T ), then we have created a minimum-weight
spanning tree with more edges in common with H than T had, and this contradicts
the way we chose T . Thus, we have in any case a contradiction. �
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Our next algorithm dates back to 1930 (though Prim wrote about it in the late
1950s), which is pretty recent (compared to, say, the development of calculus).

Finding a minimum-weight spanning tree: Prim’s algorithm

1. Let G be a connected edge-weighted graph. Find the edges of least
weight in G and pick one of them. Name it ankka.

2. Let ankka along with its vertices be called P.
3. Look at all the edges of G that have exactly one vertex in P. Among
these, pick one of least weight and name it e. If P∪ e has no cycles,
then add e and its other vertex toP, and renameP∪e asP. Otherwise,
mark e as bad so you don’t look at it again.

4. If V (P) = V (G), then we’re done and output P. Otherwise, go to
step 3.

This version of Prim’s algorithm is very human-oriented. Usually when Prim’s
algorithm is implemented, it begins with an arbitrary choice of vertex rather than
an arbitrary choice of edge in order to avoid unnecessary pre-processing of the
graph. Still, the method for finding the set of edges with exactly one vertex in P
depends heavily on how the graph is stored in a computer.

Example 10.4.4. Figure 10.6 shows Prim’s algorithm executed on a small graph.

If you would like additional worked examples, see https://www-m9.ma.tum.
de/graph-algorithms/mst-prim/index_en.html, which shows Prim’s algorithm ex-
ecuted step by step on some customizable graphs, and http://students.ceid.upatras.
gr/~papagel/project/prim.htm, which generates graphs onwhich Prim’s algorithm
is worked step by step.

Proof that Prim’s algorithm works: First, we will show that Prim’s algorithm ter-
minates. Suppose it does not. Then |V (P)| < |V (G)|, and yet there is no edge of
G with exactly one vertex in P. That means that every edge of G not in P either
has both vertices in P or has neither vertex in P. If there is an edge with neither
vertex in P, then there exists no path connecting either vertex to any vertex in P;
otherwise, there would be an edge on that path with exactly one vertex in P. This
is a contradiction to G being connected.

Prim’s algorithm definitely produces a tree because at every stage P is con-
nected and no cycle is ever formed: let’s show it gives aminimum-weight spanning
tree.

https://www-m9.ma.tum.de/graph-algorithms/mst-prim/index_en.html
http://students.ceid.upatras.gr/~papagel/project/prim.htm
https://www-m9.ma.tum.de/graph-algorithms/mst-prim/index_en.html
http://students.ceid.upatras.gr/~papagel/project/prim.htm
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Figure 10.6. A small graph with Prim’s algorithm executed upon it.

We know that G has a minimum-weight spanning tree—after all, there are
only a finite number of spanning trees, so we can select those with minimum total
weight. So let’s look at all the minimum-weight spanning trees and choose one that
has the maximum number of edges in common with P. We will call this tree T .

We can label the edges of P by the order in which we added them. (Think of
this as having the weights written in black and the order-added labels written in
teal.) Consider P \T and check out the edge that was picked first for P. (It has
the lowest teal number.) Call that edge e. Now consider T ∪ e. It has a cycle C
(because T ∪ e has V (G) edges) and e is on that cycle.

Now look at the growing P just before we added e and call it Pe—basically, this
means we are going to consider Prim’s algorithm up to the point when P diverged
from T . Every vertex of G is either in V (Pe) or in V (G \Pe). One vertex of e is
in V (Pe) and the other vertex of e is in V (G\Pe). If you start in Pe and go across
e into V (G \Pe), and then follow the cycle C around, you have to get back into
V (Pe) at some point in order to get to the start of the cycle again. So that means
there is some other edge in C that has one vertex in V (Pe) and the other vertex in
V (G\Pe). Let’s call that other edge ehwyaden.

Now back in the moment of Prim’s algorithm, just before adding e, we had a
pile of edges we were considering adding, and e was one of the available edges
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with lowest weight. And because ehwyaden goes between Pe and the rest of G, it
must be that ehwyaden is in that pile of edges under consideration. Therefore, the
weight of ehwyaden is larger than or equal to the weight of e.

Check out T again. The graph T ∪ e has a cycle and ehwyaden is on that cy-
cle, so (T ∪ e) \ ehwyaden is a spanning tree and w((T ∪ e) \ ehwyaden) ≤ w(T ). If
w((T ∪e)\ehwyaden)< w(T ), that’s a contradiction to T having minimum weight,
so (T ∪ e)\ ehwyaden must have the same weight as T .

But wait a sec! The tree (T ∪e)\ehwyaden has one more edge in common with
P than T does, which is also a contradiction—we chose T to have the maximum
number of edges in common with P!

Heck, yeah—that means that P was a minimum-weight spanning tree to begin
with.

So Prim’s algorithm works. �

Now we will address an algorithm you may or may not have envisioned.

Finding a minimum-weight spanning tree: Start big

1. Begin with a connected edge-weighted graphG. Order the edges in decreas-
ing order of weight as e1, . . . ,en.

2. Consider a duplicate of G and name it J. Set k = 1.

3. If ek is contained in a cycle of J, remove ek and rename J\ek as J; otherwise,
do nothing.

4. If |E(J)|= |V (G)|−1, output J as the desired tree; otherwise, do nothing.

5. Increment k by 1 and go to step 3.

In practice, algorithms such as Kruskal’s and Prim’s that build trees are pre-
ferred to algorithms that reduce from a graph to a spanning tree. To see why,
examine and contrast the verification steps: in Kruskal’s algorithm, one checks
to see whether adding an edge will create a cycle; in Prim’s algorithm, one finds
all edges incident to the growing tree; in a reduction algorithm, one checks to see
whether a particular edge is in a cycle. The graphs being checked in the early
stages of a reduction algorithm are larger than those checked in the later stages of
a building algorithm and so take longer to verify.

We close by noting that most graphs have lots and lots of spanning trees; as a
result, it would not be practical to look at all possible spanning trees and pick one
with minimum weight.
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10.4.1 Greedy Algorithms

Kruskal’s and Prim’s algorithms are both examples of the same approach to solving
a problem. Let’s see their common structure:

1. Select a place to start. (Both algorithms beginwith an edge of lowest weight.)

2. Look nearby. (Kruskal: look at the next edge in the list. Prim: look at all
edges incident to the current tree.)

3. See which nearby things may help to solve the problem. (Kruskal: check
that adding the next edge wouldn’t create a cycle. Prim: only look at edges
with exactly one endpoint in the current tree.)

4. Choose the best option from those that are nearby. (Kruskal: the pre-ordering
of the edges takes care of this. Prim: find an edge of lowest weight.)

5. Check to see whether the problem has been solved. (Kruskal: compare num-
ber of edges to |V (G)|−1. Prim: compare number of vertices to |V (G)|.)

6. If problem is solved, be done; if not, go to step 2.

This structure describes a general class of algorithms called greedy algorithms.
As [5] put it, such algorithms are called greedy because they grab the best thing
available at every stage. (For problems whose goal is to minimize something, this
name doesn’t make intuitive sense; it seems that in these cases the algorithms are
parsimonious instead because they are grabbing the least stuff possible.)

Most of the time, a greedy/parsimonious algorithm works pretty well. For
example, wewill see in Chapter 12 that one can be used to find the shortest distance
between two vertices and in Chapter 13 that one does a decent job of coloring
graphs. But sometimes they’re just terrible. Here’s an example.

Example 10.4.5. In the graph of Figure 10.7, your assignment is to find two edges
that cover all four vertices and have minimum weight.

2

3

3

735

Figure 10.7. A small but lopsided graph.
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Hopefully you have picked the two middle (crossing) edges for a total weight
of 6. But if you used a greedy/parsimonious algorithm? Hah! You’d start with
the weight-2 edge and then be forced to pick the weight-735 edge, for a very non-
minimum total weight of 737.

Check Yourself

Do about half of these problems.

1. An unweighted graph could be considered an edge-weighted graph with all edges
of the same weight (perhaps 1). What happens if you run Prim’s algorithm on it?

2. What happens if you run one of the spanning tree algorithms for unweighted graphs
on an edge-weighted graph?

3. If an edge-weighted graph has several edges of the same weight, there will be more
than one way to order the edges while still having them in increasing order of
weight. What difference do these orderings make to Kruskal’s algorithm?

4. Prim’s algorithm does not specify an edge of G with which to start. What would
happen if you ran Prim’s algorithm twice, but starting with different edges?

5. In Example 10.4.3, would the same spanning tree have resulted if the labels were
switched on edges e4 and e6?

6. In Example 10.4.4, at what stage could one have made a choice of edge that would
have resulted in a different spanning graph?

10.5 Binary Trees

Let’s begin with a definition.

Definition 10.5.1. A binary tree is a tree that

has a distinguished vertex called the root, usually drawn at the top of the tree
(in opposition to the way natural trees are),

has at most two edges growing “downwards” from each vertex, and

has a designation of “left” or “right” for each edge, with edges usually drawn
as descending leftwards or rightwards.
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Figure 10.8. An incomplete binary tree.

A sample binary tree is shown in Figure 10.8.
The kth rank of a binary tree is the collection of vertices that are distance k

from the root. A complete binary tree has exactly two edges growing “downwards”
from each vertex, except for those leaves in the bottom rank. (In graph theory, the
adjective “complete” means that wherever an edge can be, it is.)

Example 10.5.2. Let us link complete binary trees with one of our first examples
of counting proofs with the product principle, namely, that a finite set E with n
elements has 2n subsets. There, we noted that for each element ei of E there were
two possibilities: either ei is in a given subset or it’s not. In our proof, this cor-
responded to whether ei filled one of n blanks or not. In terms of binary trees,
this corresponds to following one of two different edges of a binary tree. In Fig-
ure 10.9, the nodes and edges are labeled to show the two subset possibilities for
each ei.

e1 ̸∈ Ee1 ∈ E

e2 ̸∈ Ee2 ∈ E

Is e1 ∈ E?

e2 ∈ E e2 ̸∈ E

Is e2 ∈ E?Is e2 ∈ E?

Is e3 ∈ E?

e3 ∈ E

Is e3 ∈ E? Is e3 ∈ E?

e3 ̸∈ E

Is e3 ∈ E?

{e3} {}{e1,e3} {e1} {e2,e3} {e2}{e1,e2,e3} {e1,e2}

Figure 10.9. This complete binary tree has 23 = 8 nodes in the bottom rank.
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Example 10.5.3 (of an unexpected use for binary trees). You—yes, you! We’re
talking to you. You, personally, have an ancestor who has an ancestor who is the
ancestor of both their genetic parents—within the last 1,000 years. That is, some
ancestor A of yours, with parents P1,P2, has some earlier ancestor B from whom
both P1 and P2 descended. All within the last millennium. No kidding! We’re
about to prove it (by contradiction), in case you don’t believe this wild claim.

Suppose not. How on earth can we express this mathematically? Well, check
this out: Your ancestry is basically a complete binary tree. You had two genetic
parents (vertices adjacent to your vertex), who each had two genetic parents (your
four genetic grandparents), who each had two genetic parents (your eight genetic
great-grandparents), and so forth and so on. But if there are two vertices in this
tree that represent the same person B, then that person has two different paths of
descendants that meet first in some ancestor A of yours, and A’s parents are both
descendants of B. So if there isn’t such a person B, your ancestry is a complete
binary tree with all vertices distinct.

According to the US Centers for Disease Control, the mean age at which a
child-bearing woman has her first child is 26.6 (as of 2016, http://www.cdc.gov/
nchs/fastats/births.htm). Many mothers have multiple children, so we might es-
timate that the current average length of time represented by an edge between two
ranks of the binary tree is 32 years; however, even a few hundred years ago, the
mean age at first birth would have been much earlier, and so we may overesti-
mate the average edge time-length as 28 years. There are at least 35 ranks in
your ancestry tree over the last 1,000 years, for a total of at least 2+ · · ·+ 235 =
68,719,476,734 ancestors.

As of this writing, the world had just under 7.5 billion people in it. The upper-
bound estimate for the cumulative population of the world for the last 1,000 years
(using data from a US Census page that sadly no longer exists) is 45,814,000,000.
So there have definitely been fewer people alive over the last 1,000 years than the
number of nodes in your ancestral tree for the past 1,000 years. Therefore, at least
two of those nodes represent the same person, and so one of your ancestors has an
earlier mumble mumble (reread the start of the problem for a precise statement)!

Binary trees can be used to store data efficiently and effectively, with one da-
tum per node. A binary tree can also be used to encode an effective search algo-
rithm, and that is what we will discuss next.

Imagine some set of data that is ordered, such as a dictionary (ordered alpha-
betically) or an employment database (ordered by ID number). We would like to
search for some item x (in a dictionary, xylophone; in an employment database,
242424).

http://www.cdc.gov/nchs/fastats/births.htm
http://www.cdc.gov/nchs/fastats/births.htm
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look earlierlook later

Is the page before or after xylophone?

Figure 10.10. A human searches a dictionary like this.

Let’s look at the dictionary example. As humans, we know that x is near the
end of the alphabet, so we open the dictionary near the end. If the page we see lists
words that come before xylophone, we know to look later in the dictionary. If the
page we see lists words that come after xylophone, we know to look earlier in the
dictionary. That’s like the start of a binary tree, as shown in Figure 10.10.

We basically repeat this same process (so it is a recursive algorithm!) by open-
ing a new page in the dictionary, and depending on whether the page shows words
that come after or before xylophone, we flip to an earlier or later page.

Now, what should we have a computer do? (We should not have it check
every piece of data, in order.) The computer doesn’t “know” that xylophone should
appear “near the end” of the dictionary. (Nor can it flip to an arbitrary page.) It
has to follow the same procedure for every word that it is given. So let’s divide
the alphabet in half, and then in half again…. Figure 10.11 shows the first two
steps in an algorithm a computer can follow in looking for a word in an electronic
dictionary.

After determining that it needs to look in the xs, the computer will look at the
second letter of the word and follow a further path in the binary decision tree until
it finds the word in question at a leaf.

But what if we search for a nonsense string, like xjeipo? The computer will
come to a decision point, such as, “Is the second letter (a or e) or is it i?” and find
that neither choice is appropriate. (There are no dictionary words that begin with

m or latera letter before m

What letter does the word start with?

t–zm–sf–ℓa–e

Figure 10.11. The first two ranks of decisions in a binary decision tree for a dictionary.
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second halffirst half

Where in the ordering is this datum?

third fourth last fourthsecond fourthfirst fourth

Figure 10.12. The start of a decision tree.

x f , xg, xh, or x j.) It will have to generate an error, which will probably return to
the user a message such as, “Word is not in the dictionary.”

In general, Figure 10.12 indicates how a binary decision tree works.
The diagram shows only the first two decisions; usually there are lots and lots

of decisions to be made. This turns out to be an efficient way to search ordered
data sets. In practice, this type of decision process is implemented by storing the
data directly on the nodes of the tree.

Definition 10.5.4. A binary search tree has a datum associated with each node such
that in the ordering of the data set, the datum occurs earlier than any of the data
downwards and to the right and occurs later than any of the data downwards and
to the left.

This sounds a bit strange, but Figure 10.13 shows a sample binary search tree
for the micro-dictionary aaa,ab,baa,baba. Here is how one might “read” Fig-
ure 10.13 to search for the word baba: Look at the root. It contains ab. We want
baba, which is later in the data set, so let’s go to the right. The node we get to
contains baa, which is earlier in the data set than baba, so we should go to the
right again. Oh, hey, this next node contains baba! Aces, we’re done.

ab

baaaaa

baba

Figure 10.13. A micro-dictionary search tree.
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papm

tmccc

csbmr pb wmr

Figure 10.14. An alphabetical search tree for seven cat toys.

It is advantageous to have as few ranks as possible in a search tree, as the
number of ranks gives the largest number of search steps it will take to find the
desired piece of data.

Example 10.5.5 (of a binary search tree vs. a binary decision tree). Abinary search
tree stores data on all of the vertices, whereas a binary decision tree stores queries
on the non-leaf vertices. We will show a binary search tree and a binary deci-
sion tree for the same data set, a collection of seven cat toys {teal mouse, blue
milk ring, catnip candy cane, paper bag, white milk ring, pink-and-purple mouse,
catnip snake}, abbreviated {tm, bmr, ccc, pb, wmr, papm, cs} for convenience.

First, Figure 10.14 shows a binary search tree that has ordered the data alpha-
betically. Next, Figure 10.15 shows a binary decision tree for identifying one of
the cat toys.

not softsoft

Is it soft?

crinkly not crinkly

Is it crinkly?

not mousemouse

Is it a mouse?

yes no

Is it striped?

yes no

Is it teal?
pb

yes no

Is it blue?

bmr wmrccc cstm papm

Figure 10.15. This binary decision tree helps us identify cat toys.
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Check Yourself

Doing all of these problems will ensure that you understand the definitions introduced in
this section.

1. Suppose that a binary decision tree for set membership is labeled consistently (i.e.,
“left” indicates an element is in the set and “right” indicates an element is not in the
set). What subset will be assigned to the leftmost leaf? … the rightmost leaf?

2. Consider a language with only two letters (a and b), and a binary decision tree that
encodes dictionary ordering for short words (no more than five letters long) in this
language. What is the practical meaning indicated by the tree being incomplete?

3. In Example 10.5.3, what principle allows us to conclude that two nodes must rep-
resent the same person?

4. Placing baa at the root, draw a binary search tree for the micro-dictionary aaa,ab,
baa,baba.

10.6 Try This! Binary Trees and Matchings

1. Consider the maze shown in Figure 10.16.

(a) Create a binary decision tree that describes all possible ways to proceed
through the maze, with left-leaning edges corresponding to left turns
and right-leaning edges corresponding to right turns.

(b) One way to find a path through a maze from entrance to exit is to walk
in and always keep your right hand on the wall. Trace such a path on
your tree.

Figure 10.16. Meditate upon this maze.
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Figure 10.17. Three graphs (do they look familiar?) with matchings highlighted.

2. Create a binary decision tree for a robot to use so it can determine which
of the current US coins (penny, nickel, dime, quarter, half-dollar, or dollar)
you have just offered it. The robot can use its sensors but cannot directly
recognize the coins.

Amatching in a graphG is a subgraph ofG in which every vertex has degree 1.
In other words, it’s a pile of edges (with vertices included)—examples are shown
in Figure 10.17. A perfect matching in a graph G is a matching that includes all
of V (G).

3. Which matchings in Figure 10.17 are perfect matchings?

4. Find a perfect matching for each graph in Figure 10.17, or explain why no
perfect matching exists.

5. Examine Figure 10.18, which shows three trees. If possible, find a perfect
matching in each tree; if not, explain why no perfect matching exists.

6. List at least two criteria that (when present) prevent a tree from having a
perfect matching.

7. Does every bipartite graph have a perfect matching?

Figure 10.18. Do any of these trees have perfect matchings?



332 10. Trees

10.7 Matchings

At first you might wonder what matchings are doing in a chapter about trees. But
in fact, a matching is a type of forest, so matchings fit right in! Matchings are
incredibly useful. (Yes, yes, that is said about many topics in this text. One might
as well say “discrete mathematics is useful”—and it is.)

Example 10.7.1. A Fish of the World class has eight students who are doing re-
search papers. In the library reserve area, there is a shelf of 12 ichthyology books.
Each student has a list of the reserved books that are pertinent to hir topic. Can all
eight students work in the library at the same time?

The answer to this question can be found by searching for a matching in a
graph: Assign each student to a vertex, and assign each book to a vertex. Draw
an edge from a student to each book on hir list of pertinent sources. If there is a
matching that includes all eight students, then they can all work in the library at
the same time.

Example 10.7.2. At the University of Kačica (in Slovakia), advising for the Spring
semester is done in one week during the Fall semester. Every student submits a list
of time slots in preference order. How can we schedule all students for advising
appointments so that the most preferences are honored?

We will again search for a matching, but this time our edges have weights:
Assign each student to a vertex and each appointment slot to a vertex. Draw an
edge from each student to every appointment slot listed, and weight it with hir
preference (1 for first choice, 2 for second choice, etc.). Now, we seek a matching
of minimum weight that includes all student vertices.

Example 10.7.3. In Mx. Tanaka’s ballet class, students must pair up for assisted
stretching. Is it possible to have every dancer paired with a friend?

In this case, we create a graph where the vertices are dancers and edges repre-
sent friendship. If the graph has a perfect matching, then every dancer can stretch
with a friend.

We will solve problems patterned after Examples 10.7.1–10.7.3 in Sec-
tion 10.13.

Matchings are also used in other parts of mathematics. They appear in graph
colorings (see Chapter 13), for example. There is an immense amount that can
be said about matchings, and far too little of it is at the level of this text. So, for
now you must be satisfied with simply knowing what a matching is and how to
recognize and locate one by hand.
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Check Yourself

Try these three quickies.

1. What is the relationship between the number of edges in a matching and the number
of vertices in that matching?

2. Is it possible for a graph with an odd number of vertices to have a matching?

3. Is it possible for a graph with an odd number of vertices to have a perfect matching?

10.8 Backtracking

Consider an 8×8 grid. We would like to place eight coins on squares of the grid
so that no two are on the same row, same column, or same diagonal. (Here, we
mean any 45◦ diagonal.) A partial example is given in Figure 10.19. We could try
all possible ways of putting eight coins on the grid and hope that we eventually
run into one that works. This is terrible, though, because it might require as many
as
(64

8

)
= 4,426,165,368 attempts.

Okay, we can do better. We know that no two coins can be in the same column,
so we can make a list of eight numbers, each indicating the position the coin has in
the corresponding column. Example: (3,2,5,6,2,7,1,8) does not work because
there are two coins in the second row (in the second and fifth columns)… and
there are two coins on the same diagonal. The number of length-8 lists with eight
numbers possible in each slot is 88 = 16,777,216, which is more than 100 times
better than our first attempt, but we can do better still, and pretty easily! To avoid
having two coins in the same row, let’s require that the eight numbers in the list be
different. That means that each list of eight numbers is just a permutation of the
integers from 1 to 8, and there are 8!= 40,320 of those (a 1,000-fold improvement).

Figure 10.19. An 8 × 8 grid with coins placed in the second row/fifth column, fifth
row/fourth column, and sixth row/eighth column.
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Now we would just have to check each of those to see whether it has two coins on
the same diagonal or not.

What all of thesemethods have in common is that we first generate a placement
of coins on the grid and then check to see whether it satisfies our criteria (no two
coins on the same row, column, diagonal). Backtracking is more efficient: As we
place coins on the grid, let’s check to see that we satisfy the criteria after placing
each coin. Then, if we have (for example) two coins placed that satisfy the criteria
and placing a third in a particular square violates a criterion, we just have to pick up
that third coin and try a different square. (Of course, if it turns out that no placement
of the third coin works, then we have to pick up the second coin as well and try
a different square… and so forth.) More generally, backtracking is an effective
approachwhenever a problem has potential solutions that can be expressed as finite
sequences. The start of a sequence is checked for validity; if it is valid, then the
partial sequence is extended, and if it is invalid, the partial sequence is discarded.
In this way, one avoids checking many potential solutions that have invalid starts.

A general algorithm for backtracking:

1. Start with an empty list.
2. Append the first possible solution element.
3. Check to see whether this partial solution is valid.
4. If so, check to see whether the solution is complete; if so, terminate;
if not, continue.

5. If so, append the earliest possible sequence element and go to step 3;
if not, remove the last sequence element and replace it with the next
possible sequence element.

How does backtracking relate to trees? (They are the theme of the chapter, after
all.) Construct a tree for the coins-on-a-grid problem as follows: the root node is
labeled with the empty list (); in the rank below are eight nodes, each labeled with
one of the lists (1),(2),(3),(4),(5),(6),(7),(8); and in the rank below that are 64
nodes, labeled with length-2 lists (1,1),(1,2),(1,3), . . . ,(8,6),(8,7),(8,8); and
so forth on down until the eighth rank, which has 88 length-8 lists. (This is not a
binary tree!) Each node represents a partial solution to the problem, and in this case
we are labeling with the positions of coins in columns. Figure 10.20 shows a snip
of the tree; notice that the lists (2,1),(2,2),(2,3) are absent because we know they
are impossible configurations. In creating our tree, we make “impossible” nodes
only if we can’t tell they represent impossible configurations. Once we discover
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(2)

(2,4) (2,5)(2,6)(2,7)(2,8)

Figure 10.20. A snip from a tree of partial solutions.

an impossibility, we erase that node and the subtree below it. This is an example
of a backtracking tree.

This is what makes backtracking nice; we create a tree that reflects a hierarchi-
cal organization of conceivable solutions to a problem and then cut off branches of
the tree as we discover they lead to invalid (or, depending on the type of problem,
suboptimal) solutions.

The simplest (and most usual way) to approach such a tree is to go down/left
repeatedly until we find a solution or a conflict. If we find a solution, we’re done.
If we find a conflict, then we go back up one rank and then down/right. (If there
are lots of choices of “right,” we choose the leftmost of those edges.) This proce-
dure is known as a depth-first search, and you can learn more about it in Bonus
Section 5.8. Notice that this is the same strategy one uses in the always-keep-
your-right-hand-on-the-wall approach to finding the exit of a maze. In the case of
the maze, backtracking is no more efficient than simply searching the whole tree
because there is no opportunity to discover a potential solution is invalid before
hitting a dead end.

It turns out that for the eight-coins-on-an-8× 8-grid problem, a backtracking
tree is a lot more efficient than any of our original methods—there are 2,057 nodes
in it. (That number was calculated by computer.)

Check Yourself

There are only two problems here; try them both.

1. We claimed that the column-position list (3,2,5,6,2,7,1,8) had two coins on the
same diagonal. Which two and why?

2. Why is this approach called backtracking?



336 10. Trees

10.9 Where to Go from Here

Trees are not usually studied in their own right; however, they form an excellent
class of examples for any graph-theoretic investigation. They are an indispensable
tool in computer science because so many data sets and solution spaces can be
modeled using trees. If youwant to readmore about the theory and implementation
of spanning tree algorithms, greedy algorithms, binary trees, and backtracking,
check out [5].

The introduction to matchings given here leads to Hall’s matching theorem
(which sometimes masquerades under the unfortunate and less descriptive name
“Hall’s marriage theorem”), which gives conditions under which a perfect match-
ing exists for a bipartite graph. Bipartite graphs are a natural model for most real-
life situations in which one wants to create a one-to-one correspondence between
two sets. Many websites and most advanced discrete mathematics and graph the-
ory texts contain a statement, a proof, and applications of Hall’s matching theorem.
Should you want massive amounts of information onmatchings, to the tune of hav-
ing swallowed an elephant,Matching Theory by László Lovász andMichael Plum-
mer will suit your purposes admirably. Matchings are an active area of research in
pure mathematics. For example, recent papers have given improved estimates of
a lower bound for the number of perfect matchings of a 3-regular graph (in terms
of the number of vertices of the graph).

Credit where credit is due: Section 10.3 was inspired by [3]. The proof that Kruskal’s
algorithm works was adapted from Gábor Hetyei’s proof. The proof that Prim’s algorithm
works was adapted from [7]. Example 10.4.5 was adapted from a discussion on pages 216–
218 of [4]. Sections 10.8 and 10.11 were adapted and expanded from Section 6.6.1 of [5].
A hat tip to Tom Hull for the ideas for Bonus Check-Yourself Problem 4 and Problem 1 in
Section 10.6!

10.10 Chapter 10 Definitions

acyclic: An acyclic graph has no cycles.

tree: A connected graph without cycles.

spanning tree: A tree that contains all the
vertices of a given graph; it is the largest
possible tree that is also a subgraph.

weights: Labels on the edges and/or ver-
tices of a graph that often denote costs or
distances or energies.

weighted graph: A graph labeled with
weights.

greedy algorithm: An algorithm that se-
lects the best option available at every
stage.

parsimonious algorithm: An algorithm that
has the goal of minimizing something
and so selects the smallest or least option
available at every stage.
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root: A distinguished vertex.

binary tree: A tree with a root, at most two
edges growing “downwards” from each
vertex, and a designation of “left” or
“right” for each edge.

rank: The collection of vertices that are the
same distance k from the root.

complete binary tree:Abinary tree with ex-
actly two edges growing “downwards”
from each vertex, except for those leaves
in the bottom rank.

binary decision tree: A binary tree with a
two-option question associated with each
node, answers to this question associ-
ated to the edges incident to that node,
and data associated with the bottom-rank
leaves.

binary search tree: A binary tree with a da-
tum associated with each node such that
in the ordering of the data set, the datum
occurs earlier than any of the data down-
wards and to the right and occurs later

than any of the data downwards and to
the left.

matching: A subgraph of a graph in which
every vertex has degree 1. In other
words, it’s a pile of edges (with vertices
included).

perfect matching: A matching that in-
cludes all vertices of a graph.

backtracking: An approach to solving prob-
lems whose solutions can be expressed as
finite sequences.

backtracking tree: A rooted tree of partial
potential solutions to a problem, with
rank k hosting length-k partial potential
solutions.

depth-first search: A method of searching
a tree that starts by going down and left
until either no down/left edges remain or
the searched-for item is found. When no
down/left edges remain, the search goes
back up until it can go down/right.

10.11 Bonus: The Branch-and-Bound Technique in
Integer Programming

If you have not yet read Bonus Section 7.9, please do so before approaching this
section.

The branch-and-bound technique is a type of backtracking applied to the ex-
tremely interesting problems of integer programming. (There is no bias here.)
Recall that an integer programming problem consists of a bunch of linear equa-
tions where all of the variables xi have to be integers plus some function that needs
to be maximized or minimized. As is often done, we will assume that all vari-
ables are binary. Recall also that while integer programming problems are hard to
solve, linear programming problems are easy to solve quickly by computer, and
that for any integer programming problem, we have an associated linear program-
ming problem obtained by removing the requirement that the variables have to be
integers.
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(*,*,…)

(1,*,…)(0,*,…)

(0,1,…)(0,0,…) (1,0,…) (1,1,…)

Figure 10.21. The start of a branch-and-bound tree.

Here’s what we do to make a branch-and-bound tree for integer programming
problems. For the purposes of this explanation, let us examine only the first two
binary variables (x1 and x2) of our hundreds of variables. We will also assume that
we want to maximize a function denoted M((x1,x2, . . .)). Figure 10.21 shows a
start to a branch-and-bound tree. Each node of this tree is marked with a possible
value for (x1,x2, . . .). (Notice that because we have binary variables, the tree itself
is also binary.) Where a variable is assigned the value ∗, that means we consider it
to be unknown. So here is how we do branch-and-bound for integer programming
(described for a whole pile o’ variables):

Start at the root of the tree. None of the variables has a specific value, so
solve the linear programming problem associated to the original integer pro-
gramming problem. If there is no solution (x1,x2, . . .), we’re done for and
there’s no solution to the integer programming problem either. (Consider: if
there are no solutions at all, then there certainly aren’t any solutions that are
integers.) If there is a solution (x1,x2, . . .), go on. (Also, if x1,x2, . . . happen
to be integers, we are super-lucky and done with the problem.)

Set x1 = 0, which means going one rank down and to the left. The variables
x2, . . . can be anything (not necessarily integral), so plug x1 = 0 into all of
our equations and solve for x2, . . . using linear programming.

If there is no solution (0,x2, . . .), cut off the node labeled (0,∗, . . .) (and
everything under it) and go up-right/down to (1,∗, . . .). (See Generic
step below for what to do next.)
If there is a solution (0,x2, . . .), go down a rank to (0,0, . . .). (See
Generic step below for what to do next.)

Generic step: Solve the linear programming problem corresponding to the
integer programming problem at this node (where some variables are fixed).
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If there is no solution, cut off the node and everything under it and backtrack.
If there is a solution, go down a rank. Repeat this step until all variables are
fixed.

When at a node where all variables are fixed, plug in the variables and see
if this is a solution to the equations.

If it’s not a solution, backtrack.
If it is a solution, compute M((x1,x2, . . .)) and make note of the value
(and the solution it goes with). Compare this value to that for any other
integer-valued solutions that have already been found. Keep the best
one and toss the rest out.
Backtrack and do the Generic step.

Keep going until you run out of nodes.

Want to see how this works on an example? Go to http://www.diku.dk/
hjemmesider/ansatte/pisinger/KNAPDEMO/ and choose option 10. This opens two
windows: one holds the tree and the other shows blocks that can be used to fill a
bag. You can have the software step through the algorithm, or you can explore the
tree via the “Show entire tree” button.

Yes, the branch-and-bound algorithm is long and convoluted. And it has to go
through much of an entire binary tree. But guess what? It’s the best algorithm out
there for solving integer programming problems! Well, okay, it’s not the best, but
everything else that’s better is just a refinement of it in some way. Seriously.

10.12 Bonus Check-Yourself Problems
Solutions to these problems appear starting on page 615. Those solutions that model a
formal write-up (such as one might hand in for homework) are to Problems 4, 5, and 8.

1. Find two different spanning trees of the
graph shown at left in Figure 10.22.

2. Find two different minimum-weight
spanning trees of the graph shown at
right in Figure 10.22. Are there more?

3. Find, if possible, a perfect matching
in each of the graphs shown in Fig-
ure 10.22.

12

2

2

1

3

1
2

1

2

3
2

2
21

2

Figure 10.22. A graph and an edge-
weighted graph.

http://www.diku.dk/hjemmesider/ansatte/pisinger/KNAPDEMO/
http://www.diku.dk/hjemmesider/ansatte/pisinger/KNAPDEMO/
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Figure 10.23. Two edge-weighted graphs.

4. Prove that for n ≥ 3, every n-vertex tree
has at most n−1 leaves.

5. Create a binary search tree for the mini-
dictionary {block, black, brack, bract,
brace, trace, race, ace, mace, maze,
maize, baize}.

6. Find a minimum-weight spanning tree
of the graph shown at left in Figure
10.23 using Kruskal’s algorithm.

7. Create an efficient binary decision
tree for identifying members of the

set {coat, mittens, hat, scarf, duck,
boots}.

8. Prove that in any tree with at least two
vertices, any two vertices are connected
by a unique minimum-length path.

9. Use backtracking to find all the ways to
add numbers from
{1,2,3,4,5} to get 8.

10. Find a minimum-weight spanning tree
of the graph shown at right in Figure
10.23 using Prim’s algorithm.

10.13 Tree Problems

1. Draw all trees on seven vertices.
2. Show that the average degree of a tree is
less than 2.
Explain how this result provides a proof
that every tree has at least one leaf.

3. List at least eight spanning trees and
their corresponding total weights for
the graph in Figure 10.24. How many
minimum-weight spanning trees does
this graph have?

1

1

2
3

22

3

4

a

b

c

d

e

f

Figure 10.24. A weighted graph.
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a

b

d

g

c

e

f a
b

d

c

e
f

h

Figure 10.25. Two graphs.

4. Find a spanning tree of the graph at left
in Figure 10.25.

5. Find a spanning tree of the graph at right
in Figure 10.25.

6. Find a minimum-weight spanning tree
of the right-hand graph in Figure 10.26.

7. Find a minimum-weight spanning tree
of the left-hand graph in Figure 10.26
using Kruskal’s algorithm.

8. Find a minimum-weight spanning tree
of the left-hand graph in Figure 10.26
using Prim’s algorithm.

9. Show that every tree is bipartite. (Cre-
ate a proof different from any you cre-
ated earlier in this course.)

10. Figure 10.27 gives a friendship graph
for Example 10.7.3.

Figure 10.27. A friendship graph for a
dance class.

Is it possible for every dancer to stretch
with a friend?

11. In the start-big minimum-weight span-
ning tree algorithm, we removed edges
from cycles. We could have instead
chosen to remove edges that do not dis-
connect the tree. Do these two algo-
rithms ever differ?

1

1

1

1
1

2

2

2
2

2

2
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3

3

3

7
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4

4

4
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1

1
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4

4

3

3

3

3

3

Figure 10.26. Two weighted graphs.
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12. Is the start-big minimum-weight span-
ning tree algorithm more like the oppo-
site of Kruskal or more like the opposite
of Prim?

13. An unweighted graph could be consid-
ered an edge-weighted graph with all
edges of the same weight (perhaps 1).
Rewrite Kruskal’s algorithm to work
with unweighted graphs.

14. Find a minimum-weight spanning tree
of the graph given in Example 10.4.2.
First use any method you like, then do
it using Kruskal’s algorithm, and then
again using Prim’s algorithm. How do
your minimum-weight spanning trees
differ from each other?

15. Create a reasonable definition for a tri-
nary tree.

16. Create a binary decision tree that re-
flects the way a coin-sorting machine
deals with standard US coins (penny,
nickel, dime, quarter, half-dollar, and
dollar).

17. Create a binary search tree for these li-
brary titles. (All but one are real.)

A Duck is a Duck
Enslaved by Ducks
Mini Ducks Songbook
Fowl-Weather Friends
Big Dig Ducks
Regarding Ducks and Universes
Domesticated Ducks
Pocketful of Poultry: Chickens,
Ducks, Geese, Turkeys

18. After Example 10.7.1, we examine the
case of a class on The Reality of Ducks.
Below are listed the students and the
books on reserve each seeks. (All titles
are of real books.) Can all students work
simultaneously?

Amit: Waterfowl Earth Cover Se-
lection Analysis within the Na-
tional PetroleumReserve, Alaska;
Dabblers & Divers: A Duck
Hunter’s Book.

Beth: The New Duck Hand-
book: Ornamental and Domestic
Ducks: Everything about Hous-
ing, Care, Feeding, Diseases, and
Breeding, with a Special Chap-
ter on Commercial Uses of Ducks;
Determinants of Breeding Distri-
butions of Ducks; Red Fox Pre-
dation on Breeding Ducks in Mid-
continent North America.

Carla: Species, Age and Sex Iden-
tification of Ducks Using Wing
Plumage; Ducks of North Amer-
ica and the Northern Hemisphere.

Dmitri: The Wood Duck and the
Mandarin: The Northern Wood
Ducks; Ducks of North Amer-
ica and the Northern Hemisphere;
Red Fox Predation on Breed-
ing Ducks in Midcontinent North
America.

Eglantine: Why Ducks Do That:
40 Distinctive Duck Behaviors
Explained & Photographed; Au-
tumn Passages: A Ducks Un-
limited Treasury of Waterfowling
Classics; Ruddy Ducks & Other
Stifftails: Their Behavior and Bi-
ology.

Fatima: The New Duck Hand-
book: Ornamental and Domestic
Ducks: Everything about Hous-
ing, Care, Feeding, Diseases, and
Breeding, with a Special Chap-
ter on Commercial Uses of Ducks;
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Red Fox Predation on Breed-
ing Ducks in Midcontinent North
America.
Gertrude: Cavity Nesting Ducks;
Waterfowl Earth Cover Selec-
tion Analysis within the Na-
tional PetroleumReserve, Alaska;
Ruddy Ducks & Other Stifftails:
Their Behavior and Biology.
Hiroto: Red Fox Predation on
Breeding Ducks in Midconti-
nent North America; Dabblers &
Divers: A Duck Hunter’s Book.

19. Now suppose that the information given
in the previous problem is listed in pref-
erence order, i.e., the book the stu-
dent desires most is listed first. Use
these preferences to create a weighted
graph, and try to find a minimum-
weight matching.

20. In Figure 10.28 we have a puzzle with
partial solution (1,∗,∗,∗,2,∗,∗,∗,∗).
The rules are that we must place a 1,
2, and 3 in every row and every col-
umn. Follow a backtracking procedure
to solve the puzzle. How many possible
solutions are there?

2

1

Figure 10.28. A partially solved puzzle.

21. Consider the mini-sudoku puzzle of
Figure 10.29, in which each row, col-
umn, and quadrant needs to contain the
numbers 1, 2, 3, 4. List the branches of

a tree that are cut off by the numbers al-
ready placed in the mini-sudoku.

1

2

4

Figure 10.29. A partially solved mini-
sudoku.

22. Here are the clues for the crossword
puzzle in Figure 10.30.
1 Down: the best color (hm…, blue,
teal, rose, grey, ecru, jade?)

2 Down: has lots of water (sea, tub,
bay?)

1 Across: also has lots of water
(ocean, sewer, river, storm, cloud?)

2 Across: and also has lots of water
(tank, well, lake?)

1

1

2

2

Figure 10.30. An empty crossword
puzzle.

Use backtracking to find all possible so-
lutions to the crossword, given the po-
tential answers revealed above!

23. Show that a graph is connected if and
only if it has a spanning tree.

24. How many different binary search trees
can be made with three pieces of data?
What about with four pieces of data?
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25. In Section 10.8, the tree of partial solu-
tions could have had as many as 1+8+
64+ · · ·+88 = 19,173,961 nodes.

(a) We knew that node (2,2) corre-
sponded to a nonsolution. How
many nodes did we remove from the
tree by removing (2,2)?

(b) We also know that (2,1),(2,3), and
all other pairs of the form (k,k−1),
(k,k),(k,k + 1) correspond to non-
solutions. Howmany such nodes are
there?

(c) How many nodes, total, does re-
moval of these length-2 nodes cause
to be removed?

(d) So, just removing the length-2 nodes
that we know are no good, how
many nodes are left in the tree of par-
tial solutions?

26. Find three different spanning trees of
the graph shown in Figure 10.31.

Figure 10.31. A run-of-the-mill graph.

27. Find two different minimum-weight
spanning trees of the graph shown in
Figure 10.32.

3

3

3
2

2

2

2

2

5

5

1

11
1

1

1
4

Figure 10.32. An ordinary working
graph.

28. Find a minimum-weight spanning tree
of the graph shown in Figure 10.33 by
using Kruskal’s algorithm.

3

3
2

22

5
6

66

8

1 4

4

44

Figure 10.33. A graph that likes choco-
late.

29. Find a minimum-weight spanning tree
of the graph shown in Figure 10.33 by
using Prim’s algorithm.

30. Find a spanning tree that is not a
minimum-weight spanning tree of the
graph shown in Figure 10.33.

31. Create a binary search tree for the set
of words whisker, lollipop, pixie, nudi-
branch, peapod.

32. Create a binary decision tree to distin-
guish between the objects whisker, lol-
lipop, pixie, nudibranch, peapod.



10.14. Instructor Notes 345

33. Find two different matchings of max-
imum size in the graph shown in Fig-
ure 10.31.

34. Find two different perfect matchings in
the graph shown in Figure 10.33.

35. You have nine tiles of height one, three
of which are one unit long, three of
which are two units long, and three of
which are three units long. Use back-
tracking to find all the ways to tile a 6-
unit-long rectangle of height one.

10.14 Instructor Notes
With this chapter, the book (and course) move into the graph theory theme. Remember
that your students haven’t studied graph theory for more than a month, and so they will
probably not remember much about graphs at first. As preparation for the first class spent
on this chapter, ask them to read Sections 10.1 and 10.2 and do the associated Check
Yourself problems.

Because it’s always a good time to review induction, an excellent warmup for this
chapter is to re-present an inductive proof that a tree with n vertices has n−1 edges. Then
proceed to Section 10.3. Students working in groups are likely to finish all but the last
problem in Section 10.3 during a class period, especially if you can nudge them to avoid
getting bogged down in producing proof that their algorithm(s) accomplish the intended
goals. If you have a particularly computer-science-y class, it’s worth asking students how
their algorithms would proceed on graphs stored in particular ways (lists, adjacency ma-
trices, etc.). This, of course, presumes they have some experience with data storage.

Here are two ways you might want to use the second and third class periods (and of
course, other excellent ways exist!), depending on what you wish to emphasize in your
class. If you feel that it is important that students understand the proofs that Kruskal’s and
Prim’s algorithms produce minimum-weight spanning trees, then it would make sense to
lecture on these proofs on the second class day. Another approach is to leave these proofs
as optional and emphasize backtracking and optimization, lecturing on these on the third
class day.

Assign the students to read Sections 10.4 (perhaps making optional the proofs that
Kruskal’s and Prim’s algorithms work) and 10.5 and do the Check Yourself problems as
preparation for the second class day. On that day, begin by asking for questions on the
reading. If you are going to lecture on Kruskal’s and Prim’s algorithms, do so. You will
probably have a sense, at this point in the course and after the first day’s work, whether
your students need practice in executing Kruskal’s and Prim’s algorithms or not. If they
do, then draw a few edge-weighted graphs on the board (just invent them on the spot and
make sure they are not already trees) and ask students to break into groups and run both
algorithms on them.

Next, set your students the task of working on the problems in Section 10.6. (This may
be on the second or third class day depending on your plan.) Now (and perhaps from now
on), when dividing students into groups for in-class work, use a binary sort: for example,
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divide them by height; divide into the two groups taller and shorter than 5′ 6′′, then divide
at 5′ 3′′, 5′ 9′′, etc. This reinforces the concept, rearranges groups, and allows for some
levity.

After this class, assign students to read Sections 10.7 and 10.8 and do the Check Your-
self problems. Depending on your plan, this may be the end of your time on trees, you may
have students continue working on Section 10.6, or you may ask students to read Bonus
Section 10.11 and lecture over this material.



Chapter 11

Euler’s Formula and Applications

11.1 Introduction and Summary

Euler’s formula is one of the coolest topics in all of mathematics. Seriously! And
the proof is fun, too—it can be told as a story… so that’s what we’ll do. In fact, we
will mix things up a bit and introduce the proof of the formula before we (actually
you) state it! There are lots and lots of other proofs of Euler’s formula, and you
are encouraged to read about them after we have generated our proof.

First, however, we will set the mathematical stage by exploring planar graphs
a bit.

11.2 Try This! Planarity Explorations

If we can draw a graph in the plane (on a piece of paper, on the blackboard, etc.)
without edges crossing, then the graph is planar. A graph can be planar but be
drawn in a nonplanar way—just make one of the edges curly and wild and long so
that it crosses every other edge of the graph. Recall that Kn is the complete graph
on n vertices, so that all possible edges are present, and that Kn,m is the complete
bipartite graph with n vertices in one part and m vertices in the other part.

1. Try to draw K4 twice, once with at least two edges crossing and once with
no edges crossing. Can you do it?

2. Try to draw K5 twice, once with at least two edges crossing and once with
no edges crossing. Can you do it?

3. In the standard way of drawing Km,n, one draws m dots in a row and, a bit
below this row, draws another n dots in a row. Then one connects each of
the m dots to each of the n dots. Make a standard drawing of K2,4. Do you
think there is a different drawing of K2,4 with no edges crossing?

347
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Figure 11.1. Planar or not?

4. Make a standard drawing of K3,3. Do you think there is a different drawing
of K3,3 with no edges crossing?

5. Is the graph shown at left in Figure 11.1 planar? If so, give a planar drawing.
(GeoGebra files for Figure 11.1 are available for your use at http://www.
toroidalsnark.net/dmwdlinksfiles.html.)

6. Is the graph shown at right in Figure 11.1 planar? If so, give a planar draw-
ing. (GeoGebra files for Figure 11.1 are available for your use at http://
www.toroidalsnark.net/dmwdlinksfiles.html.)

A planar drawing of a planar graph has regions called faces. These are con-
tiguous areas of the plane bounded by edges. The area around a planar graph is
also considered a face and is sometimes called the exterior face or the outer face.
(The reasons for this will be made clear in Bonus Section 11.11.)

Nowwewill explore sizes of faces, measured by the number of edges bounding
them. There is exactly one slightly tricky aspect of counting edges in this fashion:
if an edge is on one face twice (instead of separating two different faces as often
happens), then it contributes to the size of the face twice as well. See Figure 11.2
for examples.

7. Find two different planar drawings of the left-hand graph of Figure 11.2,
each of which has a face of size 6. Howmany faces, total, does each drawing
have?

http://www.toroidalsnark.net/dmwdlinksfiles.html
http://www.toroidalsnark.net/dmwdlinksfiles.html
http://www.toroidalsnark.net/dmwdlinksfiles.html
http://www.toroidalsnark.net/dmwdlinksfiles.html
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3

4

Figure 11.2. Two planar graphs with the sizes of their faces marked.

8. Find two different planar drawings of the left-hand graph of Figure 11.2,
each of which has exterior face of size 3. How many faces, total, does each
drawing have?

9. Find three new planar drawings of the right-hand graph of Figure 11.2. What
are the face sizes for each drawing? Howmany faces, total, does each draw-
ing have?

10. Add up the sizes of the faces in each graph drawing you have made. What
seems to be true about the sum of the face sizes of a graph? Explain why
this is so.

11.3 Planarity

Hey! You! Don’t read this section unless you have worked through the problems
in Section 11.2. I mean it!

You have probably concluded that K5 is nonplanar. Indeed, this is the case, but
proving it directly is quite difficult. Given the tools we currently have, we would
need to show that no matter how we draw K5—no matter where the vertices are,
no matter where we place the edges—we cannot draw all edges without forcing
a crossing. In addition to the sheer number of cases we would have to deal with,
there is the challenge of making a clear and rigorous argument about drawing.
In Section 11.6 we will use a new tool to create a simple way to show that some
nonplanar graphs are, indeed, nonplanar. (It will not work on all nonplanar graphs,
however!) In contrast, it is relatively easy to demonstrate that a planar graph is
planar; we just need to provide a planar drawing of the graph. GeoGebra can
help you find a planar drawing of a graph, just as back in Chapter 3 it helped you
determine whether two graphs were isomorphic.
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You may have observed that every planar drawing of a graph has the same
number of faces. We will understand why in Section 11.5. Now, however, we can
prove that the sum of the sizes of the faces is independent of which planar drawing
we examine.

Theorem 11.3.1. For any graph G drawn without edges crossing, the sum of
the sizes of the faces is equal to 2|E(G)|.

Proof: We use a combinatorial proof. Notice that if an edge is between two faces,
it counts once for each face, and if an edge is on one face, it counts twice for that
face. Thus, each edge contributes twice to the sum of the sizes of the faces, and
therefore, the sum of the face sizes is twice the number of edges. �

Check Yourself

Do all one of these problems.

1. Go to http://planarity.net; enjoy.

11.4 A Lovely Story

Hey! You! Don’t read this section unless you have special permission from your
instructor, or unless you have no instructor. I mean it!

Once upon a time, a long, long time ago now, so long ago that animals could talk
and teachers were human beings, that long ago, off the coast of Japan there was
an island. On Iki Island there were fields, mainly for rice but also for some other
crops. The residents built a network of stone walls to delineate the boundaries
between the fields. This was not the only purpose of the stone walls: they also
served as walkways across the island, so that residents could pass from one part
of the island to another without trampling any crops. Additionally, seeing fields
from slightly above gave a different and longer perspective on how to optimize
the planting. Now, Iki Island was fairly close to the mainland (if one considers a
much larger island to be amainland) of Japan, andwhat with regular wars over land
(humans are so violent), there was always a chance of invasion. Besides, many of
the residents of Iki Island were pirates, and of course, some other Japanese citizens
wanted revenge for the pirates’ plundering. So every so often along the walls, there
were platforms from which one could see quite far and watch for intruders.

http://planarity.net
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black rice

arborio rice

wild
rice
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jasmine rice

basmati
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kuthari rice
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yellowtail
sushi

origami
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kimonos

Figure 11.3. A map of the fields on Iki Island, with watch platforms marked as small
circles.

Now, the pirates of Iki Islandwere very specialized pirates: they were Japanese
rice pirates. They stole rice from all over the world so that they could grow and
breed rice of their own. As a result of excellent piracy, on Iki Island they grew black
rice, jasmine rice, arborio rice, akita komachi rice, koshihikari rice, basmati rice,
pearl rice (or sticky rice), kuthari rice, shahi rice, and wild rice. (See Figure 11.3
for a map of the fields of rice.)

One day, as the pirates were peacefully tending their rice fields, a tsunami came
and crashed through the stone wall separating the beach from the akita komachi
rice field and flooded the field completely. It was a terrible day, for more tsunami
arrived: soon the black rice, jasmine rice, and basmati rice fields were flooded.
The pirates began to panic. They feared that they would all drown if they did
not reach safety; what if all the walls were crushed beneath tsunami? Meanwhile,
more tsunami came and broke through to the wild rice and koshihikari rice fields.
These pirates were not supremely intelligent, as they might otherwise have noticed
that not all the walls could fall; once both sides of a wall are flooded, there is not
enough pressure from water for it to break.

The head pirate, Mauler of Rules, began shouting to the others. “Four Mule
Laser, get to the boats!” For the pirates had developed a special waterproof rice
paper from which to fold excellent boats. Just then, a tsunami freed the yellowtail
sushi (which were, truth to tell, overfished anyway), and a wall protecting the pearl
rice fell to another tsunami. “Lo, Surreal Fume!” exclaimed one pirate to another.
“Lo, Flu Measurer,” replied hir friend, “To the boats, before they are carried away
in yet another flood!” Luckily the stone walls about the origami boat field held,
though the arborio rice and kuthari rice fields were flooded. A Fuller Mouser and
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Figure 11.4. A map of the fields on Iki Island after the tsunami tragedy.

Usual for Mr. Lee raced to the boat area just in time to secure the last few boats, for
a tsunami broke through and all were set afloat in a flood. Too late, Lemurs Are
Foul realized what was happening. “Not the kimonos!” ze cried, for a tsunami had
just crushed one of the walls protecting their prized kimono field. With a last blast
of gusto, the tsunami broke through to the shahi rice field, flooding it and rendering
the entire island suffused with water. At this, Allure of Serum remarked, “Your
name is far too apt, Realm So Rueful.”

The pirates sadly floated about on their boats and feared that more tsunami
would drown them, but none came. (See Figure 11.4 for a map of the destruction.)
Over the following days, the waters receded, leaving only ruined crops on wet
fields. The pirates dragged a couple of origami boats to the sea, and Mauler of
Rules took Lemurs are Foul and Usual for Mr. Lee off on an expedition to plunder
rice to plant. Ze assigned the remaining pirates to rebuild the stone walls while ze
led the expedition. Over time, the walls were rebuilt and the fields reseeded with
many kinds of delicious rice and exquisite kimonos, and all was well.

Please don’t think this is the only sea tragedy in history. There are many more,
some recent. For example, back in the year 2000, global warming caused the Isle
of Ventenese to flood, but luckily Al Gore enacted legislation that turned back the
waters. A year later, a network of clog and tulip fields in the Netherlands flooded
until enough people held their fingers in the dykes.

11.5 Or, Are Emus Full?: A Theorem and a Proof

Look again, or look for the first time, at Figure 11.3. Notice that the stone walls
with platforms could be considered the edges and vertices of a graph. What prop-
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erties does this graph have? It is connected and none of the edges cross. Thus, our
graph is planar and the regions delineated by the edges are both faces of our graph
and the fields in our story.

Now, what happened in our story in terms of graph theory? We began with
a connected planar graph and removed edges until no cycles remained. (Every
face became flooded.) Additionally, we did not allow the removal of an edge that
would disconnect the graph—only edges contained in cycles could be removed.
In other words, we removed edges from our planar graph until we were left with
a spanning tree. Then we replaced the edges we’d removed in order to obtain the
original graph. That summary is pretty short compared to our story… and it still
doesn’t tell us what we were proving.

Let us make a couple of combinatorial observations. The number of vertices
of the planar graph is the same before and after edges are removed. The number
of edges removed is the same as the number of faces in the original graph. These
suggest that our mystery theorem has something to do with counting. Now, we
shall reveal it:

Theorem 11.5.1 (Euler’s formula). For any connected planar graphGwith faces
F(G), |V (G)|− |E(G)|+ |F(G)|= 2.

Proof: We begin with a connected planar graph G and identify a spanning tree T
of G (for example, by using the procedure explained on page 315 in Chapter 10).
Let us abbreviate |V (G)| as vG, |E(G)| as eG, and |F(G)| as fG; let us likewise
abbreviate |V (T )| as vT , |E(T )| as eT , and |F(T )| as fT . Each time we remove an
edge not in T , one cycle is broken and two faces merge. (This is true even when
we break down “exterior” walls, as they separate the exterior face from interior
faces.) When we break all cycles, a single face remains. Thus, we remove fG −1
edges from G to achieve T . We know that eT = vT − 1 from Example 4.2.4, and
rewriting this we have vT − eT = 1. The spanning tree has exactly one face, so
fT = 1 and adding gives us vT − eT + fT = 2. Now, no vertices were removed or
even changed in the process of converting G to T , so vT = vG. We already noted
that eG − ( fG −1) = eT . Substituting into vT − eT + fT = 2, we have vG − (eG −
( fG −1))+ fT = 2, which simplifies to vG − eG +( fG −1)+1 = 2; this becomes
the desired result, vG − eG + fG −1 = 2. �

This is by far not the only proof of Euler’s formula! See http://www.ics.uci.
edu/~eppstein/junkyard/euler/ for at least 18 other proofs. (And play with one
of these proofs at http://demonstrations.wolfram.com/ProvingEulersPolyhedral
FormulaByDeletingEdges/.) Pretty darned neat, eh?

http://www.ics.uci.edu/~eppstein/junkyard/euler/
http://demonstrations.wolfram.com/ProvingEulersPolyhedralFormulaByDeletingEdges/
http://www.ics.uci.edu/~eppstein/junkyard/euler/
http://demonstrations.wolfram.com/ProvingEulersPolyhedralFormulaByDeletingEdges/
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Check Yourself

Verify your understanding with these quickies.

1. Verify Euler’s formula for K4. (Be sure to draw K4 without edges crossing.)

2. Draw K3. Count the number of vertices, edges, and faces. How many edges must
you remove to obtain a spanning tree? Do so. Count the number of vertices, edges,
and faces of the spanning tree. Verify Euler’s formula for K3 and for the spanning
tree you obtained.

3. Verify Euler’s formula forW6, the wheel with five spokes.

4. Explain why every planar drawing of a graph has the same number of faces.

11.6 Applications of Euler’s Formula

Euler’s formula can be used to prove some surprising results. Here is one example.

Theorem 11.6.1. If G is simple, planar, and connected and has at least three
vertices, then |E(G)| ≤ 3|V (G)|−6.

Why is this surprising? Because it relates only |E(G)| and |V (G)| and makes
no mention of |F(G)|. One would expect that the faces of G would come into
play somewhere in the theorem statement (instead, they arise in the proof). The
consequence of requiring G to be planar is that faces must have some indirect role.
Here is a very useful fact.

Theorem 11.6.2. If G is simple, planar, and connected and has at least three
vertices, then 3|F(G)| ≤ 2|E(G)|.

Proof: Because G is simple, no cycle can have fewer than three edges. Therefore,
each face of G has at least three edges. As an inequality, this statement is 3 ≤
(number of edges bounding a face). If we make such an inequality for each face of
G, the sum of the left-hand sides is 3|F(G)|. When we sum the right-hand sides,
we obtain 2|E(G)| because each edge borders two faces (or occurs twice on the
boundary of one face). Thus, 3|F(G)| ≤ 2|E(G)| as desired. �

Here is a second useful fact.

Theorem 11.6.3. If G is simple, planar, connected, and has no 3-cycles, then
4|F(G)| ≤ 2|E(G)|.
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Proof: Because no cycle can have fewer than four edges, each face ofG has at least
four edges. As an inequality, this statement is 4 ≤ (number of edges bounding a
face). If we make such an inequality for each face of G, the sum of the left-hand
sides is 4|F(G)|. When we sum the right-hand sides, we obtain 2|E(G)| because
each edge borders two faces (or occurs twice on the boundary of one face). Thus,
4|F(G)| ≤ 2|E(G)| as desired. �

In the exercises, you will be asked to generalize Theorems 11.6.2 and 11.6.3.
But now, we can proceed with the proof of Theorem 11.6.1.

Proof of Theorem 11.6.1: Because G is planar, we know by Theorem 11.5.1 that
2 = |V (G)| − |E(G)|+ |F(G)|. From Theorem 11.6.2 it follows that |F(G)| ≤
2
3 |E(G)|. Thus, 2 ≤ |V (G)| − |E(G)|+ 2

3 |E(G)| = |V (G)| − 1
3 |E(G)|, which

rewrites to 6 ≤ 3|V (G)| − |E(G)|, and this is equivalent to the desired
statement. �

Using Theorem 11.6.3, we can generalize Theorem 11.6.1:

Theorem 11.6.4. If G is simple, planar, connected, has no 3-cycles, and has
at least three vertices, then |E(G)| ≤ 2|V (G)|−4.

Proof: Because G is planar, we know that 2 = |V (G)|− |E(G)|+ |F(G)|. From
Theorem 11.6.3 it follows that |F(G)| ≤ 1

2 |E(G)|. Thus, 2 ≤ |V (G)| − |E(G)|+
1
2 |E(G)|= |V (G)|− 1

2 |E(G)|, which rewrites to 4 ≤ 2|V (G)|− |E(G)|, and this is
equivalent to the desired statement. �

In Section 11.2 you convinced yourself that it is impossible to drawK5 without
edges crossing; in other words, K5 is nonplanar. But how can we prove it?

Theorem 11.6.5. Both K5 and K3,3 are nonplanar.

Proof: Check this out. We will proceed by contradiction. Suppose that K5 and
K3,3 are planar. They are both simple. The smallest cycle in K5 has length 3. By
Theorem 11.6.1, |E(G)| ≤ 3|V (G)| − 6. We know that K5 has five vertices and(5

2

)
= 10 edges. Therefore, 10 ≤ 15− 6 = 9, which is a contradiction. And, we

know that K3,3 has six vertices and 3 ·3 = 9 edges, so 9 ≤ 18−6 = 12, which is…
not a contradiction.

However, the smallest cycle inK3,3 has length 4. By Theorem 11.6.4, |E(G)| ≤
2|V (G)| − 4. We know that K3,3 has six vertices and 3 · 3 = 9 edges. Therefore,
9 ≤ 12−4 = 8, which is a contradiction. Much better.
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Figure 11.5. The superposition of the two left-hand graphs is shown at right to make
explicit that K5 has thickness 2.

And there’s more:
Theorem 11.6.6. If G is simple, planar, and connected, then G has at least
one vertex of degree no more than 5.

Proof: Suppose not. That is, suppose every vertex of G has degree at least 6.
Then for each vertex, we may write 6 ≤ (the degree of the vertex). If we add up
all such statements, we get 6|V (G)| on the left-hand side, and we get the sum of
all the degrees in the graph on the right-hand side. In Chapter 3 you proved the
handshaking lemma (Lemma 3.5.1 on page 77), which tells us that the sum of all
the degrees in a graph is equal to 2|E(G)|. So we have 6|V (G)| ≤ 2|E(G)| or
3|V (G)| ≤ |E(G)|. Now, if G has at least three vertices, then by Theorem 11.6.1,
|E(G)| ≤ 3|V (G)|−6. Putting these facts together, we have that 3|V (G)| ≤ |E(G)|
≤ 3|V (G)|−6, which cannot be true. Contradiction!

However, if G has fewer than three vertices, it can only be a lone vertex or K2.
The theorem holds for these two examples, so we’re done. �

It’s time for a practical application!
Imagine a circuit board. It has these metal dots that go all the way through

the board, and on each side there are metal curves that connect some of the dots.
Other dots are connected by components (such as resistors or transistors). The
metal curves do not touch—that would cause a short circuit. So each side of the
circuit board shows a planar graph with the dots playing the role of vertices and
the metal curves playing the role of edges. However, the graph formed by the
metal dots and the metal curves from both sides of the circuit board is probably
not planar. It is two planar graphs glued together at their vertices, so we say that
this graph has thickness 2. Figure 11.5 shows that K5 has thickness 2. Notice that
one way to visualize thickness of a graph G is as a drawing of G with edges in
different colors, where no two edges of the same color cross.

We have already been interested in which graphs are planar and which are not;
now we are interested in which graphs can be printed on circuit boards and which
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cannot. We say that a planar graph has thickness 1 and a circuit-boardar graph
has thickness 2. In general, the thickness of a graph G is denoted t(G), and it is
the smallest number of planar graphs that can be glued together at their vertices to
form G.

Euler’s formula gives a couple of lower bounds for the thickness of a graph
(and thus quickly tells us whether we should bother trying to draw that graph on a
circuit board):

Proof of Theorem 11.6.7: By Theorem 11.6.1, if G is planar, then |E(G)| ≤
3|V (G)|−6, or |E(G)|

3|V (G)|−6 ≤ 1. If we have two graphs G1 and G2, then |E(G1)|
3|V (G1)|−6 +

|E(G2)|
3|V (G2)|−6 ≤ 2. If additionally we have that |V (G1)| = |V (G2)| = v and we name
|E(G1)|+ |E(G2)|= e, then this becomes e

3v−6 ≤ 2. This arithmetic generalizes to
any finite number of graphs G1, . . . ,Gk. We may thus think of the ratio |E(G)|

3|V (G)|−6
as measuring the smallest number of planar subgraphs whose superposition could
comprise G. Of course, a number of subgraphs must be an integer, so we must
round up and the smallest number must be ⌈ |E(G)|

3|V (G)|−6⌉. This is the smallest possi-
ble thickness, so ⌈ |E(G)|

3|V (G)|−6⌉ ≤ t(G). �

Theorem 11.6.7. IfG is a simple graphwith at least three vertices, then t(G)≥
⌈ |E(G)|

3|V (G)|−6⌉.

Check Yourself

Make sure you understand all the details of the theorems in this section by doing these
problems.

1. Why is the constraint |V (G)| ≥ 3 necessary in Theorem 11.6.1?

2. Draw a nonsimple graph that violates Theorem 11.6.6.

3. Theorem 11.6.3 requires that G have no 3-cycles. This requirement could be re-
placed with the constraint that G be drawn with no faces of size 3. Why is this a
weaker constraint?
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Figure 11.6. Nonplanar and planar drawings of the same graph.

11.7 More Planarity-ish Examples

Example 11.7.1 (of a planar graph). Figure 11.6 shows a planar graph; at left is a
nonplanar drawing of the graph and at right is a planar drawing of the graph.

Example 11.7.2 (of a nonplanar graph). Figure 11.7 shows a nonplanar graphwith
a K3,3 subgraph highlighted in teal. One part of K3,3 has dark teal vertices and
the other has pale teal vertices. (Because the graph contains K3,3, we know it is
nonplanar by Theorem 11.6.5.)

Example 11.7.3 (of a nonplanarity proof using Euler’s formula). You are shown a
graph that looks suspiciously like a scribbly duck, and asked whether or not it
is planar. A quick count shows that it has 23 vertices and 65 edges. Fine, you
think, it could be planar. After all, 23− 65+ 44 = 2, so it just needs 44 faces.
But somehow you feel unsettled by trying to draw all those faces. Maybe there’s
a consequence of Euler’s formula that will help? Ah, yes, Theorem 11.6.1—and
65 ̸≤ 3 ·23−6, so we now know the scribbly duck graph cannot be planar.

Figure 11.7. A nonplanar graph with highlighted K3,3 subgraph.
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Figure 11.8. The best graph.

11.8 Try This! Applications of Euler’s Formula

Enjoy working on these problems with peers.

1. Prove that for a planar graphwith k components, |V (G)|−|E(G)|+|F(G)|=
1+ k.

2. Prove that the Petersen graph (shown in Figure 11.8) is not planar.

3. Show that if every face of a planar graph has four edges, then |E(G)| =
2|V (G)|−4.

4. For which n is Kn planar and for which n is Kn nonplanar? Make and prove
a conjecture.

5. For which m,n is Km,n planar and for which m,n is Km,n nonplanar? Make
and prove a conjecture.

6. Check out Figure 11.9 for an interesting way to represent the torus (surface
of a doughnut):

(a) Convince yourself that the left and right diagrams really are two rep-
resentations of the same thing.

Figure 11.9. Cutting a doughnut skin.
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(b) Draw a few graphs on copies of the torus. (Make sure to cross each of
the rectangle edges so that you’re genuinely using the torus.)

(c) Try out Euler’s formula on these graphs. Does it still hold? If not, does
some other formula hold?

(d) Special challenge: Prove your conjecture.

11.9 Where to Go from Here

To learn more about planar graphs, first consult the easy-to-read [24]. You can
continue learning about planar graphs in a graph theory course and on to the level
of research—within the fewmonths prior to this writing, papers were published on
finding minimum-weight partly spanning trees of planar graphs, degree sequences
of parts of bipartite planar graphs, decomposing planar graphs into forests, col-
oring planar graphs (see Chapter 13 for what this means), planar graphs without
Hamilton cycles (see Chapter 12 for what this means), and drawing planar graphs
with few slopes. There is lots of research on (and even conferences devoted to)
graph drawing in general; both computer scientists and mathematicians participate
in this work.

Euler’s formula generalizes to other surfaces (such as multiholed doughnut
skins). Find out more in [7]. Euler’s formula also generalizes to polyhedra and
higher-dimensional objects (called polytopes)! Understanding the statement and
proof of this generalization requires a course in linear algebra and then taking a
course in or reading a text on convex geometry (such as An Introduction to Convex
Polytopes by Brøndsted).

There really is an Iki Island. And they really do grow rice there (see http://
www.iki-island.net/). And historically, there really were pirates inhabiting the
island! (See http://www.iki.co.jp/cat14/?page_id=46 and engage Google Trans-
late.)

Credit where credit is due: The global-warming proof of Euler’s theorem was presented
by Matthew Riddle in July 2000, and the Netherlander proof was presented by Abraham
Flaxman in July 2001. Section 11.6 was adapted from [24]. The first sentence of Sec-
tion 11.4 heavily overlaps the first sentence of a story written by the author’s father, about
the origin of fractions: see page 267 and also page 249.

http://www.iki-island.net/
http://www.iki.co.jp/cat14/?page_id=46
http://www.iki-island.net/
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11.10 Chapter 11 Definitions

planar: A graph that can be drawn in
the plane (on a piece of paper, on the
blackboard, etc.) without edges cros-
sing.

face: A contiguous area of the plane
bounded by edges, in a planar drawing of
a planar graph.

size (of a face): The number of edges
bounding the face. (Sometimes one edge
appears twice on the boundary of a face,
in which case it is counted twice.)

thickness (of a graph): For a graph G with
n vertices, the smallest number of n-
vertex planar graphs that can be stacked
up (aligning the vertices) to form G.

11.11 Bonus: Topological Graph Theory

If prior to this point you were aware of any basic facts about the author of this text,
you surely suspected you wouldn’t be able to read the whole thing without getting
a bit of proselytizing as to the coolness of her favorite portion of mathematics.

In ordinary graph theory, there are two types of objects (vertices and edges),
and only combinatorial structure (adjacency) matters. How the graph is drawn is
irrelevant to its structure. The way in which topological graph theory differs is
that we encode additional information by drawing graphs without edges crossing.
You are already familiar with planar graphs, and we will generalize this idea in
a moment. First, we should set planar graphs into a slightly different context:
they would more correctly be called spherical graphs (though no one does call
them that) because topologically speaking, the plane might as well be a sphere!
Figure 11.10 shows that the parts of a plane we perceive as going off to infinity
correspond to the “back” of a sphere. This allows us to see that what we call the
exterior face is just a face like any other, as long as we rotate the sphere.

Figure 11.10. A plane can be bent around and its infinite boundary contracted to a single
point on a sphere.
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Figure 11.11. A graph with one vertex and two edges (both are loops) is embedded on
the torus.

Is there a way of drawing nonplanar graphs so that the edges do not cross? Yes,
as long as surfaces other than the sphere are considered; we call such drawings em-
beddings. In Figure 11.9 we saw a second surface, the torus, and how to represent
it in a flat way. Figure 11.11 shows a small graph drawn on the torus. The arrows
indicate a sort of gluing, so if an edge seems to go off the boundary, it just comes
back on across the way. We want to have flat representations of surfaces so that
we can more easily embed graphs on them—it gets confusing to have to draw a lot
of dotted lines.

Faces of a graph can only be defined relative to an embedding, so what the
faces are depends on how the graph is drawn and on what surface it is drawn. The
faces of a graph embedding are the regions of the surface carved out by the graph,
so for the graph G embedded on the surface S, the collection of faces is S \G.
(Notice now that Theorem 11.3.1 does not mention on which surface the graph G
is embedded, nor does its proof invoke planarity.)

We will only consider cellular embeddings, in which every face is mooshable
into a disk. (In other words, faces cannot have punctures or doughnut holes.) This
is the most common type of embedding studied in topological graph theory. The
embedding depicted in Figure 11.11 is, in fact, cellular and has exactly one face,
as shown in Figure 11.12.

t t

t

b

b

b

r

r

l

l

rl

Figure 11.12. The face of the Figure 11.11 embedding is a cell, which we can see by
assembling its four parts into a whole. The top halves of the arrowed edges are marked t,
and likewise the bottom halves are marked b, the left halves are marked l, and the right
halves are marked r.
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Figure 11.13. A Möbius band has a single twist.

Figure 11.13 gives another example of a surface, perhaps familiar to you, along
with its standard flat representation.

Short activity:

1. Attempt to embed K5 on the torus. Is it possible?

2. Attempt to embed K5 on the Möbius band. Is it possible?

3. Attempt to embed K3,3 on the torus. Is it possible?

4. Attempt to embed K3,3 on the Möbius band. Is it possible?

5. Attempt to embed the Petersen graph on the torus. Is it possible?

6. Attempt to embed the Petersen graph on the Möbius band. Is it possi-
ble?

If you enjoyed this activity, you may also like playing with http://demonstrations.
wolfram.com/ToroidalWrapping/.

There is a classification of topological surfaces inwhichwemeasure howmany
holes (like a torus) and how many twists (like a Möbius band) the surface has.
A summary of this classification may be found at http://www.math.ohio-state.
edu/~fiedorow/math655/classification.html, and details may be found in the pa-
per http://new.math.uiuc.edu/zipproof/zipproof.pdf.

So, one of the big questions in topological graph theory is how to determine on
which surfaces a graph can be cellularly embedded. We do have a characterization
for which graphs are planar and which aren’t; this is Kuratowski’s theorem, which
requires terminology beyond this text to state correctly and mathematics far be-
yond this text to prove. In essence, it states that every nonplanar graph has a copy
of K5 or K3,3 in it in some way. There is a similar list of forbidden smallest graphs
for the torus, though at last count (January 2016) it was 17,473 graphs long. For
further study of topological graph theory, see Topological Graph Theory by Gross
and Tucker.

http://demonstrations.wolfram.com/ToroidalWrapping/
http://www.math.ohio-state.edu/~fiedorow/math655/classification.html
http://new.math.uiuc.edu/zipproof/zipproof.pdf
http://demonstrations.wolfram.com/ToroidalWrapping/
http://www.math.ohio-state.edu/~fiedorow/math655/classification.html
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11.12 Bonus Check-Yourself Problems
Solutions to these problems appear starting on page 618. Those solutions that model a
formal write-up (such as one might hand in for homework) are to Problems 2, 7, and 9.

1. Compute the thickness of K6.
2. Check out Figure 11.14 to see an image
of an annulus (or washer).

Figure 11.14. An annulus. Or a washer.
Who knows?

(a) Draw a few graphs on annuli (that’s
the plural of annulus). The rule here
is that you have to cover the annu-
lus edges with graph edges (and ver-
tices) so that you don’t have partial
faces.

(b) Try out Euler’s formula on these
graphs. Does it still hold? If not,
does some other formula hold?

(c) Prove your conjecture.

3. Is the complement of any star graph pla-
nar? Are all complements of star graphs
planar? Justify your responses.

4. Can there exist a planar graph with de-
gree sequence(1,2,2,2,3,5,5,6)?

5. Could the graph at left in Figure 11.15
be planar?

6. The graph at right in Figure 11.15 is def-
initely planar. How many faces does a
planar drawing of this graph have?

Figure 11.15. Two random graphs courtesy ofMathematica.
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7. Prove that a connected planar graph has
exactly one face if and only if it is a
tree.

8. How many vertices must a 4-regular
planar graph with 12 faces have?

9. Can a planar graph with nine vertices
and all faces of size 4 be k-regular for
any k?

10. Compute the thickness of the nonplanar
Grötzsch graph, shown in Figure 11.16.

Figure 11.16. I am named after Herbert
(Camillo) Grötzsch.

11.13 Problems about Planar Graphs

1. Without looking at David Eppstein’s
page of many proofs of Euler’s formula,
make your own proof by using induc-
tion on the number of edges.

2. In Section 11.6, it was proved that
|E(G)| ≤ 3|V (G)|−6. Under what con-
ditions is |E(G)|= 3|V (G)|−6?

3. Prove that there is no graph with six ver-
tices, ten edges, and all vertices of the
same degree.

4. The graph GL at left in Figure 11.17 is
planar. How many faces does a planar
drawing of GL have?

5. The graph GR at right in Figure 11.17 is
planar. How many faces does a planar
drawing of GR have?

6. Suppose a connected planar graph P has
every vertex of degree at least 3, and ev-
ery face of size at least 3. Can P have
fewer than six edges?

GL GR

Figure 11.17. Two planar graphs.
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7. Suppose a connected planar graph P has
every vertex of degree at least 3 and ev-
ery face of size at least 3. Can P have
exactly seven edges?

8. Prove that the graph shown in Fig-
ure 11.18 is nonplanar.

Figure 11.18. See how nonplanar I am?

9. The girth of a graph is the length of
its smallest cycle. Use this to general-
ize the statements and proofs of Theo-
rems 11.6.2 and 11.6.3.

10. Use the results of the previous problem
to generalize the statements and proofs
of Theorems 11.6.1 and 11.6.4.

11. Compute the thickness of K3,3.

12. Compute the thickness of the Petersen
graph.

13. Give an example of a 4-regular planar
graph and an example of a 4-regular
nonplanar graph.

14. Prove that the graph shown in Fig-
ure 11.19 is nonplanar.

15. Compute the thickness of K4,4.

Figure 11.19. Sort of symmetric and
nonplanar all the way.

16. Generalize Theorem 11.6.6 slightly:
prove that every simple, planar, con-
nected graphG has at least three vertices
of degree no more than 5.

17. Might the graph in Figure 11.20 be
planar?

b

f

h

d
g

i

a

c
e

Figure 11.20. Am I planar?

18. The goal of this problem is to use Eu-
ler’s formula to list all possible regular
polyhedra. (In this case, regular means
that every face has the same number of
edges and every vertex has the same de-
gree.)



11.13. Problems about Planar Graphs 367

(a) Convert the idea of a regular poly-
hedron into a graph in some way.

(b) Find an upper bound on the possi-
ble degrees of the vertices.

(c) Find a lower bound on the possi-
ble degrees of the vertices.

(d) Find a relationship between the
number of vertices and the num-
ber of edges.

(e) Find a relationship between the
number of faces and the number
of edges.

(f) Now use Euler’s formula and
solve some equations.

(g) Find graphs, and polyhedra, that
correspond to your solutions.

19. Write a story proof of Euler’s formula
involving ducks.

20. Prove that the graph shown in Fig-
ure 11.21 is nonplanar.

Figure 11.21. I am totally nonplanar.

21. Prove that if G has at least 12 vertices
and is simple, then G and G cannot both
be planar. (Recall that G is the comple-
ment of G. See page 84 for the defini-
tion.)

22. Prove that if G has 11 vertices and is
simple, thenG andG cannot both be pla-
nar.

23. Can you find a graph with seven ver-
tices such that G and G are both planar?

24. Is the complement of a 6-cycle planar?

25. Is the complement of an 8-cycle planar?

26. Which wheel graphs, if any, have planar
complements?

27. Find two examples of nonplanar graphs
where every vertex has either degree
3 or degree 4 (and yes, both must be
present).

28. The Wagner graph, shown in Fig-
ure 11.22, is nonplanar. What is its
thickness?

Figure 11.22. People sometimes call
me a Möbius ladder.

29. Consider the graphs in Figures 10.2,
10.3, and 10.4. Which are planar and
which are nonplanar? Justify.

30. Find two examples of planar graphs
where all vertices except one have the
same degree.

31. Challenge: Find four infinite fami-
lies of planar graphs where each fam-
ily member has all but one vertex of the
same degree.
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32. Is the Royle graph shown in Fig-
ure 11.23 planar or not? Justify your
conclusion.

Figure 11.23. Royally Royle.

33. How many faces does a planar drawing
of a simple connected graph with 8 ver-
tices and 17 edges have?

34. How many faces does a planar draw-
ing of a simple connected graph with 12
vertices and 32 edges have?

35. Suppose G is planar, every vertex has
degree at least 3, and every face is ei-
ther 5-sided or 6-sided. What is the least
number of 5-sided faces possible?

11.14 Instructor Notes
This chapter is written with a highly discovery-based approach to planarity and Euler’s
formula. For the first class meeting, have students jump right in—ask them to read Sec-
tion 11.1 and then work in groups on the planarity exercises in Section 11.2. They will
likely complete all the problems with enough time remaining to present their results to
their classmates. Assign students to read Section 11.3 and do the Check Yourself prob-
lem as preparation for the next class. (Note that this assigns them to play Planarity at
http://planarity.net!)

For the second class day, I suggest an approach that is unusual and perhaps a bit daring
or even unwise: you present a disguised proof (or story) of Euler’s formula without stating
the theorem and then elicit a more mathematical statement and proof from the students.
(Tips are given below.)

An alternate approach is to draw a planar graph on the board and ask students to draw
their own planar graphs individually or in pairs. Have them draw a bunch of randomly
placed vertices and then add edges without allowing any to cross. Next, ask them to count
the vertices and edges and faces, and ask them to compute v−e+ f . Get them to report so
that you build up a table, and so that it appears surprising when one row of the table turns
out to be all 2s. Then state the theorem.

Every class deserves its own customized version of a story proof. For this reason,
you may wish to forbid your students from ever reading Section 11.4; or, you may wish
to assign your students to read it well after you have treated the customized version of the
proof in class. Sometimes there are themes or running jokes in a class that are obvious
candidates for inclusion in the story structure. At other times, one may ask for some
elements to use and run with them. (Having pirates, dragons, and a sea battle all at once
was somewhat challenging for me because the battle was to take place away from the
island. The request for sea pirates and a space attack was particularly difficult for me to
honor. In comparison, the Evil Nomadic Horde was an easy villain to incorporate in a
proof.) These elements form the frame of the story. Begin by drawing a planar graph on

http://planarity.net!
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the board, on top of an island or what have you, and start placing labels in faces. Some
labels will suggest themselves from the story frame or pop up in your mind, but you might
(I usually do) ask the students to tell me what is (kept in this room of the castle, grown
in this field, protected in this prison). Whatever disaster or attack occurs can also be
orchestrated by the students. On request, they will tell you which walls are crushed and in
what order, and an eraser can be used to remove most of each of these walls. Sometimes
a student will suggest removing a wall that would disconnect the graph, but I claim this
is not possible because of (water pressure, invader superstition) and mention it casually
rather than making a big deal of it. The students can be quite helpful in knowing in what
order to restore the walls.

At the end of this exercise, I ask the students what theorem we have proved and what
the proof is. This has varying degrees of success, and depending on how much time re-
mains in class, one may take different approaches. Here are a few possibilities.

1. Ask the students to mention what they think are salient mathematical facts. They
will often notice the reduction to a spanning tree. It is harder for them to notice pla-
narity of the graph because it’s somuch a part of the story, but doing the Section 11.2
planarity exercises ahead of time may subtly call planarity to their communal atten-
tion. It probably takes about half an hour to elicit the bulk of the proof and theorem
statement from the students.

2. Tell the students to count the number of vertices, edges, and faces of the graph.

3. Some student volunteers that the proof is of Euler’s formula (and names it straight-
forwardly).

After the statement of Euler’s formula has come out, be sure to review the story in
context of proving Euler’s formula. That is, repeat the basics of the story and translate
each into a statement that is a step in the proof.

Such a story/proof review is an excellent way to begin the third class. As preparation
for that class, ask students to read Sections 11.5 and 11.6 (and perhaps Section 11.4) and
do the Check Yourself problems. Ask for questions, and then start students working in
groups on the problems of Section 11.8. They will likely take an entire class period.



http://taylorandfrancis.com


Chapter 12

Graph Traversals

12.1 Introduction and Summary

A traversal is a way of visiting every desired place. (To traverse means to go across
or through.) For example, a traversal of a house would be a path that includes every
room. We are concerned with graph traversals… because we are studying graph
theory. Sometimes we want to traverse every edge of a graph exactly once, but we
don’t mind visiting some vertices multiple times. This is called an Euler traversal.
Sometimes we want to traverse every vertex of a graph exactly once (in which case
we cannot traverse any edge more than once). This is called a Hamilton traversal.
For each sort of traversal, we call it a circuit if we need to end up back where we
started, and a trail or path otherwise. We are going to develop conditions on a
graph that tell us when it has an Euler circuit or trail. There are almost no useful
conditions on a graph that tell us when it has a Hamilton circuit or path! This is all
related to a very practical problem called the Traveling Salesperson Problem (TSP
for short)—the problem is for the traveling salesperson to visit all the cities in an
area to sell stuff and to find the shortest route to save on fuel. Le sigh; there is no
good general solution. Strangely enough, there is a nice way to find the shortest
route between any two particular points, and so we will learn about that.

12.2 Try This! Euler Traversals

Just to keep everything clear, let us define our terms.
Definition 12.2.1. An Euler traversal visits every edge of a graph exactly once and
may visit some vertices of the graphmore than once. (Most Euler traversals are not
paths because of repeated vertex visitation, but they are trails.) An Euler circuit
is an Euler traversal whose starting and ending vertices are the same.

Figure 12.1 gives an example of an Euler traversal that is not an Euler circuit and
an example of an Euler circuit. The edges are numbered in the order a particular

371
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Figure 12.1. At left, a graph with an Euler traversal; at right, a graph with an Euler circuit.

traversal visits them. Notice that the order really does matter! If we tried to visit
the edges of the left-hand graph in Figure 12.1 by starting with 4–2–3, we could
never reach edge 1; similarly, in the right-hand graph a trail beginning with 1–2–
7–6–5–9 will end without reaching edges 3, 4, or 8.

Now it is time to experiment.

1. Draw six different graphs, each with a different number of vertices. Check
to see whether each graph has an Euler circuit or not. Do any of your graphs
have an Euler traversal but not an Euler circuit?

2. Draw a graph that has an Euler circuit.

3. Draw a graph that does not have an Euler circuit but does have an Euler
traversal.

4. Draw a graph that has neither an Euler circuit nor an Euler traversal.

5. Conjecture a necessary condition for a graph to have an Euler circuit (i.e., if
a graph has an Euler circuit, this condition must hold).

6. Make a conjecture about what property (or properties) a graph needs to have
(or not have) for it to be guaranteed to have an Euler circuit.

7. Make similar conjectures about Euler traversals.

8. Try to prove your conjectures.
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Figure 12.2. Map of Kaliningrad near the city center.

12.3 Euler Paths and Circuits

Hey! You! Don’t read this unless you have worked through the problems in Sec-
tion 12.2. I mean it!

The river Pregol flows through Kaliningrad, Russia. Back in the day, it was the
city of Königsberg, Prussia. Legend has it that there were two islands in the Pregol
and seven different bridges in Königsberg that joined these islands to the banks of
the river (and the banks of the river to each other). The Bridges of Königsberg
problem asks whether one can walk over each of the seven bridges and return to
one’s starting point without crossing any bridge twice. As is so often the case,
legend got things a bit wrong because one of those islands is actually an island on
which one might walk (it contains a sculpture park), but the other is about 4 km
long and is the first in a series of four long islands about 30 km in total length
that split the Pregol into north and south branches. Additionally, all seven of the
bridges in question were blown up in World War II (some were rebuilt). Near the
little island, things currently look as in Figure 12.2. Two of those river-spanning
lines might not be bridges, but there are certainly structures there that go across
the Pregol.
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Figure 12.3. Graph of Kaliningrad bridges near the city center.

Wemight as well model this situation as a graph, shown in Figure 12.3. Notice
that when there is more than one route between two locations, we draw more than
one edge between the location-representing vertices.

Perhaps your experimentation in Section 12.2 has led you to conjecture that
whether an Euler circuit or traversal exists is related to the degrees of the vertices
of the graph. If so, you are correct. You would also be correct if you suspected
that Euler circuits and traversals are named after someone. In this case, it’s the
famous mathematician Leonhard Euler. He lived in the 1700s and was the first to
officially solve the Bridges of Königsberg problem.

Theorem 12.3.1. (1) A connected graph G has an Euler circuit ⇐⇒ every
vertex of G has even degree.

(2) A connected graph G has an Euler traversal but not an Euler circuit
⇐⇒ G has exactly two vertices of odd degree.

Part of the proof of Theorem 12.3.1 is straightforward, and part is a bit tech-
nical. So, before diving in, we will give an example of how the proof works to
produce an Euler circuit in an all-vertices-of-even-degree graph.

Example 12.3.2. We will build an Euler circuit on a graph that has all vertices of
even degree. The process is shown in Figure 12.4. We start at some vertex (shown
in grey) and walk arbitrarily around the graph until we run out of edges to walk
along, and we number our edges as we go. In this case, we show the walk in grey
and label our edges 1–9. Then we look around for a vertex we have already visited
that has some unused edges. Here, we pick the vertex between edges 1 and 2.
(Again, this vertex is shown in grey.) We walk arbitrarily along unused edges
until we run out of edges again. This time, we walked along three new grey edges
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Figure 12.4. Building an Euler circuit in a graph with all even vertices.

(and our old edges are shown in light grey). Now, we incorporate this new walk
into our enumeration by using our old numbering until we get to the start vertex of
the new walk, number along the new walk, and then increase the labels on the rest
of the old walk to match. In Figure 12.4, this is shown in the fourth diagram, and
the numbers 2-3-4 are inserted after edge 1, while edges 2–9 become relabeled as
5–12. There are some edges we have not yet visited, so we find a second vertex
we have already visited that has some unused edges (here, between edges 5 and
6), walk along the remaining unused edges, and then incorporate the newest walk
into the old numbering.
Proof of Theorem 12.3.1: (⇒1) We give a direct proof. Suppose G has an Euler
circuit. Let us call the circuitC and call its start/endpoint v. Look at some generic
vertex, which we will call w. Is the degree of w even or odd? As we travel along
C, each time we encounter w, we go along an edge when we approach w and an
edge when we leave w. Thus, each visit to w contributes 2 to its degree. (Even if
we travel along a loop, we count 2 towards the degree ofw.) Therefore, w has even
degree inC, and because the edges of G andC are the same, w has even degree in
G. We chose w arbitrarily, so every vertex of G has even degree.
(⇐1) Our proof combines constructing an algorithmwith contradiction to show the
algorithm works. Suppose that every vertex of G has even degree. Pick any vertex
ofG (let’s call the onewe picked v) and start meandering around the graph, marking
edges as we visit them (so that we do not revisit an edge). Keep meandering until
we run into a vertex that has no unvisited edges. Either we have just formed a
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circuit (though possibly not an Euler circuit) and landed at v, or we have not formed
a circuit and instead landed at some other vertex z. Suppose we have landed at
z. Then, each time we passed through z we used an even number of edges, and
arriving at z (but not leaving z) we used a single edge. Therefore, z must have odd
degree, which is a contradiction. So instead of landing at z, we must have instead
landed at v. Landing at vmeans we have formed a circuit. If this is an Euler circuit,
we are done. If not… this means that there are edges of G not in our circuit.
Choose a vertex a on our circuit that has unused edges—if there is not one on our
circuit, then the graph must be disconnected—and repeat the procedure given at
the start of this paragraph to construct a circuit of unused edges that begins and
ends at a. This new circuit can be melded with our old circuit as follows. Start at
v, go along Old Circuit to a, go along the entirety of New Circuit, and continue
along Old Circuit from a back to v. Again, the melded circuit might be an Euler
circuit (in which case we’re done) or it might not be an Euler circuit (in which case
we have more to do). If it’s not an Euler circuit, go to and repeat until no edges
of G are unused. Because G is finite, we will eventually run out of edges. (That
is, our algorithm terminates.)
(⇒2)We give a direct proof. Suppose G has an Euler traversal but not an Euler
circuit. Thus, G has a trail that includes all edges of G. By the reasoning in (⇒1),
we know that every vertex of G, except perhaps those beginning and ending the
traversal, must have even degree. Now consider the start of the traversal, at vertex
v. As we leave v, we mark one edge. Each time we return to v, we leave it again (as
otherwise it would not be the start of a traversal that is not a circuit), and this uses
two more edges. In total, v must have odd degree. The same reasoning applies to
the ending vertex of the traversal, and it is the other vertex of odd degree, for a
total of exactly two vertices of odd degree.
(⇐2) We construct a traversal as follows. G has exactly two vertices of odd degree;
call them v1 and v2. Add a fake edge to G joining v1 and v2, so that Gfake has all
vertices of even degree. Therefore, by the previous theorem Gfake has an Euler
circuit. By its circuitous nature, the Euler circuit may be considered to start at any
vertex with any incident edge (just go once ’round the circuit from there), so we
may as well assume that it begins with v1 and then travels along the fake edge. If
we delete the fake edge from the circuit, we are left with a trail that visits all edges
of G, begins with v2, and ends with v1. This is an Euler traversal. �

An actual, real-life use for Euler traversals in biology is presented in Bonus
Section 12.9. If you would like to practice finding Euler circuits, go to http:
//digitalfirst.bfwpub.com/math_applet/euler_curcuit.html where there are four
sample graphs for your circuit-finding pleasure.

http://digitalfirst.bfwpub.com/math_applet/euler_curcuit.html
http://digitalfirst.bfwpub.com/math_applet/euler_curcuit.html
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Check Yourself

Make sure you understand Theorem 12.3.1 by doing these problems.

1. Does the graph in Figure 12.3 have an Euler traversal? … an Euler circuit?

2. Does K5 have an Euler traversal? … an Euler circuit?

3. Does K6 have an Euler traversal? … an Euler circuit?

4. Which cycle graphs have Euler traversals? … Euler circuits?

5. Challenge: Draw three graphs with the same number of vertices, that differ from
each other by at most two edges, and where one graph has an Euler circuit, one has
only an Euler traversal, and one has no Euler traversal.

12.4 Dijkstra’s Algorithm, with sides of Hamilton Circuits
and the Traveling Salesperson Problem

Anatural question that ought to arise in your head after studying Euler traversals is,
“Does anyone study graph traversals that visit each vertex of a graph but perhaps
not all of its edges?” Answer: Yes.

Definition 12.4.1. AHamilton traversal visits every vertex of a graph exactly once.
A Hamilton circuit is a Hamilton traversal whose starting and ending vertices are
adjacent. (Every Hamilton circuit is a cycle.)

The mathematician after whom Hamilton traversals are named is William
Hamilton, who lived in the 1800s. Because he was around a full century after
Euler, we always study Hamilton traversals after studying Euler traversals. (Just
kidding.) There are some theorems of the form if G has (some property), then G
has a Hamilton circuit, but most are boring or impractical—the (some property)
part is generally as difficult to verify as it is to just look atG and figure out whether
it has a Hamilton circuit by hand. So we will present only one of these theorems
here; it was proved by Dirac in 1952.

Theorem 12.4.2. Let the simple graph G have n ≥ 3 vertices. If the degree of
every vertex is more than n

2 , then G has a Hamilton circuit.

We defer the proof to Bonus Section 12.11.
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Notice that Theorem 12.4.2 requires that a graph have lots and lots of edges
compared to the number of vertices; however, plenty of graphs with not so many
edges still do have Hamilton circuits. The situation is somewhat depressing.

To make our outlook more bleak, let’s consider graphs with weights on their
edges. Now we not only want to know whether a graph has a Hamilton circuit,
but we want to find the shortest Hamilton circuit. This is called the Traveling
Salesperson Problem, or TSP for short. (The problem has nothing to do with tea-
spoons.) And to make our situation downright painful, guess what? It turns out
that TSP has been proven to be as computationally difficult (from the standpoint
of algorithm efficiency) as any known problem. (That’s a friendly way of say-
ing that it’s NP-complete without explaining what NP-complete means, as that
concept is beyond the scope of this book.) Worst of all, TSP has lots and lots of
practical applications (public transportation routes, plans for moving heavy equip-
ment among farms that share it, directing a factory machine to apply a bunch of
rivets, …), so the world does need to deal with it. And thus, there is a website
(http://www.math.uwaterloo.ca/tsp/) that is an authoritative source on practical
advances related to TSP. Go there. It’s cool.

Let’s get over the horror of unsolved and computationally complex problems
by instead addressing a real-world problem that not only has been solved but has a
solution we can handle ourselves. We will spend the rest of this section cogitating
on how to find the shortest path between two vertices on an edge-weighted graph.
The algorithm we will use was found by Edsger Dijkstra, who not only has the
letters i- j-k in a row in his name but is also Dutch. (His name is pronounced
d eye kstra in English.) Powerfully, this algorithm finds the shortest distance from
a given vertex to every other vertex in a graph. Here we go:

How to find the shortest path between two vertices using Dijkstra’s algorithm:

1. Get ready by locating at least two colored pens, finding a graph that
hasweighted edges, and labeling the verticeswith letters in one color.

2. Circle the start vertex s.
3. Look at the weights of the edges incident to s. For the smallest
weight, go along one edge corresponding to that weight and tag the
adjacent vertex with (we,s)—in a different color than used for la-
beling the vertices—where we is the weight of the edge connecting
the vertex to s. This means that the new vertex is tagged with the
shortest distance from s and the previous vertex in the shortest path
(in this case, it’s just s).

http://www.math.uwaterloo.ca/tsp/


12.4. Dijkstra’s Algorithm … Hamilton Circuits and the Traveling Salesperson Problem 379

4. Consider all the tagged vertices as a collective. For each tagged ver-
tex v, compute the shortest distance from s to each of its untagged
neighbors. That is, add the weight of each incident edge to the num-
ber in v’s tag to produce a list of distances for the vertex, and select
the smallest for each vertex.

5. Determine the smallest distance d among all the lists for all the tagged
vertices.

6. Each occurrence of d corresponds to a tagged vertex connected to
an untagged vertex. Tag each of these untagged vertices with (d,v),
where v is the label on the corresponding tagged vertex. (If an un-
tagged vertex could have two tags (d,v1) and (d,v2), it does not mat-
ter which tag is selected.)

7. If there are untagged vertices, go to step 4.

The result is that every vertex in the graph is tagged with the length of the
shortest path from s as well as the previous vertex in that shortest path. In order to
determine the shortest path from s to any particular vertex, simply follow the tags
backwards from that vertex to s.

Example 12.4.3. We will find the shortest distance from a circled start vertex s to
a boxed end vertex e using Dijkstra’s algorithm. Each sub-diagram of Figure 12.5
gives a list of possible tags for untagged neighbors of tagged vertices, and current
tags are shown in teal.

Lest you think Dijkstra’s algorithm does not solve a real-world problem, go to
Google Maps and find the shortest route from Boston to Philadelphia. Then revise
your conception.

Example 12.4.4. We will find the shortest distance from a start vertex s to every
other vertex of a graph using Dijkstra’s algorithm. Each step of the algorithm is
shown in Figure 12.6, which uses the same markings as in Example 12.4.3.

For other examples ofDijkstra’s algorithm in action, check out https://www-m9.
ma.tum.de/graph-algorithms/spp-dijkstra/index_en.html, and http://students.
ceid.upatras.gr/~papagel/project/kef5_7_1.htm. (These use directed graphs to
account for one-way traffic.)

A proof that Dijkstra’s algorithmworks does not provide any more insight than
an informal explanation, so we will not provide a proof here. Instead, consider that

https://www-m9.ma.tum.de/graph-algorithms/spp-dijkstra/index_en.html
http://students.ceid.upatras.gr/~papagel/project/kef5_7_1.htm
https://www-m9.ma.tum.de/graph-algorithms/spp-dijkstra/index_en.html
http://students.ceid.upatras.gr/~papagel/project/kef5_7_1.htm
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Figure 12.5. Dikjstra’s algorithm finds the shortest path from s to e.

at each iteration, Dijkstra’s algorithm examines all possible paths from s to nearby
unmarked vertices. Among these possible paths, the algorithm marks the set of
shortest paths. Marking the entire set of shortest paths eliminates the possibility
that the order in which vertices are marked will make a difference in the total
length of the paths. And, checking all possible paths means that the algorithm is
exhaustive and so it cannot have missed a shorter way to reach a given vertex. (If
this paragraph did not make sense to you, review Example 12.4.4 and then reread
the paragraph.)

While it is tempting to try it, we cannot use Dijkstra’s algorithm to solve TSP.
The temptation is to pick two vertices and find the shortest route between them,
then delete that route from the graph and find the shortest route remaining, and
then join the two routes into a Hamilton circuit. However, the two shortest routes
might not cover all the vertices. Worse yet, deletion of the shortest route might
disconnect the graph so that there is no route available to complete the circuit.
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Figure 12.6. Dijkstra’s algorithm finds the shortest path from s to every other vertex.

Check Yourself

These exercises will help you understand how to execute Dijkstra’s algorithm, so please
do them.

1. In the third subdiagram of Figure 12.5, why are there two labels (4,d)?

2. In the first list of distances computed by Dijkstra’s algorithm, how many tags are
present?

3. In the third subdiagram of Figure 12.5, there are two labels (5, f ). Neither is placed
on the graph in the following step… so why is only one of them left in the list in
the fourth subdiagram?
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Figure 12.7. I desire Dijkstra.

12.5 Try This!—Do This!—Try This!

It’s time for you to try using Dijkstra’s algorithm yourself.

1. Use Dijkstra’s algorithm to find the shortest path from s to every other vertex
in the graph shown in Figure 12.7.

2. Perhaps you recall from Example 1.3.2 that the Restaurant Quatre-Étoile
offers prix fixe meals and that one of the available dishes is Foie Gras Falafel
with Fig Fondue. The local geese have heard about this abomination (it is
made from marinated goose liver!!), and in solidarity a coalition of ducks
has joined them to protest the restaurant! However, they are not very fast
walkers (they can’t fly while holding signs). Can you help them by finding
the shortest route from the pond to the restaurant? A map of the area is
shown in Figure 12.8.

Now you should come together as a large group. Select four people to go to
the front of the room (bonus if there are four whose first names begin with A, B,
C, and D) and two to write on the board.
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Figure 12.8. A map of the area near the duck/goose pond and the Restaurant Quatre-
Étoile.
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A, B, C, and D should stand in a row at the front, left to right. One of the
board writers should record this ordering (ABCD). Now, two of the A, B, C, D
people who are next to each other should switch, and a board writer should record
the new ordering. Your communal goal is to see if you can reach every possible
ordering, with no repeats, by just switching two next-to-each-other people… again
and again. (Such a switch is called an adjacent transposition.) Go for it—and
record the orders as you go!

After ten minutes or so of this fun, whether or not you have achieved your goal,
break into groups to work on the following problems.

3. How many possible orderings of A, B, C, D are there?

4. What is the connection of this situation to graph theory? That is, there is a
graph here, so…

(a) … what are the vertices of this graph? (How many will there be?)
(b) … which vertices are adjacent to form edges of this graph?
(c) … what are the degrees of the vertices?
(d) … what structure do you seek in this graph?

5. Construct the graph you have just described.

6. Using this graph, try to achieve your list-of-possible-orderings goal.

12.6 Two More Examples

Example 12.6.1 (of building an Euler circuit). Figure 12.9 shows the process of
building an Euler circuit from a graph. (A) First, we pick a start vertex and travel
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Figure 12.9. Building an Euler circuit in a graph with all even vertices.
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Figure 12.10. Executing Dijkstra’s algorithm on a small graph.

around the graph until we end where we started, labeling as we go. (B) Seeing
no unused edges at our start vertex, we pick the next available vertex with unused
edges and travel from there; we then incorporate this new path in our number-
ing. (C) We repeat the process used at (B) and exhaust the edges of the graph.
(D) Finally, we present the original graph with complete Euler circuit.

Example 12.6.2 (of executing Dijkstra’s algorithm). Figure 12.10 shows the process
of finding the distance from one vertex to all others of a small graph. The tags at
each step are shown in teal.

12.7 Where to Go from Here

Bonus Section 12.9 gives a practical application of Euler traversals to biology.
Unsurprisingly, Euler traversals are used throughout computer science, and vari-
ants on Euler traversals are studied in discrete mathematics research. While Euler
traversals are useful, the study of Euler traversals themselves is essentially com-
plete (and you have completed it), so they are more of a tool than a direction of
research.

On the other hand, Hamilton traversals and TSP are active areas of research.
Research articles on the existence of Hamilton traversals for particular classes of
graphs are frequently published in discrete mathematics journals. For lots more
on TSP, see http://www.math.uwaterloo.ca/tsp/. Some decent approximations
to TSP solutions are shown at http://demonstrations.wolfram.com/AlgorithmsFor
FindingHamiltonCircuitsInCompleteGraphs/. The website https://www-m9.ma.
tum.de/games/tsp-game/index_en.html will let you try to make your own solu-
tions for TSP examples, and describes several algorithms for generating solutions.

Dijkstra’s algorithm is fairly efficient, so it is often used in practice for applica-
tions such as IP routing… but it is not fast enough to be used in Google Maps. (See

http://www.math.uwaterloo.ca/tsp/
http://demonstrations.wolfram.com/AlgorithmsForFindingHamiltonCircuitsInCompleteGraphs/
https://www-m9.ma.tum.de/games/tsp-game/index_en.html
http://demonstrations.wolfram.com/AlgorithmsForFindingHamiltonCircuitsInCompleteGraphs/
https://www-m9.ma.tum.de/games/tsp-game/index_en.html
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http://googleblog.blogspot.com/2007/11/road-to-better-path-finding.html for
verification.)

The graph you constructed in Section 12.5 is the vertices and edges of the
permutahedron. It is one of a family of permutatopes; they are studied in abstract
algebra classes and in convex geometry classes. And they are cool.

Credit where credit is due: The idea for the class activity involving the permutahedron
was contributed by Karl Schaffer. Section 12.9 was adapted from [9], and Section 12.10
was informed by [2]. The Jim addressed on page 386 is James McCoy of the Starship
Enterprise. Bonus Check-Yourself Problem 7 was suggested by Tom Hull. Problems 26
and 27 were donated by Karl Schaffer. Problem 31 was inspired by an EPS-ungroup bug
combined with the insight of Ollie Levy into duck social networking; Problem 35 was
inspired by Sam Oshins’s character who was inspired in turn by this book (see page 148).

12.8 Chapter 12 Definitions

Euler traversal: A trail that visits every edge
of a graph exactly once and may visit
some vertices of the graph more than
once. It is named after Leonhard Euler
(1707–1783), who is regarded by many
as one of the greatest mathematicians of
all time.

Euler trail: An Euler traversal that is not a
circuit.

Euler circuit: An Euler traversal whose
starting and ending vertices are the same.

Hamilton traversal: A trail that visits every
vertex of a graph exactly once. It is
named after William Rowan Hamilton
(1805–1865), whomay be best known for
carving an equation into a bridge.

Hamilton path: A Hamilton traversal that
is not a circuit.

Hamilton circuit: A Hamilton traversal
whose starting and ending vertices are
adjacent.

Hamilton cycle: A Hamilton circuit.

Traveling Salesperson Problem: The prob-
lem of finding the shortest Hamilton cir-
cuit in a graph.

TSP: Abbreviation for Traveling Salesper-
son Problem.

adjacent transposition: A permutation that
switches two elements that are next to
each other in an arrangement.

12.9 Bonus: Digraphs, Euler Traversals, and RNA Chains

Proteins are encoded in living cells with ribonucleic acid (RNA) chains. There are
four nucleobases used in this encoding, namely, adenine (A), cytosine (C), guanine
(G), and uracil (U). Thus, an RNA chain may be denoted by a string of letters
from the alphabet A, C, G, U. There are some rules for the use of this alphabet;
the nucleobases come in triples called codons, and there is one codon (AUG) that

http://googleblog.blogspot.com/2007/11/road-to-better-path-finding.html
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always starts a chain and three (UAA, UAG, UGA) that can end a chain. (All
chains given in this section were constructed from a list of actual codons.) One
hypothetical RNA chain would be AUGCAGCCUAUGGGAAAAUAG. Almost
all RNA chains are unpronounceable.

In order to sequence an RNA chain, biologists hit it with one or more enzymes
to break it into shorter bits. (They can’t just read the letters off of the chain. Please
don’t ask why. I’m a mathematician, not a biologist, Jim!) One of these enzymes
breaks a chain after every G, and another one breaks a chain after every C and
after every U. Our hypothetical RNA chain would be broken into AUG, CAG,
CCUAUG,G,G, AAAAUAGby theG-enzyme and intoAU,GC,AGC, C, U, AU,
GGGAAAAU, AG by the CU-enzyme. But of course, in reality these chain bits
would not be in a nice order; they would be all jumbled together. Themathematical
task is to deduce the RNA chain sequence from the enzyme-broken bits. Naively,
there are 6! = 720 different chains that could correspond to our G-broken example
and 8!= 40,320 different chains that could correspond to our CU-broken example.
We can narrow this down quite a bit.

First, notice that we can determine the end of the chain: In our example, one
of the CU-bits ends with G. That has to be the end bit of the chain because the CU-
enzyme didn’t break it. More generally, there will be at most one CU-bit ending
in A or G and at most one G-bit ending in A, C, or U. At worst, there will be one
of each type of bit ending in A, but because both bits have to end the chain, one
will be a sub-bit of the other and all is well.

Now for the graph theory. We’ll take each G-bit and break it up with the CU-
enzyme; so, for example, CCUAUGbecomes C, C, U, AU, G. Similarly, we’ll take
each CU-bit and break it up with the G-enzyme; so, for example, AGC becomes
AG, C. We will make a directed edge corresponding to each G-bit and each CU-
bit by only paying attention to the first and last resulting bits of the double-broken
sequences, so the examples from the previous two sentences become C CCUAUG−→ G
and AG AGC−→ C. Then, we glue this all together into a directed graph. For the hy-
pothetical RNA chain we’ve been using here, we obtain the digraph shown in Fig-
ure 12.11. (Notice that we do not include the fragments that are only single-broken
and not double-broken.) Then we try to find an Euler traversal of the digraph that
ends with the known end-bit. Each Euler traversal can be “read” by listing the edge
labels in the order we traverse them, eliminating the first/last letters in common.
If we are lucky, there is only one Euler traversal. For the digraph of Figure 12.11,
there are multiple Euler traversals—we must start our reconstruction with AUG,
but could then continue as AUGGGAAAAUAGCCUAUGCAG, as AUGCAGC-
CUAUGGGAAAAUAG, or as AUGCCUAUGGGAAAAUAGCAG.
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AU

G
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AAAAU

AUG

CAG

AAAAUAG

AGCGC

GGGAAAAU

CCUAUG

Figure 12.11. The digraph corresponding to our hypothetical RNA chain.

Short activity:

1. Chop up these chains with the G-enzyme.

(a) AUGGCUCACUAUGGCAUACUCUAA.
(b) AUGUUGUUCCAAAGUUGA.
(c) AUGCGACCCGUUACCAAGUAG.

2. Start over and chop the three chains from the previous problem, but use
the CU-enzyme.

3. Identify the end-bit for each of the following chopped chains.

(a) (G-enzyme) CACG AUG AG A UACCG UAUUG AACACCG.
(CU-enzyme) C C AU U AC AC GAAC GA GU GAGU GC AC
AU.

(b) (G-enzyme) UUCACAAAAG AUUAA AUG.
(CU-enzyme) U U AA C AC AU GU AAAAGAU.

(c) (G-enzyme) UG CAG CCAAG AUG UUAG UAUG.
(CU-enzyme) C U AU AG AGU AU GC GC GU AAGU.

(d) (G-enzyme) G G UG AUG AUG UAG UAUUUCUAACG.
(CU-enzyme) U U AG AU AU CU GU GU GAU GGGU AAC.

4. Attempt to reconstruct the four chains for which fragments are given in
the previous problem. Do any have a unique reconstruction?



388 12. Graph Traversals

1

3

2

1

2

3
2

1

42

1

1

1

4

5

1

2
1

1

1
1

1dorm
pizza
place

Figure 12.12. Driving to dinner with ducks.

12.10 Bonus 2: Network Flows

Two major branches of combinatorial optimization are linear/integer program-
ming, which we introduce in Bonus Section 7.9 (and expand on in Bonus Sec-
tion 10.11), and network flows, which we introduce right here. A network flow
is a type of labeling of an edge-weighted directed graph. One real-life applica-
tion of network flows is using microclimate information for a mountain to figure
out where best to relocate endangered plant species so they are likeliest to sur-
vive expected climate change. (Yes. Really. Aaron Archer and Steven Phillips,
who at the time worked for AT&T, did that research with some ecologists. It
is as cool as it sounds. The paper is “Optimizing Dispersal Corridors for the
Cape Proteaceae Using Network Flow,” by Steven J. Phillips, Paul Williams, Guy
Midgley, and Aaron Archer, in Ecological Applications, Vol. 18, No. 5 (2008),
pp. 1200–1211. The article is available online at http://www.klamathconservation.
org/docs/phillipsetal2008.pdf.)

We will begin with an example.

Example 12.10.1. It is a little-known fact that ducks love pizza. (Note: not actually
true.) On Take-Your-Duck-to-Dinner night, several students who live in the same
dorm decide to take their ducks to the pizza place. There are too many students and
ducks for a single car, so they take two cars. Figure 12.12 shows local streets and
alleyways represented as edges on a graph (the vertices are intersections), with the
number of pizza-place-wards lanes given as edge weights. The circled numbers
represent the number of cars traveling simultaneously on the streets they label. As
you can see from the figure, the two cars take different routes to the pizza place.
We think of the traffic as flowing from the dorm to the pizza place.

http://www.klamathconservation.org/docs/phillipsetal2008.pdf
http://www.klamathconservation.org/docs/phillipsetal2008.pdf
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We can now define a network flow.

Definition 12.10.2. A network flow is an edge-weighted directed graph such that

there is a vertex with no edges pointing towards it, known as a source, and

there is a vertex with no edges pointing out of it, known as a sink,

along with a labeling of the edges such that

for every vertex other than the source and sink, the sum of the labels on the
edges pointing in equals the sum of the labels on the edges pointing out, and

the label on an edge does not exceed the capacity (weight) of the edge.

In Example 12.10.1, the source is the dormitory and the sink is the pizza place.
The circled numbers label the flow, and the unlabeled edges may be understood to
be labeled as having 0 flow. We usually think of the labeling in a network flow as
the flow itself; it indicates the amount of traffic “flowing” across each edge of the
graph. This also means we also usually think of the edge-weighted directed graph
as the network… even though “network” can also just mean “graph.”

Definition 12.10.3. We call the sum of the flow labels pointing to a vertex the flow
in and the sum of the flow labels pointing out of a vertex the flow out.

A common network flow problem is to determine the maximum amount of
traffic that can be sent across the network at any one time.

Example 12.10.4. Two ridiculous networks are shown in Figure 12.13. In the left-
hand network, it appears we could send a lot of traffic out of the sink (more than

Figure 12.13. Ridiculous networks.
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Figure 12.14. Cutting ridiculous networks.

3,600 cars or cabs or cats or cans or caps!), but all traffic must flow through the
capacity-1 edge in the middle of the graph, so the maximum flow across this net-
work at any one time is 1. The right-hand network seems better at first, but we can
only send four things across at once! We can only send one thing across each of
the two capacity-1 edges emanating from the source. The capacity-362 edge is all
but useless because only two things can make it out of its end vertex at any one
time. And that’s that.

We can find some upper bounds on the maximum flow across a network: cer-
tainly we cannot send more stuff than the flow out of the source, nor can we send
more stuff than the flow in to the sink. Figure 12.14 points out that if we can
separate the source from the sink by cutting through some edges, then the total
capacity across the cut edges is an upper bound for the maximum flow. After all,
every bit of stuff sent from source to sink would have to go across one of those
edges.

Notice that in Example 12.10.4, we found themaximum flows of the ridiculous
networks, and these maxima happen to match the small-capacity cuts we exhibit
in Figure 12.14. This is no coincidence, but instead the famous and useful max-
flow/min-cut theorem! We will not prove it here because while the proof is not
difficult, it is a bit long and a bit technical (but also more than a bit interesting).
An elementary exposition can be found in [2], and Integer and Combinatorial
Optimization by George Nemhauser and Laurence Wolsey has a treasure trove of
clearly written information on network flows at the advanced level.
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Figure 12.15. Lunch carts across downtown Račja.

Some problems:

1. Find a network flow in Example 12.10.1 in which both cars travel along
the same route.

2. From the flow out of the source and the flow into the sink in Exam-
ple 12.10.1, we know that the maximum flow is at most 9. Is there a
flow that achieves this upper bound?

3. Consider the network shown in Figure 12.15. It reflects the paths lunch
carts can take through the downtown Račja (Slovenia) area during the
lunch rush, from a napkin supplier to a compost pile.

(a) If you send nine lunch carts along the capacity-9 edge from the
source, can they simultaneously reach the sink?

(b) Find a flow that sends a dozen lunch carts from source to sink, all
at the same time.

(c) Starting with the flow you just devised, can you identify any paths
with unused capacity along which additional lunch carts can be
sent? By howmuch can you increase the total flow in this fashion?

4. You’d like to download the six most recent episodes of the television
show Exile on Eggs Isle, so the hosting server must perform a check to
see whether there is enough network bandwidth to send all the bits of



392 12. Graph Traversals

Figure 12.16. Is there enough bandwidth?

file at the same time. A sample network is shown in Figure 12.16, with
vertices representing intermediate servers and edge capacities having
units of Gb (there are 8 Gb in 1 GB).

(a) Using the source or sink, find an upper bound on the throughput
from the server to your laptop.

(b) Find a smaller upper bound on the throughput by finding a set of
edges that separate the source from the sink. You may need two
pairs of scissors.

(c) Find a flow that achieves your new upper bound.
(d) If the file is 1,750 MB, will the server start the download or will

it return a Bandwidth Exceeded error?

12.11 Bonus 3: Two Hamiltonian Theorems

Earlier, in Section 12.4, we stated Theorem 12.4.2: Let the simple graph G have
n ≥ 3 vertices. If the degree of every vertex is more than n

2 , then G has a Hamilton
circuit. We promised a proof of this theorem; here it is.

Proof: Let us proceedwith a proof by contradiction. Suppose thatG has noHamil-
ton circuit, but each vertex of G has deg(v) > n

2 . If we added as many edges as
possible to G, we would have Kn, and Kn certainly has a Hamilton circuit. So
consider a worst-case scenario; G ⊆ G′, where G′ has the same vertices as G but
has more edges—so many edges, in fact, that having just one more would create a
Hamilton circuit. That is, for some vertices va,vb, G′-with-{va,vb} has a Hamilton
circuit v1-v2-…-va-vb-…-vn-v1. Therefore, G′ has a Hamilton path P = vb-…-vn-
v1-v2-…-va. By definition, this includes all the vertices. And because n ≥ 3, va
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has degree more than 3
2 and therefore degree at least 2. So va is adjacent to some

other vertex of G′, and perhaps lots of other vertices of G′; we shall pick one and
call it vi.

Now for a strange-sounding claim. No matter which vi we pick, vi+1 cannot
be adjacent to vb. If vi+1 is adjacent to vb, we can make the Hamilton circuit vb-
(follow P)-vi-va-(follow P in reverse)-vi+1-vb. But, this contradicts the statement
that G′ has no Hamilton circuit.

How is this useful? It means that, in the ordering of the Hamilton path, every
vertex adjacent to va is followed by one that is not adjacent to vb. Also, there are
at least n

2 vertices adjacent to va appearing in the Hamilton path (because every
vertex in G′ is on the path and va has degree at least n

2 ). This means that there are
at least n

2 vertices not adjacent to vb appearing in the Hamilton path—and also vb
is not adjacent to vb, so at most there are n− n

2 − 1 vertices adjacent to vb. Wait!
That’s a contradiction to the assumption that every vertex of G′ has degree at least
n
2 ! Therefore G′ must actually have a Hamilton circuit after all.

That means we could take one of the non-G edges out of G′ and have a new
graph G′′ that is in the worst-case scenario. If we run through the proof again, we
get another contradiction. Repeating this process means we eventually show that
G itself has a Hamilton circuit. �

This theorem and its proof exemplify one of the many excellent ways in which
mathematics advances: Dirac proved Theorem 12.4.2 in 1952. In 1960, Ore was
able to generalize by reading Dirac’s proof carefully. Let’s try to see what he saw.

1. Where exactly in the proof is the condition the degree of every vertex is more
than n

2 used?

2. What condition on va,vb is needed for the numerical contradiction in the
proof to work out?

3. Combine parts of your answers to the previous two questions to make a
substitute for the condition the degree of every vertex is more than n

2 , as
follows. Your condition should include the phrase for every two
vertices and something about their degrees.

4. Use this criterion to show that va has degree at least 2.

5. Your answer to Problem 3 probably included a “> n” somewhere. Can you
make it work with a “≥ n” instead? (If so, you have derived Ore’s theorem
and proof!)
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12.12 Bonus Check-Yourself Problems
Solutions to these problems appear starting on page 620. Those solutions that model a
formal write-up (such as one might hand in for homework) are to Problems 3 and 7.

1. An n-prism graph is constructed by
putting one (slightly smaller) n-cycleCn
inside another, and adding edges to join
the vertices of one Cn to the other radi-
ally. (We do need n ≥ 3.) See Figure
12.17 for an example. Do any n-prism
graphs have Euler circuits? What about
Hamilton circuits?

Figure 12.17. I am a proud 5-prism
graph.

2. List all possible orderings of ABC (how
many are there?). Associate each of
these orderings to a vertex of a graph.
Add an edge when two orderings differ
only by an adjacent transposition.

(a) What is the degree sequence of this
graph?

(b) Does it have an Euler circuit or trail?

(c) Does it have a Hamilton circuit or
trail?

(d) Is it planar?

(e) What are the answers to the previous
questions if we also consider the first
and last letters to be adjacent?

3. Look at the graphs in Figure 10.23 on
page 340. Does either have a Hamilton
circuit? … Hamilton traversal? … Eu-
ler circuit? … Euler traversal?

4. Again examine Figure 10.23 on page
340. For each graph, compute the short-
est distance from the lower-right vertex
to all other vertices. (Tip: Dijkstra is a
good choice here.)

5. Do any of the graphs in Figure 12.18
have Hamilton circuits? What about
Hamilton traversals?

Figure 12.18. Three graphs. Yup.
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6. Do any of the graphs in Figure 12.18
have Euler circuits? What about Euler
traversals?

7. For which values of m,n does Km,n have
a Hamilton circuit?

8. The towns Gesund and Reichtum are
near each other in a tourism district. In
each town, all but two of the intersec-
tions are four-way stops. In Gesund,
there is a five-way stop and a “T” inter-
section (a three-way stop), and in Reich-
tum there are two five-way stops. Cur-
rently, there is no direct road between
Gesund and Reichtum. The tourism bu-
reau wants to build a road so that they
can create and advertise a Tour of the
Towns, which will take tourists down
every road of Gesund and of Reichtum
without repetition. What advice can you
give the tourism bureau?

9. In the metropolis of Altana, the Traf-
fic Council has decreed that cars in the
flying lanes must pay twice the tolls of
ground-based cars (because of the ad-
ditional fuel needed for flying police).
What is the cheapest way to get from
point a to point b? A map showing sky-
ways in grey and ground-roads in black
is shown in Figure 12.19—those dots
are toll stations where you pay for the
segment you’ve just traveled.
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Figure 12.19. A map of Altana toll
plazas.

10. Can you take one walk and cover every
road in the map of Snakeland given in
Figure 12.20 exactly once?

Snakeland

Figure 12.20. A map of Snakeland.

12.13 Problems with Traversing

1. Can you trace over the entirety of Fig-
ure 12.21 without lifting your writing
instrument from the paper (or tracing
any line twice)? Figure 12.21. A classic envelope exercise.
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1000 ft.

Figure 12.22. Map of the original locations of Königsberg bridges.

2. Given a graph with an Euler traversal
but not circuit, how can you produce a
graph with an Euler circuit?

3. Consider the complete graphKn and any
two vertices a and b in it.

(a) Why are there paths of every length
from 1 to n−1 joining a and b?

(b) Find a graph other than K5 that
has the property that there exist two
vertices that have paths of lengths
1,2,3,4 joining them.

(c) While you’re at it, find one for every
n ≥ 4.

4. Figure 12.22 shows the original place-
ment of the Bridges of Königsberg.

Could someone walk over each of the
seven bridges and return to the start-
ing point without crossing any bridge
twice? Why or why not? (Notice that
legend has to be wrong—no one is go-
ing to walk all that distance.)

5. Do any trees have Euler traversals?

6. Tragedy has occurred at the Lovely Es-
tate (shown in Figure 12.23), and “…
James Bomb, the internationally known
detective, former notary public, current
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Figure 12.23. A floor plan of the Lovely Estate.
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assistant manager of Chicken Delight,
and part-time graph theorist, has been
called in to investigate” [6]. A per-
son dressed in red (or was hir dress
soaked with blood?) was found dead on
the floor of the small bedroom with a
bloody knife and a lead pipe nearby.
James Bomb has secured the perimeter
and brought all persons on the grounds
into the sitting room for questioning.
There are two individuals found leaving
the house whom the elder Lovelys do
not recognize, so Bomb questions them
first.
The first person says, “I am a door
inspector—it’s what I do. We have to
make sure that the hinges are tight so
the doors won’t fall on people, the door-
knobs are secure so they can’t come off
in anyone’s hand, and the locks work.
I’ve just been through every door in the
house exactly once (and had to repair
two locks and tighten three doorknob
screws) and now everything is in work-
ing order.”
The second person says, “I am from the
cleaning service. I visited each room
exactly once to clean it—after all, I
would not want to step on any clean

floors, nor would I want to get addi-
tional dirt on my shoes in going from
room to room.”

James Bomb clears hir throat. What is
ze about to announce? Is it possible that
either the first or the second person is
telling the truth?

7. Are there any wheel graphs that have
Euler traversals?

8. Look again at the graph shown in Fig-
ure 11.20 on page 366. Does it have an
Euler traversal? Does it have an Euler
circuit? How about a Hamilton circuit
or traversal?

9. In Section 12.5, you created a graph
that had vertices labeled with orderings
of ABCD, edges labeled with adjacent-
letter switches, and a Hamilton circuit.
Make a planar drawing of this graph or
show that there is no planar drawing.
You may find GeoGebra useful for ex-
perimentation.

10. IGS, an international group of scien-
tists, proposes that a network of canals
on Mars be dredged in preparation
for irrigation and terraforming. Fig-
ure 12.24 shows a map of the network in

base

OSdelta

OSepsilon

OSzeta

OSgammaOSbeta

OSalpha

Figure 12.24. Map of proposed dredging of Mars canals.
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Figure 12.25. We three graphs of Chapter 12 are.

question. You have been asked to con-
sult with IGS on some practical matters.
(a) It is very expensive to move dredg-

ing equipment over land. Is it possi-
ble to plan the dredging so the equip-
ment can be delivered from Earth to
the base and be near or at the base at
the end of dredging?

(b) Mars is windy and so there will need
to be maintenance of the dredged
canals until terraforming is well un-
derway. Part of the IGS proposal
suggests that there be observation
stations built at every canal intersec-
tion; when terraforming is complete,
these can be converted into water-
flow-control stations. Is there a way
to visit all of the observation stations
in one trip?

11. Look at the graphs in Figure 10.25 on
page 341. Does either have a Hamilton
circuit? … Hamilton traversal? … Eu-
ler circuit? … Euler traversal?

12. Look at the graphs in Figure TIII.2 on
page 436. Does either have a Hamilton
circuit? … Hamilton traversal? … Eu-
ler circuit? … Euler traversal?

13. Consider two different graphs G and H,
each of which has an Euler circuit. Con-
struct the graph F by adding an edge

connecting some vertex g of G to some
vertex h of H. Is there anything notable
about F?

14. Back at the University of Universe City
(see Example 10.4.2), you have been
asked to network together the computer
just inside the door of the Computer
Science building (on the right in Fig-
ure 10.4 on page 317) with the computer
in the upper-right-hand room. What is
the smallest amount of cable you can
use?

15. Do any of the graphs in Figure 12.25
have Hamilton circuits? What about
Hamilton traversals?

16. Do any of the graphs in Figure 12.25
have Euler circuits? What about Euler
traversals?

17. Run Dijkstra’s algorithm on the graph
shown in Figure 10.24 on page 341 to
find the distance from the top vertex to
all other vertices.

18. Find the shortest path from the bottom-
left vertex to the top-right vertex in each
of the graphs shown in Figure 10.26 on
page 341.

19. Does either graph in Figure 12.26 have a
Hamilton circuit? What about a Hamil-
ton traversal?
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Figure 12.26. Jazz hands!

20. Does either graph in Figure 12.26 have
an Euler circuit? What about an Euler
traversal?

21. Find the shortest distance from the bot-
tom vertex to the top vertex of the graph
shown in Figure TIII.3 on page 436.

22. Suppose G has exactly four vertices
of odd degree. What Euler-ish and
traversal-ish property does G have?
Prove your conjecture by constructing
a graph G′ with an Euler traversal or
circuit and reasoning about the relation-
ship between G′ and G.

23. You know how there are fire hydrants
on most blocks? They need to be con-
nected to a water-pumping station in or-

der to get water, and the pipes leading
to them have to be laid along streets so
that they can be serviced easily (and so
they stay on public land). Laying pipe is
expensive so the city would like to lay
the least length of pipe possible. Fig-
ure 12.27 shows a city neighborhood
with fire hydrants and a local water-
pumping station. Each block is 5 units
wide and 4 units tall.

(a) Make a graph corresponding to this
situation.

(b) Put appropriate weights on the edges
of your graph.

(c) Find the minimum length of pipe
needed to supply the fire hydrants
with water.

24. Hamilton (yes, the same Hamilton after
whom Hamilton circuits were named)
marketed a puzzle he called The Icosian
Game, back in the 1850s. Figure 12.28
shows the playing board, which had
holes where vertices are shown. There
was also a bin with 20 labeled pegs.
The challenge given was, Can you place
each peg into a hole so that following

W

Figure 12.27. A grid of streets with fire hydrants and a water-pumping station.
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the pegs in order makes a trip around the
entire board, back to where you started?
(Well, can you?)

1

2

3

4

5

6

7

8

9

10

11 12

13

14

15

16

17

18

19

20

Figure 12.28. The playing board for
The Icosian Game.

25. Challenge: Another game was mar-
keted with the board for The Icosian
Game as in Figure 12.28 (but laid
out over the head of a mushroom-like
object; see http://puzzlemuseum.com/
month/picm02/200207icosian.htm). It
was called The Traveler’s Dodecahe-
dron: A Voyage Round the World. In
this case, two players start at some peg
of the graph and walk to make a path of
length four pegs. The goal is to com-
plete a Hamilton circuit starting with
this walk. Can it always be done?

26. Draw a continuous closed loop on a
sheet of paper, such that every intersec-
tion point has an even number of arcs
leaving or entering the point. Prove that
the regions created may be colored us-
ing two colors such that no two regions
that share an arc are the same color.

27. Now draw n closed loops, possibly
overlapping, as in Problem 26. Can the
resulting configuration of regions still

be 2-colored such that no two regions
that share an arc are the same color?
Prove this or find a counterexample.

28. Find an Euler circuit in the graph shown
in Figure 12.29.

Figure 12.29. YAG: Yet Another Graph.

29. A Möbius ladder graph is constructed
by joining the top of an n-rung ladder to
the bottom after performing a half twist.
(Of course, n ≥ 2.) See Figure 12.30
for an example. Do any Möbius ladder
graphs have Euler circuits? What about
Hamilton circuits?

Figure 12.30. I am a twisted 6-ladder.

30. Is there a Hamilton circuit in ei-
ther graph shown in Figure 10.22 on
page 339? What about a Hamilton
traversal?

31. Ghost Duck (see Figure 12.31) has con-
nected with Ether Duck on Mergansr
and wants to pick hir up on the way
to their upcoming date. What is Ghost
Duck’s shortest path through the under-
world?

http://puzzlemuseum.com/month/picm02/200207icosian.htm
http://puzzlemuseum.com/month/picm02/200207icosian.htm
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1
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Figure 12.31. A map of the underworld near the residences of Ghost Duck and Ether
Duck.

32. Does any graph in Figure 3.23 on
page 87 have a Hamilton circuit?

33. Look at the graphs in Figure 3.21 on
page 87. Does either have a Hamilton
circuit? … Hamilton traversal? … Eu-
ler circuit? … Euler traversal?

34. Look at the graphs in Figure 3.22 on
page 87. Does either have a Hamilton
circuit? … Hamilton traversal? … Eu-
ler circuit? … Euler traversal?

35. The ever-intrepid Pvaanzba Ohaf wants
to dine at the infamous Flayed Finger
restaurant. (We will not discuss what
Mx. Ohaf plans to eat at this establish-

ment.) Figure 12.32 shows a map of
the area near Pvaanzba’s hotel. What
is the shortest distance Pvaanzaba Ohaf
can walk to reach the Flayed Finger?

11

1

1
2

2

2

2

2

2
2

2
2

2

3

3

3

3

3

3

Hotel

Flayed 
Finger

2

Figure 12.32. A graph with teal ver-
tices.

12.14 Instructor Notes

As preparation for the first class on traversals, have students read Section 12.1. Start them
out at the beginning of class by grouping them (a binary sort on mother’s first name is a
fine idea for deciding who works together) and having them start on Section 12.2. These
problems will take most of the class period; students will quickly make and prove correct
conjectures about when graphs do not have Euler traversals, and they will quickly make
conjectures about when graphs do have Euler traversals, but they are unlikely to come up
with proofs.

For the second class day, have students read Sections 12.3 and 12.4 and attempt the
Check Yourself problems. Begin class by running Dijkstra’s algorithm on a small example
graph. Then ask for questions over the reading, and start students working on Section 12.5
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in groups. With at least one-half hour left in the class, guide students through the Do This!
part of Section 12.5. That is, have four students come to the front of the room and try to
walk through all 24 orderings by performing adjacent transpositions only. When this no
longer seems like a highly productive group activity, have them break into groups again
to work on the remainder of the problems, and assign them to try to finish making the
permutahedron graph as homework for the third class meeting.

Depending on the composition and progress of your particular class, you may wish to
use the third class day in different ways. If they are having trouble with Dijkstra’s algo-
rithm, then do another example or two and create some graphs on which they can practice
using Dijkstra’s algorithm. If they are on top of this material, either use the opportunity for
further work on previous material or ask students to prepare by reading a Bonus section
(from this or another chapter) and spend class time with students working in groups on the
problems therein. You might also have them experiment more to find the Hamilton circuit
in the permutahedron.

Some students or classes may find GeoGebra useful in doing experiments or in type-
setting their homework because it has the capability to drag vertices around, highlight
paths, label vertices, and add textual notes.



Chapter 13

Graph Coloring

13.1 Introduction and Summary

Using crayons or markers, we can color the vertices of a graph or the edges of a
graph (or both, but that’s not done very often). Most of the time, we only care about
proper colorings, which for vertices means that no two vertices connected by an
edge can be the same color. (And for edges, it means that no two edges that touch a
vertex can be the same color. Some of the author’s research is on edge colorings.)
Colorings are not just fun but also useful—certain types of information-scheduling
problems (e.g., wireless communication) can be solved using graph colorings, as
can register allocation issues (in computer science). (Truthfully, graph colorings
are only practical when there are few types of constraints on scheduling or allo-
cation problems and when there are no preferences that should be respected. In
reality, linear and/or integer programming is used for highly constrained applica-
tions. See Bonus Section 7.9 for information on linear and integer programming!)

13.2 Try This! Coloring Vertices and Edges

A coloring of the vertices (or edges) of a graph G is technically a function
c : V (G)→C (or c : E(G)→C), whereC is a set of colors. But we treat it less for-
mally here, and simply think of a coloring as an assignment of colors to a graph’s
vertices (or edges).

13.2.1 Vertex Coloring

Definition 13.2.1. A graph G is properly vertex colored if each vertex of G is as-
signed a color such that no two adjacent vertices have the same color.

Figure 13.1 shows three graphs that all look vaguely likeK5 but that are notK5.
One of them may be familiar to you.

403
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Figure 13.1. Three of K5’s first cousins.

1. Find the smallest number of colors needed to properly vertex-color each of
the above graphs. Note that the vertices are drawn so that you can fill them in
with colors, should you happen to have colored pens/pencils with you (and
should you be willing to write in a book, unless of course you are working
from a photocopied page, in which case there should be no problem… do
you think it is possible to have a parenthetical remark that is longer than the
parent sentence?).

2. Prove that you used the very smallest number of colors to properly color the
vertices of these graphs. For each graph, argue that it is not possible to use
fewer colors than you did use and still have a proper coloring. (What proof
technique have you used?)

3. Can you come up with a truly useless lower bound for the number of colors
needed to properly vertex-color a graph? Find a slightly better lower bound.

13.2.2 Edge Coloring

Definition 13.2.2. A graphG is properly edge colored if each edge ofG is assigned
a color such that no two edges incident to the same vertex have the same color.

Figure 13.2 shows three graphs that all look vaguely likeK5 but that are notK5.
You may recognize one of them.

4. Find the smallest number of colors needed to properly edge color each of
the graphs in Figure 13.2. (Proofs are not needed at this stage.)

5. Can you come up with a super-silly lower bound for the number of colors
needed to edge-color a graph? How about a less-silly lower bound?
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Figure 13.2. Three graphs with their vertices dyed to look younger.

13.2.3 More on Vertex Coloring

Figure 13.3 shows two highly vertex-colorable graphs.

6. Properly vertex-color these graphs.

7. For each graph, argue that it is not possible to use fewer colors than you did
use and still have a proper coloring.

13.2.4 More on Edge Coloring

8. Go back to Figure 13.2 and prove that you did use the smallest number of
colors to color the edges of these graphs.

9. Can you come up with a ridiculous upper bound for the number of colors
needed to properly edge color a graph? Can you come up with a somewhat
better upper bound?

Figure 13.3. Two more graphs.
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13.3 Introduction to Coloring

Hey! You! Don’t read this unless you have worked through the problems in Sec-
tion 13.2. I mean it!

Graph coloring problems can be practical; let’s do a quick example.

Example 13.3.1. Almost any town has several radio stations. In order to avoid lis-
tening problems, the radio stations broadcast on different frequencies. But there
are only so many frequencies allocated for public use by the Federal Communica-
tions Commission (FCC), and in a large enough area, some frequencies will need
to be reused. How might we know which stations can use the same frequency?

Assign each station to a vertex, and join vertices when they are within broad-
cast range of each other. Certainly, two stations that are not in broadcast range
of each other can use the same frequency without interference, but two stations in
broadcast range of each other should not use the same frequency. So we color the
vertices properly—not allowing adjacent vertices to get the same color—and this
tells us which stations can use the same frequency; it’s the stations of the same
color.

Figure 13.4 shows a fake graph of real radio stations; any two stations whose
broadcast areas overlap in our fake world are joined by an edge. At left in Fig-
ure 13.4, we start by coloring the excellent KUNI teal. Then we notice that none
of KRNI, KUNY, WNEK, or WMUA can have the same color. If we tried to color
all of them grey, we would have a problem because KRNI and KUNY are adjacent,
and KUNY andWNEK are adjacent. So wewill color KRNI andWNEK dark grey
and color KUNY andWMUA light grey in the center diagram of Figure 13.4. This
leaves WFCR and WRIU; both are adjacent to WNEK and so neither can be col-
ored dark grey; moreover, WRIU is adjacent to WMUA so it cannot be light grey.
But we can color WRIU teal and color WFCR light grey, and we do so at right in
Figure 13.4. We have used three colors, and this is the smallest number possible
because there are three mutually adjacent vertices in the graph.

WNEK

WMUA

KUNY

KUNI

WFCR

KRNI

WRIU

WNEK

WMUA

KUNY

KUNI

WFCR

KRNI

WRIU

WNEK

WMUA

KUNY

KUNI

WFCR

KRNI

WRIU

Figure 13.4. Radio stations that are real, but in reality do not have this relationship…
at all.
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Figure 13.5. Two different proper vertex
colorings of a graph.

Figure 13.6. Two different proper edge
colorings of a graph.

Definition 13.3.2. The chromatic number of a graph G is the smallest number of
colors needed to properly color the vertices of G; we denote it by χ(G). A graph
is k-colorable (or k-vertex-colorable) if it can be properly colored using k vertex
colors, and it is χ(G)-chromatic.

Notice that for any k ≥ χ(G), the graph G is k-colorable. At the top in Fig-
ure 13.5, we see a 3-coloring of a 2-chromatic graph (and at the bottom, we exhibit
the 2-chromaticity of the graph), so that the graph is also 3-colorable. If you would
like to practice coloring the vertices of graphs properly, try http://digitalfirst.
bfwpub.com/math_applet/graph_coloring.html or http://bcs.whfreeman.com/
webpub/Ektron/fapp9e/MathApplets/GraphColoring.html.

Definition 13.3.3. The chromatic index of a graph G is the smallest number of
colors needed to properly color the edges of G; we denote it by χ ′(G). A graph is
k-edge-colorable if it can be properly colored using k edge colors, and it is χ ′(G)-
chromatic.

Notice that for any k ≥ χ ′(G), the graph G is k-edge-colorable. At the top
in Figure 13.6, we see a 3-edge coloring of a 2-edge chromatic graph (and at the
bottom, we exhibit the 2-edge chromaticity of the graph), so that the graph is also
3-edge-colorable.

In order to determine the chromatic number (or index) of a graph, two things
are required: First, you need to exhibit a coloring that uses only the proposed
chromatic number (or index) of colors. And second, you must show that using a
smaller number of colors leads to two adjacent vertices (or incident edges) being
assigned the same color. In other words, you need to do a proof by contradiction.
We’ll show this process on a fact you likely noticed while working on the problems
in Section 13.2.

http://digitalfirst.bfwpub.com/math_applet/graph_coloring.html
http://bcs.whfreeman.com/webpub/Ektron/fapp9e/MathApplets/GraphColoring.html
http://digitalfirst.bfwpub.com/math_applet/graph_coloring.html
http://bcs.whfreeman.com/webpub/Ektron/fapp9e/MathApplets/GraphColoring.html
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Figure 13.7. Proper vertex and edge colorings of an odd cycle.

Example 13.3.4. We will prove that the chromatic number of an odd cycle is 3,
as is the chromatic index of an odd cycle. First, we exhibit 3-vertex and 3-edge
colorings of a generic odd cycle in Figure 13.7. Then, we argue that two colors
do not suffice. Suppose we may only use the colors teal and grey. Start with any
vertex (or edge) and color it teal. Color an adjacent vertex (or incident edge) grey.
Now, this grey vertex (or edge) is adjacent (or incident) to exactly one uncolored
vertex (or edge), so that uncolored vertex (or edge) has to be colored teal. In this
fashion, the vertices (or edges) must alternate colors around the cycle. However,
because there are an odd number of vertices (or edges), the last vertex (or edge) to
be colored must be the same color as the first vertex (or edge) to be colored. These
two vertices are adjacent (or edges are incident), so they may not have the same
color. This is a contradiction.

Example 13.3.5 (of chromatic number and chromatic index computation).Wewill
compute the chromatic number and chromatic index of the 5-prism graph G pic-
tured in Figure 12.17 on page 394. Because G contains an odd cycle, χ(G) ≥ 3,
and we exhibit a 3-vertex coloring of G in Figure 13.8, so χ(G) ≤ 3. Therefore
χ(G) = 3. Because G has a vertex of degree 3, χ ′(G)≥ 3, and we exhibit a 3-edge
coloring of G in Figure 13.8, so χ ′(G)≤ 3. Therefore χ ′(G) = 3.

Actually, we can compute the chromatic number and chromatic index of the
n-prism graph Prn. In the case that n is even, χ(Prn) = 2; we can alternate colors
on the outer cycle, and use the same kind of coloring on the inner cycle but with

Figure 13.8. A proper vertex coloring and a proper edge coloring of the 5-prism graph.
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the colors reversed. In the case that n is odd, χ(Prn) = 3; we can use the same
scheme as in Figure 13.8. When n is even, χ ′(Prn) = 3; we can alternate colors
on the outer cycle, and use the same coloring on the inner cycle, and use the third
color on all of the struts. In the case that n is odd, χ ′(Prn) = 3; we can use the
same scheme as in Figure 13.8.

So far, we have (basically by default) been considering coloring simple graphs.
Notice that multiple edges do not have any effect on vertex coloring as they do
not change adjacency but that the presence of a loop renders a graph not vertex-
colorable as there is a vertex that is adjacent to itself! Similarly, a loop renders a
graph not edge-colorable as that edge is incident to itself. Multiple edges increase
the number of edge colors needed at a vertex.

13.3.1 Coloring Bounds

In this section we will discuss lower and upper bounds on the chromatic number
and chromatic index of a graph. For example, you probably noticed that any graph
needs at least one color for either vertex or edge coloring (at least, if the graph has
any vertices or edges) and can’t possibly need more colors than vertices (or edges).
However, these bounds are maximally useless; we can do better.

From Example 13.3.4, we know that ifG contains an odd cycle, then χ(G)≥ 3
and χ ′(G) ≥ 3. But we can do better still and improve our lower bounds: notice
that a 3-cycle has three mutually adjacent vertices and, therefore, requires three
vertex colors.

Lower bounds. A graph containing n mutually adjacent vertices (that is, a
copy ofKn) will need at least n vertex colors. So ifG containsKn, then χ(G)≥
n. As you noticed in Section 13.2.3, the converse is not true—even if a graph
does not contain a copy of Kn, it may still need n or more vertex colors. The
corresponding lower bound for edge coloring is that if the maximum degree
of a vertex in G is ∆(G), then χ ′(G) ≥ ∆(G) because there are ∆(G) edges
that are incident at some vertex.

Now we will give some reasonable upper bounds for χ(G) and χ ′(G). It turns
out that the most straightforward way to discover these bounds is by seeing what
works in the proofs!

Theorem 13.3.6. Let G be a simple graph with largest degree ∆(G). Then
χ(G)≤ ∆(G)+1.
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Figure 13.9. Deleting a vertex from a graph, coloring the remainder, and replacing the
vertex.

Proof: We will use induction (it’s been awhile, eh?) on the number of vertices.
As a base case, note that if |V (G)|= 1, only one color is needed and 1 ≤ 0+1. To
be sure, if |V (G)|= 2, at most two colors are needed and 2 ≤ 1+1. Our inductive
hypothesis is that any simple graph G with k ≤ n vertices is (∆(G)+1)-colorable.
So, suppose G has n+ 1 vertices. Pick any vertex v and delete it (recall that the
incident edges go right with it). See Figure 13.9 for a demonstration of this process.
The remaining graph G\v has only n vertices, so the inductive hypothesis applies
and the vertices of G \ v can be colored using at most ∆(G \ v)+ 1 colors. Now
replace v (and its incident edges) so that G has all vertices colored except v.

Question: How are ∆(G\v) and ∆(G) related? Answer: Any vertex other than
v or its neighbors has the same degree inG as it does inG\v. Any neighbor of v has
degree one more in G than in G\v because of the edge connecting it to v. Finally,
v may have degree much higher than ∆(G\ v). This tells us that ∆(G)≥ ∆(G\ v).

But let’s see what happens when we try to color v. There are at most ∆(G\v)+1
colors used by the neighbors of v. Conveniently, v has at most ∆(G) neighbors.
Therefore, at worst G\v was colored using ∆(G) colors. Only one more is needed
to color v, so G can be colored using at most ∆(G)+1 colors; therefore, χ(G) ≤
∆(G)+1. �

It turns out that the constraint that G is simple is unnecessary (we could allow
multiple edges), but it sure does simplify the proof. Also notice that there are many
graphs for which Theorem 13.3.6 way overestimates: consider the star graph S
with n spokes, which has ∆(S) = n but χ(S) = 2.

Theorem 13.3.7. Let G be a simple graph with largest degree ∆(G). Then
χ ′(G)≤ 2∆(G)−1.

Proof: We will use induction again, but this time on the number of edges. As a
base case, note that if |E(G)| = 1, only one color is needed and 1 ≤ 2 · 1 − 1.
Similarly, if |E(G)| = 2, only two colors are needed and 2 ≤ 2 · 2− 1. Our in-
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Figure 13.10. Deleting an edge from a graph, coloring the remainder of the edges, and
replacing the edge.

ductive hypothesis is that any simple graph G with k ≤ n edges is (2∆(G)− 1)-
edge-colorable. So, suppose G has n+1 edges. Pick any edge e and delete it. See
Figure 13.10 for a demonstration of this process. The remaining graph G \ e has
only n edges, so the inductive hypothesis applies and the edges of G \ e can be
colored using at most 2∆(G \ e)− 1 colors. Now, examine the vertices near (the
missing) e. At worst, both of them have degree ∆(G\e), and at worst, every edge
is a different color, so at most 2∆(G\e) colors appear on the edges incident to the
vertices that would touch e (if e were there). That means that if we reinsert e, we
have used at most 2∆(G \ e)+ 1 colors. It remains to translate this to G. Every
vertex ofG\e, except for the two incident to e, has the same degree as it does inG.
Those two vertices incident to e have degree one higher in G than in G\ e. So, if
(as in the worst-case scenario) they had degree ∆(G\e) in G\e, they will have de-
gree ∆(G) in G and ∆(G) = ∆(G\e)+1. Therefore, ∆(G\e) = ∆(G)−1, and the
number of colors we used is at most 2∆(G\e)+1 = 2(∆(G)−1)+1 = 2∆(G)−1,
as desired. �

13.3.2 Applications of Vertex Coloring

A classic application of graph coloring is the storage of chemicals.

Example 13.3.8. TheEggYolkWasn’t Here building (see http://www.seakingdom.
net/blog/wp-content/uploads/2011/01/eggyolkgraffito.jpg and http://www.
flickr.com/photos/lunapark/3781387208/) is the warehouse for a large chemical
supply company (in our dreams) called EYWH. While it might at first make sense
to arrange the chemicals in alphabetical order by name, that is not safe—many
chemicals are highly reactive, and so should not be stored near each other in case
of spillage, bottle breakage, etc. Instead, EYWH supplies us with a list of chem-
icals they want to store, with chemical interactions noted. We convert this into a
graph: each chemical is assigned a vertex, and every chemical interaction becomes
an edge in the graph. Then, we find a proper vertex coloring with the smallest pos-
sible number of colors (let’s say k). Each color designates a collection of chemicals
that may be stored in proximity to each other. We then give a report to EYWH:
it consists of k lists of chemicals, along with the information that the chemicals in
each list must be stored in a region of the warehouse (perhaps a floor or a wing of
a floor) that is protected from each other region in the warehouse.

http://www.seakingdom.net/blog/wp-content/uploads/2011/01/eggyolkgraffito.jpg
http://www.flickr.com/photos/lunapark/3781387208/
http://www.seakingdom.net/blog/wp-content/uploads/2011/01/eggyolkgraffito.jpg
http://www.flickr.com/photos/lunapark/3781387208/
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Figure 13.11. Chemical interactions determine chemical storage.

That involves too much data to show how it works in practice. However…

Example 13.3.9. EYWH receives deliveries of chemicals every day. These are un-
loaded from trucks or tankers to a receiving area, and from there they are forklifted
to the appropriate storage place in the warehouse. To prevent explosions resulting
from spillage or accidents, there are several small holding bays in the receiving
area. Every day, the receiving manager receives a list of deliveries scheduled for
the day and to which bay each delivery must be unloaded. The logistics manager
for EYWH (who is of course trained in graph colorings!) creates the list for July
12, 2010 as follows. There are supposed to be deliveries of ammonia, sodium hy-
droxide, iodine, sulphuric acid, and acetone at various points during the day. The
logistics manager knows that ammonia and iodine react to create the explosive
nitrogen triiodide and that sodium hydroxide and sulphuric acid both react with
water to produce intense heat. This suggests the graph and vertex-colored graph
shown in Figure 13.11. From this, we know that we only need two holding bays,
but one of them must be very dry.

Notice that we can use vertex coloring to solve a problem when we are able
to model conflicts (with chemicals, explosive interactions) as edges in a graph. A
less classical, but more pervasively practical, application of vertex colorings is to
traffic-light cycles.

Example 13.3.10. Imagine, if you will, a road intersection with a traffic light. Ev-
ery so often the traffic light changes, and after a while, the pattern of greens and
reds and yellows on the traffic light repeats. This is a traffic-light cycle. Now
imagine that for each lane of traffic, there is a light pattern that shows green for
that lane and red for all other lanes. Eventually, the light turns yellow for that lane
and red for all other lanes and then switches to have a different lane shown green
(with all the rest shown red). The traffic-light cycle has as many patterns as lanes.
It takes forever to get through this intersection and drivers are very annoyed! City
Hall is inundated with calls. There are letters to the editor of the local newspaper
about the terrible traffic situation.
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Figure 13.12. One of the many intersections of Broad St. in Philadelphia with a one-way
street (perhaps Arch?).

Now imagine the same intersection, but this time the traffic light has patterns
that are green for all lanes but one. Traffic proceeds quickly, but with many col-
lisions. An ambulance has to stand by in the area to take away the wounded.
Lawyers sue the city for negligence. There are letters to the editor of the local
newspaper about the terrible traffic situation.

Let’s avoid these situations—by finding a way to allow as many lanes to have
green lights as possible at the same time, while also keeping drivers from colliding
with each other. If you guessed that we would use vertex coloring to address the
problem, you are correct; and, you should have guessed this because this example
is in the section on applications of vertex coloring. We must first create a graph to
color. A sample street intersection is shown in Figure 13.12.

In this situation, what are the conflicts that we can model with graph edges?
They are potential car collisions. For example, we do not want a car traveling east
to have a green light at the same time as a car traveling north. Therefore, we will let
the lanes be vertices, and we will let potential lane-occupant collisions be edges.
As shown in Figure 13.13, we can number the lanes and use these numbers as ver-
tex labels and see which paths of travel intersect to find edges in the corresponding
graph.

Sometimes an intersection is sufficiently busy that it’s very difficult to turn
left. In such a situation, we have a protected left turn, indicated by a green arrow
on the traffic light. When such an option exists, we consider that traffic path as a
separate vertex. You can explore this possibility in Problem 7 of Section 13.10.
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Figure 13.13. Cars traveling in lane 1 intersect paths of travel from lanes 3, 4, 5, and 6
(left). The graph corresponding to this intersection along with a proper vertex coloring
(right).

Finally, we consider an application that is the subject of much research.

Example 13.3.11. Traditionally, wireless networks function by having wireless ac-
cess points that distribute information to nearbymachines (robots, laptops, phones).
However, there are also wireless networks in which eachmachine distributes infor-
mation to nearby machines. Sometimes the information’s destination is a neighbor
machine, and sometimes the information needs to “hop” through several machines
to reach its destination. Thus, these wireless networks are called multi-hop net-
works. They are also called ad hoc networks (because the machines may move
around), sensor networks (because the machines might be sensors that primarily
report information about their local environments), and mesh networks (because
the machines may be spaced out so as to provide coverage of an area).

Instead of having all communication regulated by an access point, the ma-
chines in an ad hoc network have to communally regulate their communication.
One protocol for regulating communication is called Time Division Multiple Ac-
cess (TDMA). The way this works is that time is divided into many parts so that
there is a schedule of which machines can send information at what times. Ma-
chines that are far enough away from each other can send information at the same
time (thereby having multiple access to a time slot).

To have efficient communication, one wants to give as many machines access
to each time slot as possible and to thereby give each machine access to as many
time slots (in a given hour, let’s say) as possible. Wewill create a graph where each
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machine is assigned to a vertex, and any two machines that are within communi-
cation range of each other will be connected by an edge. (In practice, a second
graph may be used, where each machine has a vertex but an edge connects two
machines that have distance 1 or 2 (or k) on the original graph. This is because,
for example, two machines that have a common communication neighbor might
both transmit messages that arrive simultaneously at the neighbor. Then the neigh-
bor would get completely confused. So this type of simultaneous transmission is
usually prohibited.)

A proper vertex coloring of this graph (with the least number of colors possible
used) will tell us which machines can send information at the same time. The
number of colors corresponds to the number of different time slots needed. Of
course, in reality such communication schedules need to be made quickly and may
need to be remade on the fly as machines move around. (This is the case with
networks of battlefield sensors.) For this reason, it is of practical interest to find
efficient vertex coloring algorithms, so research in this area is active.

Check Yourself

These problems are easy, fun, and quick. Do them!

1. What is χ(Kn)?

2. Find a graph with χ(G) = 1.

3. Find the chromatic number and index of a path of length 5.

4. Find the chromatic number and index of a cycle of length 423.

5. Challenge: Create a graph G for which χ(G)> χ ′(G).

13.4 Try This! Let’s Think about Coloring

Here we have four multipart problems. They are completely independent of each
other, so start with your favorite topic!

1. Determine χ ′(K3), χ ′(K4), χ ′(K5), χ ′(K6), and χ ′(K7).

(a) Conjecture the value of χ ′(Kn).
(b) Come up with ways to edge-color Kn that verify your conjecture.
(c) Can you prove your conjecture?
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2. Recall that a bipartite graph has the property that the vertices can be grouped
into two parts so that neither part has internal edges. A complete bipartite
graph Km,n has all possible edges between a part with n vertices and a part
with m vertices.

(a) Determine χ(K2,2), χ(K2,3), χ(K3,3), χ(K3,4), and χ(K3,5).

(b) What is χ(Km,n)? Prove it.

(c) For B any bipartite graph, what is χ(B)? Prove it.

(d) Determine χ ′(K2,2), χ ′(K2,3), χ ′(K3,3), χ ′(K3,4), and χ ′(K3,5).

(e) Conjecture the value of χ ′(Km,n).

(f) Can you prove your conjecture?

3. We will take a quick sojourn into algorithms for coloring.

(a) Design a greedy (parsimonious) algorithm for coloring the vertices of
a graph.

(b) Your algorithm addresses the vertices in some order. Try it out on the
graph in Figure 13.14. In fact, try your algorithm with each of the
vertex orderings given in Figure 13.14. Does your algorithm give the
optimal coloring in each case?

(c) Design a greedy (parsimonious) algorithm for coloring the edges of a
graph.

(d) Your algorithm addresses the edges in some order. Try it out on the
graph in Figure 13.15. In fact, try your algorithm with each of the
edge orderings given in Figure 13.15. Does your algorithm give the
optimal coloring in each case?

1
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6

Figure 13.14. Two different orderings
of the vertices of a graph.
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Figure 13.15. Two different orderings
of the edges of a graph.
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4. Recall that amatching inG is a subgraphwith all vertices of degree 1 and that
a perfect matching is a subgraph with all vertices of degree 1 that includes
all vertices of G.

(a) Find as many different perfect matchings as you can in a 6-cycle graph.
(b) Find as many different perfect matchings as you can in K4.
(c) Create a 4-regular planar graph and properly edge-color it.
(d) How does the concept of perfect matchings relate to edge coloring of

k-regular graphs?

13.5 Coloring and Things (Graphs and Concepts)
That Have Come Before

Hey! You! Don’t read this unless you have worked through the problems in Sec-
tion 13.4. I mean it!

13.5.1 Let’s Color the Edges of Complete Graphs

Theorem 13.5.1. For n even, χ ′(Kn) = n−1, and for n odd, χ ′(Kn) = n.

Proof: First notice that because every vertex of Kn has degree n− 1, χ ′(Kn) ≥
n−1. Therefore, if we exhibit an edge coloring ofKn that uses n−1 colors, we will
have shown that χ ′(Kn) = n−1. Consider n even. Draw Kn as follows: place one
vertex in the center and the remaining (odd number of) vertices in a ring around
the center vertex. Then draw edges as shown at right in Figure 13.16. (Notice
that there are n

2 of them.) Give these edges the same color. Now rotate this edge
configuration by 1

n−1 , and give this new set of edges a second color. Continue in

Figure 13.16. Matchings that lead to edge colorings of Kn for n odd (left) and n even
(right).
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this fashion until you have drawn n
2 ·

1
n−1 edges in n−1 colors, and notice that you

have completed all n(n−1)
2 edges of Kn (exactly once each)! We can make a similar

coloring for Kn when n is odd. See the left diagram of Figure 13.16. In this case,
each color has n−1

2 edges and there are n different rotations (n ways to have an
un-edge-colored vertex), so a total of n(n−1)

2 edges are drawn in n colors. How do
we know this is the optimal coloring, though? Maybe there’s a more clever proper
coloring that only uses n− 1 colors. Well, suppose such a coloring exists. Then,
because each color can only be at each vertex once, there are no more than n

2 edges
of a given color. But that’s not an integer, because n is odd—so there are no more
than n−1

2 edges of each color, and thatmeans there are only (n−1)n−1
2 edges total.

And that’s a contradiction. �

13.5.2 Let’s Color Bipartite Graphs

Theorem 13.5.2. A graph G is bipartite if and only it is 2-vertex-colorable.

Proof: (⇒) SupposeG is bipartite. Name the two parts T and P. Color the vertices
in T teal and the vertices in P purple. This is a proper coloring because no vertex
in the teal (or purple) part is adjacent to any other vertex in the teal (or purple) part.
(⇐) Suppose G is 2-vertex-colorable. Without loss of generality, let the two colors
be teal and purple. Collect the teal vertices and consider them to be one part, and let
the remaining (purple) vertices be a second part. With this structure, G is bipartite;
no vertex in the teal (or purple) part is adjacent to any other vertex in the teal (or
purple) part. �

From Theorem 13.5.2, it follows that all trees are bipartite: Given a tree, color
some vertex v teal, and all its neighbors purple, and all of the distance-2 neighbors
of v teal, and so forth. Because every tree is acyclic, there will never be a coloring
conflict. Similarly, we now know that even cycles are also bipartite. This leads to
a new characterization of bipartite graphs.

Theorem 13.5.3. A graph G is bipartite⇐⇒ G has no odd cycles.

Proof: (⇒) Suppose G is bipartite and has an odd cycle. The odd cycle requires
three colors by Example 13.3.4, and this contradicts Theorem 13.5.2.
(⇐) Suppose G has no odd cycles. By Theorem 13.5.2, it is sufficient to provide
a proper 2-vertex coloring of G. We propose a coloring and then show that it is
proper. Choose any vertex v of G. Color it teal. For each other vertex of G, color
it purple if the shortest path to v has even length and teal if the shortest path to v
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Figure 13.17. A non-bipartite graph (left) with shortest paths from v to u1,u2 that form a
cycle (center) and with shortest paths from v to u1,u2 that share an edge (right).

has odd length. Now we will proceed by contradiction; assume that the coloring is
not proper, so that there exist two vertices u1 and u2 that are adjacent and have the
same color. That means that either the shortest path from u1 to v has even length
and so does the shortest path from u2 to v, or the shortest path from u1 to v has odd
length and so does the shortest path from u2 to v. Walk from v to u1 to u2 to v using
the shortest paths possible at each stage. This uses an odd number of edges because
it’s either even+1+ even= even+1 = odd or odd+1+odd= even+1 = odd.
Now, this is probably not a cycle because the shortest paths from v to u1 and u2
may have some edges in common (see Figure 13.17). However, if we delete any
edges common to those two paths, we are left with some cycles. Each common
edge was counted twice in our walk-edge-count, so we still have an odd number
of edges between those cycles. That means at least one of the cycles must be odd;
this is a contradiction. �

In Section 13.4, you likely conjectured that χ ′(Km,n) is m or n (whichever is
larger). We will now prove a more general result:

Theorem 13.5.4. For bipartite G, χ ′(G) = ∆(G).

Proof: We shall induct on the number of edges of G. As a base case, consider G
such that |E(G)| = 1, in which case ∆(G) = 1 and exactly one color is needed.
To be sure, let’s examine a second base case of |E(G)| = 2, in which case either
there are two vertices with a double edge or there are three vertices with two edges
that form a path. Either way, ∆(G) = 2 and exactly two colors are needed. The
inductive hypothesis is that any bipartite graph G with k ≤ n edges can be edge-
colored using exactly ∆(G) colors. So, we consider a bipartite graph with n+ 1
edges, and we remove one (let’s say e, with endpoints v1 and v2). This gives us
a bipartite graph G\ e with n edges, so by the inductive hypothesis we can edge-
color G \ e with ∆(G \ e) colors. Now, ∆(G) ≥ ∆(G \ e) and, in particular, either
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∆(G) = ∆(G \ e) (if there is a vertex of degree ∆(G) that is not incident to e) or
∆(G) = ∆(G\ e)+1 (if every vertex of degree ∆(G) is incident to e).

In the case where ∆(G) = ∆(G\e), we know that in G\e neither v1 nor v2 has
degree ∆(G\e), as each has lower degree than it did inG. Therefore, there is some
one of the ∆(G\e) colors not used at v1, and also a color not used at v2. If these are
the same color, for example, teal, then color e teal and be done. If (for example)
v1 has no teal edge but does have a purple edge and v2 has no purple edge but does
have a teal edge, then we must be a bit crafty. Travel along the graph, starting at
v1, and alternate between purple and teal edges. This path cannot reach v2 because
(a) if it did, it would have to have odd length because v1 and v2 are in different
parts, and (b) that would mean it started and ended with purple edges, but purple
is not used at v2. So, switch the colors of the edges along this path so that v1 has
no purple edge but does have a teal edge. (This does not ruin the coloring because
any vertex on the path had exactly one edge that was teal and one that was purple
for the coloring to be proper.) Now, neither v1 nor v2 has an incident purple edge,
so color e purple… and we’re done.

On the other hand, if ∆(G) = ∆(G \ e)+ 1, then G \ e has been edge-colored
with ∆(G)−1 colors. This means we have an extra color to play with—so we will
color e a new color and we’re done. �

13.5.3 Add a Condition, Get a Different Bound

We know that χ(G)≤∆(G)+1. But what if ∆(G) is huge (like 10,000)? Consider,
for example, the graph in Figure 13.18. It has ∆(G) = 12, but its vertices can be
colored with only two colors. If G happens to be planar (which this G happens to
be), we get a better bound.

Theorem 13.5.5. Every simple planar graph can be vertex-colored with at
most six colors.

Figure 13.18. A graph G with χ(G) = 2 but ∆(G) = 12.
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Proof: We proceed (yet again) by induction. We will induct on the number of
vertices of the graph. Our base cases are all planar graphs with six or fewer ver-
tices, as any graph with six or fewer vertices can be vertex-colored with at most
six colors. Our inductive hypothesis is that any planar graph with k ≤ n vertices
can be vertex-colored with no more than six colors. Consider any planar graph
G with n+ 1 vertices. Now, to proceed with the inductive step, we need to use
the restriction that G is planar. (Hey, that’s why it’s in the statement of the the-
orem.) We will go all the way back to Theorem 11.6.6, which says that G must
have a vertex of degree at most 5. Pick one such vertex, name it Anatinus, and
yank it out. G \Anatinus has only n vertices, so the inductive hypothesis holds,
and G\Anatinus can be vertex-colored with no more than six colors. Now return
Anatinus to its home, and because Anatinus has degree at most 5, its neighbors are
colored with no more than five colors. This means that if we need an additional
color for Anatinus, we can use a sixth color (either one that is already used to color
G\Anatinus or a new one) and G has been vertex-colored with at most six colors.
Wahoo! �

13.5.4 Greedy Matchings

Okay, that section title is misleading. (But it’s goofy!) Really, we will talk briefly
about greedy algorithms and coloring and then talk briefly about matchings and
edge coloring.

As we promised in Section 10.4.1, we will address the utility of greedy algo-
rithms in coloring. Here is one greedy algorithm for coloring vertices (or edges)
of a graph.

1. Order the vertices (or edges) of the graph as v1, . . . ,vn (or as e1, . . . ,en).

2. Make a list of colors, namely color 1, color 2, …, color n.

3. Color the first vertex (or edge) with color 1.

4. Consider the next vertex (or edge) in the list, and give it the lowest-
numbered color that is not already in use on one of the vertex’s neighbors
(or one of the edges incident to this edge).

5. If all of the vertices (or edges) are colored, be done. If not, go to step 4.

As you surely noticed in Section 13.4, a greedy algorithm for coloring does not
always give an optimal coloring! In fact, it can sometimes give an awful coloring.
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Figure 13.19. A pathetic little path graph.

Example 13.5.6 (of a greedy algorithm gone bad). When the vertices of a path of
length 4 are ordered as in Figure 13.19, a greedy algorithm proceeds as follows:
Vertex 1 is assigned color teal. Vertex 2 is not adjacent to any colored vertices, so
it can also be assigned color teal. Vertex 3 is adjacent to a vertex with color teal,
so we must use color white. Vertex 4 is adjacent to vertices colored teal and white,
so we are forced to use color grey. That is, we have used three colors on a path of
length 4 when only two are needed for an optimal coloring.

However, most of the time a greedy algorithm produces a pretty decent color-
ing, so sometimes greedy algorithms are used in practice.

Matchings and edge colorings. If you look at the edges of just one color,
it is a matching—no edge can touch another edge of the same color, so each
vertex can have degree at most 1 in that color! So an edge coloring is a union
of matchings. If every one of the matchings is a perfect matching, then the
coloring is proper (and the graph is regular). For this reason, some proofs
about edge coloring can be done using perfect matchings.

Check Yourself

Verify your understanding with these quickies.

1. What is χ ′(K578349)?
2. What is the shortest length a cycle can be in a bipartite graph?
3. What is χ ′(K42,87)?
4. What proof method(s) is/are used in the proof of Theorem 13.5.2?
5. Let G be planar. When is the upper bound on χ(G) better from planarity than from

∆(G)+1?
6. Use Theorem 13.5.4 to determine χ ′(Km,n).
7. Challenge: Create a graph (other than the one in Example 13.5.6) onwhich a greedy

algorithm produces a truly awful vertex coloring.
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13.6 Where to Go from Here

The simplest way to learn more about graph coloring is to take a graph theory
course; consult your nearest math department member to see when or whether
such a course will be offered. Almost every graph theory textbook will have some
material on coloring; you may enjoy reading [24] and [25] in particular. For more
on coloring in graph theory and across the rest of mathematics, see The Mathemat-
ical Coloring Book: Mathematics of Coloring and the Colorful Life of Its Creators
by Alexander Soifer.

In this chapter, you developed several upper and lower bounds on the chromatic
number and chromatic index of a graph. There are better upper bounds! Look for
Brooks’s theorem and Vizing’s theorem in particular; these results may surprise
you. Their proofs are not difficult, but are rather technical.

Graph coloring is an active area of research in pure mathematics, and algo-
rithms for finding graph colorings are an active area of research in computer sci-
ence. Here are a few paper titles published in discrete mathematics journals in
the middle of 2018: “List star chromatic index of sparse graphs”; “Maximizing
the number of x-colorings of 4-chromatic graphs”; “Berge-Fulkerson coloring for
C(8)-linked graphs”; “Thoroughly dispersed colorings”; “Planar graphs have two-
coloring number at most 8”; “Chromatic index determined by fractional chromatic
index.”

Credit where credit is due: Example 13.3.11 was adapted from “Coloring Unstructured
Wireless Multi-Hop Networks,” by Johannes Schneider Roger Wattenhofer, 28th ACM
Symposium on Principles of Distributed Computing (PODC), Calgary, Canada, August
2009. Jillian Bakke provided the information on chemical interactions. The traffic-light
problems were inspired by [7]. Bonus Check-Yourself Problem 8 and Problem 31 of Sec-
tion 13.10 are about the real MathILy Week of Chaos; see http://www.mathily.org/facts.
html. Problem 34 of Section 13.10 was inspired by the TV series Get Smart and The
Adventures of Rocky and Bullwinkle and Friends, and Sam Oshins’s character who was
inspired in turn by this book (see page 148).

13.7 Chapter 13 Definitions

coloring: An assignment of colors to a
graph G’s vertices (or edges); techni-
cally, it is a function c : V (G) → C (or
c : E(G)→C), whereC is a set of colors.

proper vertex coloring: Each vertex ofG is
assigned a color such that no two adjacent
vertices have the same color.

proper edge coloring: Each edge of G is
assigned a color such that no two edges
incident to the same vertex have the same
color.

chromatic number: The smallest number
of colors needed to properly color the
vertices of G; we denote it by χ(G).

http://www.mathily.org/facts.html
http://www.mathily.org/facts.html
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k-colorable: A graph that can be properly
colored using k vertex colors; also called
k-vertex-colorable.

k-chromatic: A graph that can be prop-
erly colored using no fewer than k
vertex colors; G is always χ(G)-
chromatic.

chromatic index: The smallest number
of colors needed to properly color

the edges of G; we denote it by
χ ′(G).

k-edge-colorable: A graph that can
be properly colored using k edge
colors.

k-edge-chromatic: A graph that can be
properly colored using no fewer than
k edge colors; G is always χ ′(G)-
chromatic.

13.8 Bonus: The Four-Color Theorem

Surprise! We are not going to give a correct proof of the four-color theorem. We
will state it, though.

Theorem 13.8.1. Every simple planar graph G has χ(G)≤ 4.

This is not the original statement of the four-color theorem, but it is logically
equivalent to the original statement. The four-color theorem has a fascinating his-
tory. It was first posed in 1852 but not proved until 1976. The first correct proof
was done exhaustively by computer; this proof was simplified to amore reasonable
number of cases in 1995. However, even the simpler proof is still not checkable by
humans. For this reason, the proof is somewhat controversial, and work continues
to try to find a better proof (one that is checkable by hand or that convincingly
explains why the four-color theorem is true). There are two excellent books you
might want to read in order to learn more of the history of the four-color theorem
and about the people and mathematics involved. These are Four Colors Suffice by
Robin Wilson and Graphs, Colourings, and the Four-Color Theorem by Robert
Wilson (no, they are not related). Four Colors Suffice is written for the general
public, and Graphs, Colourings, and the Four-Color Theorem is a well-written
textbook full of enticing problems. Robin Thomas, one of the mathematicians
who produced the simplest known proof of the four-color theorem, gives a brief
history of the four-color theorem and a somewhat technical explanation of the 1995
proof at http://people.math.gatech.edu/~thomas/FC/fourcolor.html.

So as not to leave you completely bereft of additional mathematical knowl-
edge, we will prove the five-color theorem, and we will give a famous incorrect
proof of the four-color theorem.

http://people.math.gatech.edu/~thomas/FC/fourcolor.html
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Figure 13.20. At left, a teal-charcoal Kempe chain is highlighted, and at right, a teal-
charcoal edge Kempe chain is highlighted.

Theorem 13.8.2. Every simple planar graph G has χ(G)≤ 5.

We will prove this theorem twice because both proofs are so interesting. For
the first proof, we need an additional bit of terminology.

Definition 13.8.3. A Kempe chain is a maximal sequence of vertices that alternate
between two given colors. An edge Kempe chain is a maximal sequence of edges
that alternate between two given colors. See Figure 13.20 for examples; notice
that a Kempe chain may be a tree.

Proof of Theorem 13.8.2: We will induct on the number of vertices, much as in
the proof of Theorem 13.5.5. The set of simple planar graphs with five or fewer
vertices forms our base cases, as no such graph could need more than five colors
for its vertices. Our inductive hypothesis is that any simple planar graph with k ≤ n
vertices may be colored with five or fewer colors. Now, consider a simple planar
graph G with n+ 1 vertices. We know from Theorem 11.6.6 that G must have
a vertex of degree at most 5. Find such a vertex, call it v, and yank it out of the
graph so that we are left withG\v. BecauseG\v has only n vertices, the inductive
hypothesis applies and it may be colored with at most five colors. Now we will
reinsert v and examine the neighbors of v. If the neighbors collectively use no
more than four colors, all is well and we may use the fifth color for v. However,
if the neighbors use all five colors among them… we must be quite artful. The
situation is shown in Figure 13.21.

Figure 13.21. The colorful neighborhood of v.
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Figure 13.22. Two of the many Kempe chains that must join neighbors of v.

Our first move will be to examine the Kempe chains emanating from each
of v’s neighbors. If, for example, the neighbor with color 1 is part of a color-1–
color-2 Kempe chain that ends before reaching the neighbor with color 2, then we
can just switch the colors on the Kempe chain and use color 1 for v. (If the neighbor
with color 1 is not adjacent to a vertex of color 2, then the Kempe chain has length 1
and we can just change the color of the color-1 neighbor.) Therefore, if any of v’s
neighbors is part of a color-c–color-d Kempe chain that does not reach any of v’s
other neighbors, we can switch the colors on the Kempe chain and thereby reduce
the number of colors used by v’s neighbors to four. The remaining color can be
used for v.

So, let us consider the remaining case, where every Kempe chain emanating
from each of v’s neighbors reaches one of v’s other neighbors. In particular, this
means that there is a color-1–color-4 Kempe chain and a color-2–color-5 Kempe
chain, as shown in Figure 13.22. Here’s the artful bit: these two Kempe chains
have to cross. There’s just no way for the color-2–color-5 chain to get from the
color-2 neighbor to the color-5 neighbor without going around the color-1 neighbor
or the color-4 neighbor. That would be all well and good if G weren’t a planar
graph, but G is a planar graph. So the two Kempe chains can’t have edges that
cross. So, they must cross at a vertex. But what color is that vertex? It’s part of
the color-1–color-4 Kempe chain, so it must be color 1 or color 4. And it’s part
of the color-2–color-5 Kempe chain, so it must be color 2 or color 5. But that’s
a contradiction, because a vertex can’t have two different colors. Therefore, this
situation cannot arise! And that means this case can never happen. So G can be
colored with only five colors. �

A different proof of Theorem 13.8.2: We will do a sneaky proof by induction,
using the same base cases and inductive hypothesis as in the previous proof of
Theorem 13.8.2. By Theorem 11.6.6, we know that G must have a vertex x of
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degree at most 5. The neighbors of x cannot be mutually adjacent or we’d have a
K5 subgraph—and then G would be nonplanar by Theorem 11.6.5. Thus, we may
consider two edges e1 and e2 that are incident to x and whose non-x ends are not
adjacent to each other. If we contract these edges, their non-x ends merge into x.
The resulting graph is still planar and has no loops (but might have multiple edges,
whichmatters not for vertex coloring) and thus is 5-vertex-colorable. Let’s say that
x is teal in this coloring. Un-contract e1 and e2 (that is, expand out those edges)
so we have G again. Color the other (non-x) ends of e1 and e2 teal. We will need
to recolor x as it is now adjacent to two teal vertices. However, x’s other three-or-
fewer neighbors are not teal, so there’s at least one color left over for x—use it and
we’re done. Slick, eh? �

In the early 1900s, a “proof” of the four-color theorem was published, and the
flaw in the argument was not found for more than a decade after its publication.
The author was Alfred Bray Kempe (1849–1922), after whom Kempe chains were
named. (He also did important work in geometric linkages.) Here is one version
of his “proof.”

Essence of a flawed proof of Theorem 13.8.1: We proceed by induction, using
as base cases all simple planar graphs with four or fewer vertices. Our inductive
hypothesis is that any simple planar graph with k ≤ n vertices may be colored with
four or fewer colors. Now, consider a simple planar graph G with n+1 vertices.
We know from Theorem 11.6.6 that G must have a vertex of degree at most 5. Find
such a vertex, call it v, and remove it. The remaining graph G\ v may be colored
using only four colors, by the inductive hypothesis. Now restore v. At worst, its
five neighbors have four different colors.

If any Kempe chains emanating from any of v’s neighbors could be switched so
that only three colors appear among v’s vertices, then we can color v the remaining
fourth color. So let us assume that this is impossible, and every Kempe chain
emanating from a neighbor of v includes some other neighbor of v.

Now, the situation is essentially that shown at left in Figure 13.23. We may
assume that the two neighbors of the same color are not next to each other in order

Figure 13.23. A configuration of neighbors of v.
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around v, as we could do some Kempe switch to move them apart. Therefore, we
have two neighbors of v that are the same color; traveling in one direction around v,
they have one neighbor between them, and traveling in the other direction around v,
they have two neighbors between them.

In our first proof of Theorem 13.8.2, the crucial point was that there had to be
two Kempe chains that used four colors between them and intersected. However,
that need not be the case here! Consider the left diagram of Figure 13.23; a color-
1–color-3 Kempe chain does not have to intersect a color-2–color-4 Kempe chain.
(Note that switching one of two separate color-1–color-3 Kempe chains will either
produce two vertices of color 1 or simply permute the locations of the existing
colors around v.) Similarly, a color-1–color-4 Kempe chain need not intersect a
color-2–color-3 Kempe chain.

On the other hand, check this out—we have a color-1–color-4Kempe chain and
a color-2–color-4 Kempe chain as shown at right in Figure 13.23. Together, these
block out the color-3–color-2 Kempe chain emanating from the left color-3 vertex
and the color-3–color-1 Kempe chain emanating from the right color-3 vertex. So
we switch those twoKempe chains and thereby get rid of the two color-3 neighbors
of v, and color v with color 3. �

Brain-breaking question. What is the flaw in Kempe’s false proof of the four-color
theorem?!

Brain-enhancing activity: Let’s avoid breaking our brains. Look at the graph
given in Figure 13.24. All of the following questions refer to this figure.

1. Which vertex plays the role of v in Kempe’s false proof?

2. Make a one-to-one correspondence between the colors of v’s neighbors
in Figure 13.24 and the numbering of colors used in our version of
Kempe’s false proof.

3. Identify the different Kempe chains emanating from neighbors of v.
Which chains play the roles of the color-1–color-4 Kempe chain and
the color-2–color-4 Kempe chain in Kempe’s false proof?

4. Which chains play the roles of the color-3–color-2 Kempe chain and
the color-3–color-1 Kempe chain in Kempe’s false proof?
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Figure 13.24. A wacky mostly-4-colored graph. (The colors are black, purple, teal, and
chartreuse.)

5. Switch one of the chains you identified in the previous problem. Now
switch the other chain you identified in the previous problem. What
happens?

6. Kempe wanted both chains switched at once. Try this; what happens?

7. Try to explain the flaw inKempe’s false proof of the four-color theorem.

If you would enjoy 4-coloring some graphs and maps, proceed to http://www.
nikoli.com/en/take_a_break/four_color_problem/ (warning: uses Flash!) and to
http://demonstrations.wolfram.com/FourColoringPlanarGraphs/.

13.9 Bonus Check-Yourself Problems
Solutions to these problems appear starting on page 624. Those solutions that model a
formal write-up (such as one might hand in for homework) are to Problems 2, 4, and 5.

1. Find the chromatic number and chro-
matic index of the graph shown in Fig-
ure 10.3 on page 316.

2. Prove that if χ(G)≥ 3, thenGmust con-
tain an odd cycle.

3. Find the chromatic number and chro-
matic index of each graph shown in Fig-
ure 10.22 on page 339.

4. Find the chromatic number and chro-
matic index of the graph shown in Fig-
ure 11.16 on page 365.

5. Let G be a planar graph with smallest
cycle length (girth) 6. Let vG = |V (G)|,
eG = |E(G)|, and fG = |F(G)|.
(a) Develop an inequality that relates fG

to eG.
(b) Use this to show that

2eG ≤ 3vG −6.

http://www.nikoli.com/en/take_a_break/four_color_problem/
http://demonstrations.wolfram.com/FourColoringPlanarGraphs/
http://www.nikoli.com/en/take_a_break/four_color_problem/
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(c) Show that G must have a vertex of
degree less than 3.

(d) Prove that χ(G)≤ 3. (Hint: use in-
duction.)

6. Without doing any actual coloring, give
quick lower and upper bounds for the
chromatic number and chromatic index
of the graph shown in Figure 13.25.

7. Find the chromatic number and chro-
matic index of the Snakeland map graph
shown in Figure 12.20 on page 395.

8. During the Week of Chaos at MathILy
2016, there were five timeslots for
classes and four classes offered in each
timeslot. Six instructors taught three
classes each, and the director taught
two classes. Create a potential class
schedule.

Figure 13.25. A semi-mysterious
graph.

9. Find the chromatic number of each
graph shown in Figure 12.18 on
page 394.

10. Find the chromatic index of each graph
shown in Figure 12.18 on page 394.

13.10 Colorful Problems

1. Find the chromatic number of each
graph shown in Figure 3.3 on page 73.

2. Find the chromatic index of each graph
shown in Figure 3.3 on page 73.

3. If a graph G is isomorphic to another
graph H, then is it true that χ(G) =
χ(H)?

4. Find χ(K2,2,3); K2,2,3 is shown in Fig-
ure 3.9 on page 78. What is χ(Kr,s,t)?
How about χ(Kr,s,t,u,v,w,x,y,z)?

5. Without doing any actual coloring, give
quick lower and upper bounds for the
chromatic number of the graph shown
in Figure 13.26.

6. Without doing any actual coloring, give
quick lower and upper bounds for the
chromatic index of the graph shown in
Figure 13.26.

Figure 13.26. A kind of yucky graph.

7. In Example 13.3.10, we had a busy city
street that intersected a one-way street.
Suppose the traffic signal includes a
protected left turn, and remodel the traf-
fic pattern as a graph. How many ver-
tex colors are needed for this graph? Is
that more colors, fewer colors, or the
same number of colors as was needed
before? Now, look at your graph. Can
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you change the coloring (but still keep
it proper) so that traffic flow will im-
prove?

8. Find the chromatic number of the graph
shown in Figure 13.27.

Figure 13.27. A double-Petersen-
ish graph (okay, it’s called a Blanuša
snark).

9. Find the chromatic index of the graph
shown in Figure 13.27.

10. For G as shown in Figure 13.27, use
a greedy algorithm to color the edges.

Does it give an optimal coloring? If not,
then use color switching along paths or
trees to improve the coloring.

11. Give an algorithm for properly edge-
coloring Km,n with the least possible
number of colors.

12. True or false: A graphG can be 2-vertex
colored ⇐⇒ G has only even cycles.
Explain.

13. True or false: A graphG can be 3-vertex
colored⇐⇒ G has all cycles of lengths
that are multiples of 3. Explain.

14. If a graph G is isomorphic to another
graphH, then is it possible that χ ′(G) ̸=
χ ′(H)?

15. Figure 13.28 shows an actual street in-
tersection. Create a graph and properly
vertex-color it to find the smallest num-
ber of patterns needed in the traffic-light
cycle.

Figure 13.28. The intersection of Main Street with Pleasant/King Street in Northampton,
MA.
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16. Find the chromatic number and chro-
matic index for the two graphs shown
in Figure 3.22 on page 87.

17. Without doing any coloring, give good
lower and upper bounds for the chro-
matic number of the graph shown in
Figure 13.29.

Figure 13.29. A nicely drawn but
wacky graph.

18. Suppose G has a Hamilton circuit H.
Howmany colors are required to vertex-
color H?

19. Find χ(G) for G as shown in Fig-
ure 13.30.

Figure 13.30. A round graph (it doesn’t
have a name-y name).

20. For G as shown in Figure 13.30, use a
greedy algorithm to color the vertices.

Does it give an optimal coloring? If not,
then use color switching along paths or
trees to improve the coloring.

21. Challenge: Show that χ ′(G) = 3 for G
as shown in Figure 13.30.

22. Let D be the graph shown in Fig-
ure 13.31. What are χ(D) and χ ′(D)?

Figure 13.31. A duck graph.

23. Figure 13.32 shows a real street inter-
section. Create a graph and properly
vertex-color it to find the smallest num-
ber of patterns needed in the traffic-light
cycle. You will have at least one low-
degree vertex. How is this useful in
terms of traffic flow?

24. Show that if G is 3-regular and has a
Hamilton circuit, then χ ′(G) = 3.

25. For any connected G, what is the rela-
tionship between χ(G) and χ ′(G)?

26. Every tree T has χ(T ) = 2. (This is
because every tree is bipartite.) Con-
struct a tree (that is not a path) and
order the vertices of that tree such
that when you color the vertices using
a greedy/parsimonious algorithm, you
need at least three colors.

27. Extend the idea in our example of
a greedy algorithm gone bad (Exam-
ple 13.5.6): given any k ≥ 3, construct
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Condos

Arts

Figure 13.32. The intersection of Main Street with South/State Street in Northampton,
MA.

a tree and order the vertices of that tree
such that when you color the vertices
using a greedy/parsimonious algorithm,
you need at least k colors.

28. Compute the chromatic number and
chromatic index for the Möbius ladder
of size n, as defined on page 400 and
shown in Figure 12.30 on page 400.

29. Find χ ′(R) for the Royle graph shown
in Figure 11.23 on page 368.

30. Find the chromatic index of the graph
shown in Figure 12.29 on page 400.

31. Here is a realistic MathILy Week of
Chaos scenario. Brian has planned
classes on primes, complexity, and or-
dinality; Max’s classes are on random-
ness, game theory, and complex analy-
sis; sarah-marie will teach about knots
and combinatorial optimization; Han-
nah is leading projective geometry, frac-
tals, and long division; Tom’s classes

are combinatorics, strange geometries,
and generating functions; Cynthia’s one
and only class is on tropical geometry.
Max has asked Tom to observe his class.
Brian, Max, and sarah-marie all want
to take Cynthia’s class. Is it possible
to schedule the classes so that there are
five timeslots, with three classes offered
in each slot?

32. Find the chromatic number and the
chromatic index of the graph shown in
Figure 10.31 on page 344.

33. Find the chromatic index of the graph
shown in Figure 10.33 on page 344.

34. Hard-working master spy Pvaanzba
Ohaf is doing ’round-the-clock surveil-
lance and needs to schedule hir six
novice spies (004, Agent 99, Maxwell,
Spy X, Boris, Natasha) so that there are
two on each 4-hour shift, subject to the
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agency rule that no two spies can work
together if their names share any letters.
Please produce a schedule forMx. Ohaf.

35. Find the chromatic number and the
chromatic index of the graph shown in
Figure 11.22 on page 367.

13.11 Instructor Notes
There are only two (very) full days of class work provided in this chapter in order to leave
room for a review day at the end of a course. However, it is easy to extend the chapter to
three days, as detailed presently.

Ask students to read Section 13.1 as preparation for the first day of class. Students
take to coloring like ducks to water, so they need do no further preparation for the first day.
Simply take a poll in class: Who prefers vertices? Who prefers edges? Collect the ver-
tex preferrers into working groups and the edge preferrers into different working groups,
and distribute those students with no preference evenly. Then ask everyone to work on
Section 13.2, with those who are vertex-focused beginning with Section 13.2.1 and those
who are edge-focused beginning with Section 13.2.2. As they complete these problems
(it should take 15–20 minutes for them to do so), have vertex workers present their results
publicly for the benefit of the edge workers, and vice versa. With the remaining time in
class, have the students return to working on Sections 13.2.3 and 13.2.4. They will take
another 15 or so minutes to work through these, so you may need to stop them in order to
have enough time to exchange ideas before the end of the class.

For follow-up, ask students to review the problems in Section 13.2 that they didn’t
work on in class. Ask them to read Section 13.3—mention that there is additional material
there—and do the Check Yourself problems. Start the second class day by asking for
questions, and then have students start working in groups again. You may want them
to finish Sections 13.2.3 and 13.2.4 before continuing on to Section 13.4. The problems
are written to be independent of each other, so if you wanted to save time and still have
all problems addressed, you could have different groups work on different problems and
present the results to each other. It’s likely that this set of problems will take one to two
class periods to work through. It is worth mentioning explicitly (at the end of the second
class or, if you have a third, at the start of the third) that greedy algorithms are a decent
way to color graphs but do not necessarily result in optimal colorings.

Finally, have students read Section 13.5 as reinforcement and extension.



Theme III Supplement: Problems on
the Theme of Graph Theory

These problems could be used for studying for (or writing!) in-class or take-home
exams, or just for more enrichment. (The problems cover Chapters 10–13.) They
are not given in any particular order. Well, they have been intentionally mixed up
so that they are not in chapter order, so that the solver cannot use the ordering of
the problems as a clue in solving them.

1. Find χ(G) and χ ′(G) for the two graphs
shown in Figure 3.24 on page 87.

2. Compute χ(Wn) for Wn, the wheel with
n total vertices.

3. Compute χ ′(Wn) forWn, the wheel with
n total vertices.

4. Figure TIII.1 shows an actual street in-
tersection. Create a graph and properly

Figure TIII.1. The intersection of Main/Elm Street with West Street in Northampton, MA.

435
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Figure TIII.2. Two graphs.

vertex-color it to find the smallest num-
ber of patterns needed in the traffic-light
cycle. You will have at least one low-
degree vertex. How is this useful in
terms of traffic flow?

5. Find every simple graph G with five
vertices and the property that if exactly
one edge e is added, the resulting graph
G∪ e has an Eulerian circuit.

6. Find a spanning tree of the graph at left
in Figure TIII.2.

7. Find a spanning tree of the graph at right
in Figure TIII.2.

1

1

2

2

3

3

5

5

5
7

9

9

9

Figure TIII.3. A weighted graph.

8. Find a minimum-weight spanning tree
of the graph shown in Figure TIII.3,
once using Kruskal’s algorithm and
once using Prim’s algorithm.

9. True (prove) or false (give counterex-
ample)?
(a) A graph with more vertices than

edges is connected.
(b) A graph with fewer edges than ver-

tices is not connected.
(c) A graph with |E(G)| < |V (G)| − 3

has no cycles.
(d) Two trees with the same degree se-

quence are isomorphic.
10. Draw three different binary search

trees for the micro-dictionary ace,base,
bat,cat,rat, tat.

11. Find several perfect matchings of the
Petersen graph.

12. Suppose G is connected and k-regular
and has no Eulerian circuit. Prove that
ifG is connected, thenG has an Eulerian
circuit.

13. Might the simple graph GL on the left
in Figure TIII.4 be planar? (GeoGebra
files for Figure TIII.4 are available for
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GL GR

Figure TIII.4. Could we be planar?

your use at http://www.toroidalsnark.
net/dmwdlinksfiles.html.)

14. Might the simple graph GR on the right
in Figure TIII.4 be planar? (GeoGebra
files for Figure TIII.4 are available for
your use at http://www.toroidalsnark.
net/dmwdlinksfiles.html.)

15. Give an example of a graph that has an
Euler circuit but not a Hamilton circuit.
Explain.

16. Draw a binary decision tree for sorting
playing cards.

Figure TIII.5. Round like a wheel but
still nonplanar.

17. Prove that the graph shown in Fig-
ure TIII.5 is nonplanar.

18. Give a greedy algorithm for making
change at a cash register.

19. Give an example of a graph that has a
Hamilton circuit but not an Euler circuit.
Explain.

20. Figure TIII.6 shows a network of canals
around artificial islands in a pond, cre-
ated as a duck playground. White Duck
(pictured in Figure TIII.6) swims aim-
lessly around the playground and then
goes to see Grey Duck. White Duck
says, “I swam through each of the 16
canal intersections at the playground
exactly twice. In fact, here’s the or-
der in which I swam: a–o–n–h–k–g–b–
m–i–e–p–f–c–l–d–j–c–g–n–h–j–k–d–
l–p–i–e–f–b–o–a–m.” “The canal inter-
sections aren’t usually labeled,” replies
Grey Duck, “so I don’t exactly know
the path you took. But you know what?
I think you can’t be quite right about
where you swam.” White Duck pauses
to think, then responds, “Ah, yes, you’re

http://www.toroidalsnark.net/dmwdlinksfiles.html
http://www.toroidalsnark.net/dmwdlinksfiles.html
http://www.toroidalsnark.net/dmwdlinksfiles.html
http://www.toroidalsnark.net/dmwdlinksfiles.html
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Figure TIII.6. The duck playground canals.

right. I switched two of the letters in my
order.” Can you figure out what White
Duck’s error was?

21. Prove that the graph shown in Fig-
ure TIII.7 is nonplanar.

Figure TIII.7. I can be drawn on a dough-
nut with no crossings….

22. Prove that the graph shown in Fig-
ure TIII.8 is nonplanar.

23. Give an example of a nonplanar graph
with chromatic number 3.

Figure TIII.8. Nonplanar-ness personi-
fied.

24. Let G be an n-vertex rooted tree, where
each vertex has either 0 or k descen-
dants. Given a fixed k, for which values
of n is this possible?

25. Give an example of a graph with largest
degree equal to twice the chromatic
number.
Does there exist a graph with chromatic
number equal to twice the largest de-
gree? If so, give an example, and if not,
explain why not.

26. A bridge is an edge of a graph G whose
removal disconnects the graph. Prove
that an edge e is a bridge if and only if it
is contained in every spanning tree ofG.
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27. Does there exist a planar graph with five
vertices, ten edges, and seven faces?

28. Let connected simple G have vertices
of degrees 4,4,4,5,5,5,6,6,6,7,7,7.
Prove that G is nonplanar.

29. Reza and Rania play a guessing game.
Reza picks a whole number in the 0–15
range. How many yes-or-no questions
does Rania need to ask Reza in order to
determine the number?

30. Rania thinks that the guessing game
played with Reza in Problem 29 was
too easy. Rania says, “Reza, this time
you are allowed to lie to me—but just
once—when answering my questions
about your number.”

(a) Come up with a general strategy
for Rania to use in determining
Reza’s number.

(b) Is there a way that Rania can
phrase questions so as to ob-
tain, from a given question, the
desired information—whether or
not Reza is lying?

31. Does there exist a graph with largest de-
gree equal to twice the chromatic index?
If so, give an example, and if not, ex-
plain why not.

32. Prove or give a counterexample: every
subgraph of a nonplanar graph is non-
planar.

33. Consider a sequence of numbers
(d1,d2, . . . ,dn−1,dn) such that the sum
of the di is 2n− 2, and for consecutive
entries di,di+1, it is true that di ≤ di+1.
(a) What is the largest value that d1 can

have? d2?
(b) What is the smallest value that dn

can have?

(c) Let this sequence be the degree se-
quence of a graph G. Must G be a
tree?

(d) Challenge: Does there always exist
a tree with this sequence as its de-
gree sequence?

34. Prove, using induction, that every con-
nected graph contains a spanning tree.

35. Give an example of a graph that does
not have an Euler circuit, but does have
an Eulerian trail/path. (No explanation
is needed; just make a drawing of the
graph.)

36. Let G be a simple graph with degree se-
quence 3,4,4,4,5,6,6. Prove that G is
nonplanar.

37. Identify a spanning tree of the graph
shown in Figure TIII.9.

Figure TIII.9. I need a spanning tree.

38. Consider the star graph Sn. In Fig-
ure TIII.10, for reference, is S5.

(a) Find the chromatic number of Sn.
Justify briefly.

(b) Find the chromatic index of Sn. Jus-
tify briefly.

Figure TIII.10. Consider me.
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39. Find a Hamilton path on the Petersen
graph, shown in Figure TIII.11.

Figure TIII.11. My friend… it’s been so
long since I’ve seen you.

40. In general, which is larger: χ(tree) or
χ ′(tree)? Explain.

41. Find a minimum-weight spanning tree
of the graph shown in Figure TIII.12
(and mention which algorithm you used
to produce it).

89 6

1
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8
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Figure TIII.12. Help me find a
minimum-weight spanning tree!

42. You hang a 3 × 3 × 3 cube of pressed
birdseed outside your window in or-
der to attract avian wildlife. A grackle
comes every day and eats a 1 × 1 × 1
cubelet of birdseed. You wonder… can
it eat the entire cube of birdseed by al-
ways eating a cubelet adjacent to the
cubelet it ate the previous day?

43. Find χ(G) and χ ′(G) for the graph
shown at left in Figure 3.5 on page 76.

44. Consider the n-cube, where n ≥ 1. (You
may think of this as a graph or as a
geometric object.) The vertices of the
n-cube are labeled with length-n bi-
nary strings, and there is one vertex for
every such string. Two vertices u =
(u1, . . . ,un) and v = (v1, . . . ,vn) are ad-
jacent if and only if u and v differ in ex-
actly one position.
(a) What is the degree sequence for the

n-cube? Explain.
(b) Let en be the number of edges in the

n-cube. What are e1,e2,e3,e4?
(c) Find a recurrence relation for en and

explain the presence of each term.
(d) Find and prove a closed form for en.

(You may wish to use overcounting
rather than using the recurrence re-
lation.)

(e) For which n is the graph of the n-
cube planar? Justify.

45. Find a Hamilton circuit on the graph
of the soccer ball (shown in Fig-
ure TIII.13).

46. At the Chemical Storage Unit, every
day the receiving manager uses a list of
deliveries scheduled for the day with the
holding bay to which each delivery is
assigned. You, as a representative of the
Graph Theorists Union, are employed to
create this list. Here are the deliveries
for the day:

Methanol
Potassium hydroxide
Iodine
Sodium
Ammonia
Nitric acid

You know that ammonia and iodine re-
act to create the explosive nitrogen triio-
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Figure TIII.13. I feel the need for a Hamilton circuit.

dide and that potassium hydroxide and
nitric acid both react with water to pro-
duce intense heat. So how many hold-
ing bays are necessary?

47. Use backtracking to find all the ways to
add numbers from {1,1,2,2,3} to get 6.

48. Let G be simple, planar, connected, and
3-regular. If fk is the number of k-sided
faces, prove that 3 f3 + 2 f4 + f5 − f7 −
2 f8 −3 f9 −·· ·= 12.

49. Find an Euler circuit in the graph shown
in Figure TIII.14.

50. The Duck Lab has six 3D printers, la-
beled anatra, canard, lacha, papra, rosë,
and utka. Because vibrations from one
3D printer will affect the print of an-
other 3D printer, most of the printers
cannot be running at the same time. Be-

cause of careful placement within the
lab, the following pairs of printers can
be run at the same time: anatra and pa-
pra, anatra and rosë, anatra and utka,
canard and rosë, and lacha and papra.
The Duck Lab needs to make one print
on each printer, and each takes an hour
to complete the job. What is the short-
est amount of time in which this can be
done?

Figure TIII.14. A graph with teal ver-
tices.

Credit where credit is due: Problem 20 was adapted from [11]. Problem 50 was con-
tributed by Tom Hull.
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Part IV

Other Material
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Chapter 14

Probability and Expectation

14.1 Introduction and Summary

You may have some previous experience with probability. If so, please put it aside
and approach this chapter with a fresh and open mind.

Because this is a discrete mathematics book, we are going to restrict ourselves
to discrete probability. Effectively, we will only consider situations in which there
are a finite number of events that may happen. This makes a lot of things easier.
In fact, some things are so much easier that they appear to simply be counting
problems! However, they aren’t just counting problems. The concepts that lead to
these enumerations have much deeper meaning. If you approach such problems
as merely computations, you may fall prey to misconceptions. Focus instead on
the big ideas and let the computations be the pleasurable end of reducing harder
problems to easier problems.

We begin by explaining what probability is and how to calculate the most basic
of probabilities. Then the idea of random variable is introduced, and we define the
expected value of a random variable. Within discrete probability, expected value
is a fundamental concept that underpins almost all further study of probability.
The first Try This! lets you practice calculating basic probabilities and expected
values. With this experience with random variables in hand, you can then learn
about calculating more complicated probabilities—for values of random variables
under various constraints. A second Try This! gives many fun conditional prob-
ability calculations; you’d better remember PIE to be able to complete them! We
then return to expected value so that you can get a glimpse of the most common
use of probability in discrete mathematics—the probabilistic method.

To avoid potential confusion, our strategy will be to use a precise and detailed
approach. A benefit of this comparatively elaborate introduction is to use language
that is consistent with more advanced treatments of probability, so that when you
encounter them (as surely you will!) you will recognize the terminology and ideas.

445
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14.2 What Is Probability, Exactly?

According to English dictionaries, a probability is the likelihood that some given
event will occur. So in mathematics, the study of probability is the study of like-
lihoods of events. In order to focus on discrete probability (hey, this is discrete
mathematics), we will only consider situations where there are a finite number of
different events that might occur.
Example 14.2.1. When flipping a fair coin, it is equally likely that it will land heads
up and that it will land tails up. The probability of it landing heads up is 1

2 , as is
the probability of it landing tails up. When rolling a fair die, it is equally likely
that it will land with any particular face pointing towards the viewer. If the die has
six faces, then the probability of rolling a 2 is 1

6 (as is the probability of rolling a
1, 3, 4, 5, or 6). If the die has eight faces, then the probability of rolling a 2 is 1

8
(as is the probability of rolling a 1, 3, 4, 5, 6, 7, or 8).

Definition 14.2.2. A state space is the set of different states or configurations that
a system might have. It is also called a sample space.

Example 14.2.3 (of state spaces). For an ordinary light switch, the state space is
SL = {on,off}. For a coin to be flipped, the state space is SC = {heads, tails}.
Rolling a fair six-sided die has state space SD = {roll 1,roll 2, roll 3,roll 4,roll 5,
roll 6}. A system with a light switch and a coin has state space SLC = {on/heads,
on/tails,off/heads,off/tails}. We may also think of this state space as the Carte-
sian product SL ×SC = {(on,heads),(on, tails),(off ,heads),(off , tails)}.

Notice that a system cannot be in more than one state at the same time. This
means that states are exclusive. This is different from the possible events that may
occur. An event describes a collection of states; it is a subset of the state space.
Example 14.2.4. Using a fair die, we know that the probability of rolling an even
number is 1

2 . Here, the event is rolling an even number. Another die-related event
is rolling a number greater than 3 (for which the probability is also 1

2 on a six-sided
die). Notice that these two events are not exclusive: the state roll 4 is a possibility
for each of the two events.

Example 14.2.5 (of states vs. events). Suppose you toss two fair coins in the air.
When they land and flop, there might be two heads, one head and one tail, or two
tails. This might suggest that the state space is {head/head,head/tail, tail/tail}.
But that’s not true—the two coins are distinct, so the states are {head1/head2,
head1/tail2, tail1/head2, tail1/tail2}. Our original list of coin-landing possibilities
was a list of events rather than states.
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Example 14.2.5 exhibits but one of the many ways in which we can fool our-
selves when approaching probability problems. Let us define probability precisely
so that we may avoid errors. The definition may seem technical, but it translates
into our common-sense understanding of probability.

Definition 14.2.6. Let P : P(S) → [0,1] be a function from all subsets of a state
space to the unit interval {x | 0 ≤ x ≤ 1}. The function P measures probability if
the following are true:

P(S) = 1, that is, some event definitely occurs. In other words, the proba-
bility that the system is in some state is one.

P( /0) = 0, or there is no possibility that nothing happens. In other words, the
probability that the system is not in any state is zero.

For any element s ∈ S, P(s)≥ 0 and likewise for any subset (event) E ⊂ S,
P(E)≥ 0. That is, it does not make sense to have a negative probability.

Whenever two events E1,E2 are exclusive, meaning they cannot happen at
the same time, P(E1 or E2) = P(E1)+P(E2). Note that any two states are
exclusive, so their probabilities always have this property.

These conditions are known as the probability axioms.

A consequence of Definition 14.2.6 is that probabilities are unitless. Notice
that when we measure the probability of an event, or subset of states, we are ac-
tually measuring the probability that at least one of those states occurs. You can
also think of this as the probability that (for example) s1 or s2 or s3 occurs, in the
logic sense of or (see Chapter 2).

Example 14.2.7. Examining the light switch again, P({on,off}) = 1 and P( /0) = 0
because the switch is either on or off. It is possible that a switch is on or off,
so P(on),P(off) ≥ 0; because a switch cannot be both on and off, we know that
P(on,off) = P(on)+P(off) or, in other words, P(on)+P(off) = 1, which is what
we would think should be true.

Now, how do we decide what P(on) and P(off) are? This depends on our
specific light switch! If the light switch is in a common room with many windows,
it would be reasonable to say P(on) = .5 and P(off) = .5 because the lights will
be on whenever it’s dark. If the light switch is in a little-used basement, then it
would be reasonable to say P(on) = .1 and P(off) = .9 (or even P(on) = .05 and
P(off) = .95, or…). It is only when we know events occur equally often that we
can assign them the same probabilities.
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Just to reinforce a point: it’s easy to get confused when trying to reason in-
tuitively about probability. Seeming paradoxes can arise. (Their study is very
interesting but does not pertain to this course.) So if you find yourself in a prob-
ability situation that does not make sense, first ask yourself, What is your state
space? What are the events? Have you assigned probabilities so that the axioms
hold?

Check Yourself

You should do all of these problems to make sure you are ready for the ensuing sections.

1. What is the probability of rolling a 12 using a fair 20-sided die?
2. List the elements of the state space for flipping three fair coins at once.
3. List the elements of the state space for rolling an eight-sided die.
4. Determine the probability for each state in Example 14.2.5. What is the probability

of getting one head and one tail? To what subset of the state space does this event
correspond?

5. Challenge: Invent your own situation and list the elements of the corresponding
state space.

14.3 High Expectations

In order to consider events in a more general way, we will find the next definition
essential.

Definition 14.3.1. A random variable is actually a function (yes, even though it is
called a variable) X : S → N from a state space S to a finite set of real numbers
N. (This makes sense because S is also finite.) Usually N has units related to the
situation at hand.

Example 14.3.2. Consider the state space of possible rolls of an eight-sided die, S8.
The random variable O : S8 → {0,1} indicates when the roll is an odd value; that
is, O(roll 1) = 1, O(roll 2) = 0, O(roll 3) = 1, O(roll 4) = 0, O(roll 5) = 1,
O(roll 6) = 0, O(roll 7) = 1, and O(roll 8) = 0.

Another random variable returns the value of a roll, so we define V : S8 →
{1,2,3, 4,5,6,7,8} to give V (roll k) = k.

We can also define T : S8 → {0,1}, which indicates whether or not the roll is
a 2. That is, T (roll 1)= 0, T (roll 2)= 1, T (roll 3)= 0, T (roll 4)= 0, T (roll 5)= 0,
T (roll 6) = 0, T (roll 7) = 0, and T (roll 8) = 0.
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When we see the expression X(s) (where X is a random variable and s ∈ S), it
represents a number. Conversely, when we see the expression X = k, this defines
a subset of S—it’s those s ∈ S such that X(s) = k. In other words, X = k defines
an event on the state space.

Example 14.3.3. Using the notation fromExample 14.3.2,O= 1 represents {roll 1,
roll 3,roll 5,roll 7} ⊂ S8. Similarly, V = 1 represents {roll 1} ⊂ S8, T = 1 repre-
sents {roll 2} ⊂ S8, and T = 0 represents {roll 1,roll 3,roll 4,roll 5,roll 6,roll 7,
roll 8} ⊂ S8.

You can think of a random variable as assigning weights to states (like assign-
ing weights to vertices or edges in a graph). However, a random variable represents
a spectrum of possibilities (the possible values inN), and in this sense it is variable.

You might think of a random variable X as being like a whirlwind: it’s indeter-
minate and constantly spinning around, but with only a finite number of whirling
things it can drop when it stops. When we have X = value, that’s like having all
states s with X(s) = value glow green. In this visualization, P(X = value) makes
sense because it’s the probability that when you reach into the whirlwind, you pull
out some state that evaluates to value. And, P(X) must be 1 because you can pull
something out of the whirlwind.

Example 14.3.4. Consider four ducks that live together: one is white, one is white
with grey spots, one is grey with white spots, and one is black with white spots.
Together, all subsets of these four ducks form our state spaceCd .

We may define a random variableW : Cd →{0,1,2,3,4} that counts the num-
ber of ducks in a given subset that have white on them. For a single duck,W (d)= 1
if the duck in question has some white, andW (d) = 0 if the duck has no white on
it. For a subset A of the ducks, W (A) = |A| because every one of our ducks has
some white on it.

Similarly, define the random variable WH : Cd → {0,1} as WH(d) = 1 if the
duck in question is all white, andWH(d) = 0 if the duck is not all white. Then for
a subset A of the ducks, WH(A) = 1 if the all-white duck is in A, and WH(A) = 0
if the all-white duck is not in A.

Definition 14.3.5. The probability distribution of a random variable X is a display
of all possible values for X with the corresponding probabilities.

Example 14.3.6. Let us determine the probability distribution of the random vari-
able W defined in Example 14.3.4. To do this, we need to know how to evaluate
P(W = k) for the possible values of k. Suppose it is equally likely that we see any
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subset of the ducks. There are 24 = 16 subsets of the four ducks, and of those one
has zero ducks, four contain one duck, six contain two ducks, four contain three
ducks, and one contains all four ducks. Thus, P(W = 0) = 1

16 , P(W = 1) = 4
16 ,

P(W = 2) = 6
16 , P(W = 3) = 4

16 , and P(W = 4) = 1
16 . This list is one way of giving

the probability distribution. We might also use the following table.

Number of Associated
ducks with probability

white (W = k) (P(W = k))

0 1
16

1 4
16

2 6
16

3 4
16

4 1
16

To obtain the probability distribution for the random variable WH, we may
look at the duck subsets and discover that there are eight subsets that include the
all-white duck and eight subsets without the all-white duck. Thus, P(WH= 0) =
1
2 = P(WH= 1), which we could show as in Figure 14.1.

Definition 14.3.7. The expected value of a random variable X is denoted E[X ] and
is defined as E[X ] = ∑k∈N kP(X = k). Here, N is the target space of X , so the
expected value formula is adding up the probabilities of all possible values of the
random variable, each weighted by that value.

It is often useful to produce the probability distribution for X before comput-
ing E[X ].

Number of all-white ducks seen

Probability

1

10

1/2

Figure 14.1. The uninteresting probability distribution for the random variableWH.
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Example 14.3.8. Let us compute the expected value for each of the two random
variables defined in Example 14.3.4. By definition, E[W ] = 0P(W = 0) +
1P(W = 1)+2P(W = 2)+3P(W = 3)+4P(W = 4).We use the probability distri-
bution fromExample 14.3.6 to obtainE[W ] = 0 · 1

16 +1 · 4
16 +2 · 6

16 +3 · 4
16 +4 · 1

16 =
2white ducks. The practical interpretation is that we expect to see two ducks when
we go visiting.

Similarly, E[WH] = 0 · 1
2 + 1 · 1

2 = 1
2 white duck. That is, half the time we

expect to see the white duck.

In Definition 14.3.7, we say, “the expected value formula is adding up the
probabilities of all possible values of the random variable, each weighted by that
value.” This statement could be rephrased to say, “expected value is the sum of
all the probabilities of all the states, each weighted by the value of the random
variable at that state.” This phrasing differs by focusing on the states rather than
on the values of the random variable. In symbols, this says expected value is
∑s∈S X(s)P(s). Does this truly give the same results as Definition 14.3.7?

Example 14.3.9. Let’s return to S8. By Definition 14.3.7, we have E[O] = 0 ·
P(O = 0) + 1 · P(O = 1) = 0 · 1

2 + 1 · 1
2 = 1

2 . What does ∑s∈S8 O(s)P(s)
give us?

∑
s∈S8

O(s)P(s) = O(roll 1)P(roll 1)+O(roll 2)P(roll 2)+O(roll 3)P(roll 3)

+O(roll 4)P(roll 4)+O(roll 5)P(roll 5)+O(roll 6)P(roll 6)

+O(roll 7)P(roll 7)+O(roll 8)P(roll 8)

= 1 · 1
8
+0 · 1

8
+1 · 1

8
+0 · 1

8
+1 · 1

8
+0 · 1

8
+1 · 1

8
+0 · 1

8

= 4 · 1
8
=

1
2
= E[O].

So far, so good.
We’ll compute for the other two random variables we defined on S8 as well:

E[V ] = 1 ·P(V = 1)+2 ·P(V = 2)+3 ·P(V = 3)+4 ·P(V = 4)

+ 5 ·P(V = 5)+ 6 ·P(V = 6)+7 ·P(V = 7)+8 ·P(V = 8)

= 1 · 1
8
+2 · 1

8
+3 · 1

8
+4 · 1

8
+5 · 1

8
+6 · 1

8
+7 · 1

8
+8 · 1

8

= (1+2+3+4+5+6+7+8)
1
8
= 36 · 1

8
=

9
2
,
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and on the other hand

∑
s∈S8

V (s)P(s)=V (roll 1)P(roll 1)+V (roll 2)P(roll 2)+V (roll 3)P(roll 3)

+V (roll 4)P(roll 4)+V (roll 5)P(roll 5)+V (roll 6)P(roll 6)

+V (roll 7)P(roll 7)+V (roll 8)P(roll 8)

=1 · 1
8
+2 · 1

8
+3 · 1

8
+4 · 1

8
+5 · 1

8
+6 · 1

8
+7 · 1

8
+8 · 1

8
=

9
2

as before. Excellent.
Now, E[T ] = 0 · P(T = 0) + 1 · P(T = 1) = 0 · 7

8 + 1 · 1
8 = 1

8 by
Definition 14.3.7. Using the state-focused computation instead, we have
T (roll 1)P(roll 1) + T (roll 2)P(roll 2)+T (roll 3)P(roll 3)+T (roll 4)P(roll 4)+
T (roll 5)P(roll 5)+T (roll 6)P(roll 6)+T (roll 7)P(roll 7)+T (roll 8)P(roll 8) =
0 · 1

8 +1 · 1
8 + 0 · 1

8 +0 · 1
8 +0 · 1

8 +0 · 1
8 +0 · 1

8 +0 · 1
8 = 1

8 . Yup! The same.

It seems like the two ways of looking at expected value give the same results…
at least for the examples we checked. How can we see that these two perspectives
are secretly the same? We’ll have to prove it.

Lemma 14.3.10. ∑
k∈N

kP(X = k) = ∑
s∈S

X(s)P(s).

Proof: Notice first that P(X = k) is ∑s such that X(s)=k P(s). In words, the probabil-
ity that X takes on the value k is the sum of the probabilities of the states at which
X has the value k. This makes sense because any two states are exclusive (they
cannot happen at the same time).

Now, we have that ∑k∈N kP(X = k) = ∑k∈N k ∑s such that X(s)=k P(s). Here
the inner sum does not depend on k, so we can push k inside to obtain
the expression ∑k∈N ∑s such that X(s)=k kP(s). But wait! Inside the inner
sum, each occurrence of k is linked to a particular s because we have
restricted to s with X(s) = k. Therefore, k = X(s) and we may rewrite as
∑k∈N ∑s such that X(s)=k X(s)P(s). Now the double sum can be seen as a single
sum as follows. The inner sum adds over a batch of k-related states and then the
outer sum adds the batches (over k), which is also just adding over all
possible states s. We now arrive at ∑s∈S X(s)P(s) and our proof is complete. �

Lemma 14.3.10 is useful because in some situations it’s simpler to compute
P(s) for all states s, and in others (for example,Cd), it’s easier to compute P(X = k)
for all values k (that is, the probability distribution of X).
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We could view a state space and random variable as a box containing a whirl-
wind of indeterminate states. When we open the box, we see what state the system
is in (and can figure out what corresponding value the random variable has). Then,
when we compute expected value, we are asking what result we expect when we
open the box—not what state we expect, but what value for the random variable
we expect. This is because different states can give the same value to a random
variable. This also means we can expect a result that corresponds to no individual
state.

Example 14.3.11. Suppose we have two excitable children Adrian and Maryam
who have chairs a and m. Every few minutes some happy music starts, and the
two children bop around until a bell rings, at which time they sit down again in
the nearest chairs. Either Adrian sits in chair a and Maryam sits in chair m (state
Aa/Mm) or Adrian sits in chair m and Maryam sits in chair a (state Am/Ma). How
many children do we expect will be sitting in their own chairs at any given time?

First, let us identify a random variable: it’s the number of children sitting in
their own chairs at some time. Next, we identify the state space S = {Aa/Mm,
Am/Ma}. We can now figure out what values the random variable should take on
for each element of the state space. So, X(Aa/Mm) = 2 children sitting in their
own chairs andX(Am/Ma) = 0 children sitting in their own chairs. More formally,
we have that X : S →{0,2}, and the units on {0,2} are children sitting in their own
chairs.

Because the children are excitable and boppy, it is equally likely that the first
one to sit down will land in hir own chair or in the other chair. Thus, P(Aa/Mm) =
P(Am/Ma) = .5. These states are exclusive and form the whole state space, so
P(Aa/Mm)+P(Am/Ma) = 1.

Now we can compute the expected value E[X ]. By definition, E[X ] =
0P(X = 0) + 2P(X = 2). When X = 2, we can only have the state Aa/Mm and
so P(X = 2) = 1

2 . Likewise, when X = 0 we must have the state Am/Ma and so
P(X = 0) = 1

2 . This gives E[X ] = 2 · 1
2 = 1. We can also use Lemma 14.3.10

to compute E[X ]. We have only two states, so there will be only two terms:
X(Aa/Mm)P(Aa/Mm)+X(Am/Ma)P(Am/Ma) = 2 ·0.5+0 ·0.5 children sitting
in their own chairs = 1 child sitting in hir own chair. Notice that this expected
value does not correspond to any possible state of the state space! Expected value
can be weird.

Let’s go back to the start of our question again. We asked, “Howmany children
dowe expect will be sitting in their own chairs at any given time?” Theword expect
told us we should do an expected value calculation. But we also could have asked,
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“What’s the average number of children who will be sitting in their own chairs at
any given time?” For a discrete probability situation this, too, would have been
answered by our expected value calculation. We will explore why this is generally
true in Problem 6 of Section 14.12. For this case, we can calculate the average
number of children sitting in their own chairs as follows: an average consists of
the sum of the values of all possible states divided by the total number of states.
Here, that gives us 2+0

2 = 1.

Check Yourself

Do at least one of the first three of these problems.

1. Compute the expected value for each of the random variables defined in Exam-
ple 14.3.4, assuming that you always see all four ducks when you go visiting. Com-
pute the probability distribution, use the definition of expected value, and then use
Lemma 14.3.10.

2. Define a random variable B describing the number of black ducks you see when
you visit the ducks from Example 14.3.4.

(a) What is N?
(b) Give P(B = n) for each n ∈ N (the probability distribution of B).
(c) Compute E[B].

3. Define a random variable G, the number of grey ducks you see when you visit the
ducks from Example 14.3.4, and compute its expected value.

4. Challenge: For the state space you created in the Check Yourself Challenge in
Section 14.2, define at least one random variable.

14.4 You Are Probably Expected to Try This!

Explore the relationships between probability and expectation with your peers.

1. Suppose you have two fair dice, a 12-sided die and a four-sided die.

(a) Describe the state space of rolling these two dice.
(b) What is P((roll 11,roll 3))?
(c) What is P((roll 11,roll 3) or (roll 12,roll 2))?
(d) What is P(roll a total of 14)?
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(e) What is P(roll a total not equal to 14)?
(f) Define a random variable F that describes whether or not the total

rolled is 14.
(g) Compute E[F ].

2. Suppose you have two fair six-sided dice, one red and one blue.

(a) Describe the state space of rolling these two dice.
(b) Consider the event of rolling an even sum, and define a random vari-

able E that describes whether or not this event happens.
(c) Compute E[E].
(d) Consider the number of odd numbers rolled, and define a random vari-

able O that counts the number of odd numbers rolled.
(e) Compute E[O]. (Be sure to note the units on the result.)
(f) What changes, if anything, if both of your dice are red?

3. In early December 2011, the Yarn Harlot felt “a mitten thing coming on”
and, with eight colors of yarn—orange, red, yellow, lime green, forest green,
robin’s egg blue, indigo, and black—knitted a pile of mittens (true story).
Suppose she knitted eight pairs of mittens, one left mitten and one right
mitten of each base color, and placed them in the mitten box.

(a) Describe the state space of pulling a mitten from the box.
(b) What is P(left mitten)?
(c) What is P(cool color of mitten)? (Greens, blues, and purples are cool

colors. Reds, oranges, and yellows are warm colors.)
(d) What is P((left mitten) or (cool color of mitten))?
(e) What is P((left mitten) and (cool color of mitten))?
(f) Design your own random variable R on this state space and compute

E[R].

14.5 Conditional Probability and Independence

Consider a single fair die with six sides and state space {roll 1,roll 2,roll 3,roll 4,
roll 5,roll 6}. There is a natural random variable X measuring the number of pips
showing after rolling the die, so that X(roll k) = k pips. However, there are some
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other random variables that can be defined on this state space. Consider Y indi-
cating the parity of the number of pips showing after rolling the die, Z indicating
whether the number of pips showing after rolling the die is less than 5, and W
revealing whether the die rolls a 3 or not. For these three random variables, we
have

Y (roll k) =
{

1 k is even,
0 k is odd;

Z(roll k) =
{

1 k ≥ 5,
0 k < 5;

W (roll k) =
{

1 k = 3,
0 k ̸= 3.

We can measure probabilities of random variables having particular values.
So, for example, we could compute P(X = 1), which is the same as P(roll 1) = 1

6 .
We could also compute P(Y = 1), which is the same as P(roll 2 or roll 4 or roll 6)
= P(roll 2)+P(roll 4)+P(roll 6) = 1

2 . Similarly, P(Z = 1) = P(roll 5 or roll 6)
= P(roll 5)+P(roll 6) = 1

3 and P(W = 1) = P(roll 3) = 1
6 .

Now, let us consider P(Y = 1 and Z = 1). The only state in which both Y = 1
and Z = 1 is when a 6 is rolled. Therefore, P(Y = 1 and Z = 1) = 1

6 .

Compare the probability of rolling an even value given that the only values
possible are 5 and 6 to the probability of rolling an even value when all six values
1, 2, 3, 4, 5, and 6 are possible; in each case, half of the values are even. We have
P(Y = 1 and Z = 1) = 1

2 ·
1
3 = 1

6 and P(Y = 1 and s ∈ S) = 1
2 ·1 = 1

2 . Thinking of
this information differently, we see that

P(Y = 1 and Z = 1)
P(Z = 1)

=
1
6
1
3

=
1
2

and
P(Y = 1)
P(s ∈ S)

=
1
2
1
=

1
2
.

This more closely reflects what we were trying to measure, which is the probability
of something happening (in this case, Y = 1) when the state space is restricted (in
the first case, to states where Z = 1 and in the second case, to all states (which is
not a restriction at all)).

Definition 14.5.1. The conditional probability that event E1 happens, given that E2

definitely occurs, is denoted P(E1|E2) and is measured by P(E1 and E2)
P(E2)

.

Example 14.5.2. Continuing with our die-roll random variables, let us compute the
probability thatW = 1 given thatY = 1. Intuitively, we expect that this probability
should be zero, because 3 is not even. Indeed, there are no states whereW = 1 and
Y = 1, so the numerator of P(W=1 and Y=1)

P(Y=1) is zero.
Now let us compute P(Y = 1|W = 0). There are three of the six states for

which Y = 1 and W = 0, so P(Y = 1 and W = 0) = 1
2 . There are five states
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for which W = 0, so P(W = 0) = 5
6 . Thus, P(Y = 1|W = 0) = 3

5 . We could also
directly notice that ifW = 0, there are five states to consider, of which three have
the property Y = 1.

We will also compute the probability that W = 0 given that Z = 0. There are
four states for which Z = 0, of which three (rolling a 1, 2, or 4) haveW = 0; thus,
P(W = 0|Z = 0) = 3

4 . We could instead use the definition and note that there are
three states whenW = 0 and Z = 0, and six states total, soP(W = 0 and Z = 0)= 1

2 .
There are four states for which Z = 0, so P(Z = 0) = 2

3 . The quotient of these
fractions is 3

4 .
Finally, we will compute P(Z = 0|W = 0). We know that P(W = 0 and Z = 0)

= 1
2 . There are five states for which W = 0, so P(W = 0) = 5

6 . Thus, P(Z = 0|
W = 0) = 3

5 .

Example 14.5.3. The dread disease Dread Disease (DD) occurs in 0.000004 of the
population. (It’s rare—four out of every million people get it.) Thankfully, we
can test for DD using ToDD (the Test of Dread Disease). If someone has DD,
then ToDD is positive 95% of the time. (This measure is called the sensitivity of a
test.) If someone does not have DD, then ToDD is positive 3% of the time. (The
measure of someone not having a disease testing negative is called the specificity
of a test.) Given that someone has a positive ToDD, what is the chance this person
has DD?

First, we translate to probability language: we seek P(DD|ToDD+). To com-
pute this, we need to know P(DD and ToDD+) and P(ToDD+). However, we are
not given either of these quantities! How do we compute them?

To findP(DD and ToDD+), wemultiply the incidence of DD in the population
(0.000004) by the percentage of DD-ridden people who test positive (95%), and
get 0.0000038. This basically means that 38 of every 10 million people have DD
and test positive for DD. Finding P(ToDD+) is slightly more challenging. Notice
that someone who tests positive either has DD or doesn’t, and these are exclusive
of each other, so P(ToDD+) = P(DD and ToDD+)+P(not-DD and ToDD+).
Thus we compute P(ToDD+) = 0.0000038+(1− .000004)(.03) = 0.0300037,
so slightly more than 3% of the population tests positive for DD.

Putting this all together, P(DD|ToDD+) = 0.0000038/0.0300037, which is
0.000126651 or .012%, sowemay conclude that the chance of someonewith a pos-
itive ToDD has about a one-in-ten-thousand chance of having DD. (That’s much
higher than the four-in-a-million chance in the general population, however!) A
fun fact—or really, not-so-fun fact—studies show that physicians consistently and
wildly misestimate the answer to this type of question; see “Simple tools for un-
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derstanding risks,” BMJ (2003), available at https://www.ncbi.nlm.nih.gov/pmc/
articles/PMC200816/.

Example 14.5.4. We have a group of friends, of whom 2
3 own cats. A local veteri-

nary office sends out vaccination reminder postcards; 3
4 of the cat owners receive

these postcards and 1
5 of the friends who do not own cats receive these postcards.

What fraction of the friends receive postcards?
Let’s see. Informally, three-quarters of the 2

3 cat-owning friends receive post-
cards, which is 1

2 of the friends. Also, 1
5 of the 1

3 non-cat-owning friends receive
postcards, which is 1

15 of the friends. Together, this accounts for 1
2 +

1
15 = 17

30 of
the friends receiving postcards.

More formally, our state space is the set of friends, where each friend F has
two attributes (owning/not owning a cat and receiving/not receiving a postcard).
There are two random variables that naturally arise from this situation,

C(F) =

{
1 F owns a cat,
0 F owns no cats,

and R(F) =

{
1 F receives a postcard,
0 F receives no postcard.

We want to know P(R = 1), the probability that a friend receives a postcard.
We can view this as the probability that a friend receives a postcard and owns a cat
plus the probability that a friend receives a postcard and owns no cats.

In notation, we write the fact that 2
3 of our friends own cats as P(C = 1) = 2

3 .
What about the fact that 3

4 of our cat-owning friends receive postcards? Ah, this
is conditional probability: we know for sure that these friends own cats, and given
this, we measure the probability that they get postcards. We see that P(R = 1|
C = 1)P(C = 1) = 1

2 . Similarly, we have P(R = 1|C = 0)P(C = 0) = 1
15 . Finally,

we compute P(R = 1) = 1
2 +

1
15 = 17

30 .
Now: if a postcard arrives, what is the probability that the recipient owns a

cat? In other words, we want to measure the probability that a friend owns a cat
given that ze has received a postcard, or P(C = 1|R = 1). By definition, this is
P(C=1 and R=1)

P(R=1) . We also know that P(C = 1 and R = 1) = P(R = 1 and C = 1) =

P(R = 1|C = 1)P(C = 1) = 1
2 . Thus, P(C = 1|R = 1) = 1/2

17/30 = 15
17 .

The idea of conditional probability leads to another frequently used concept.

Definition 14.5.5. Two events A and B are independent if P(A|B) = P(A) and
P(B|A) = P(B). In other words, if the probability that A happens is the same
whether B happens or not, and if the probability that B happens is the same whether
A happens or not, then events A and B are independent of each other.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC200816/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC200816/
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Interesting fact. If A and B are independent, then P(A|B) = P(A and B)
P(B)

= P(A), so that P(A and B) = P(A)P(B), and likewise, P(B|A) =
P(B and A)

P(A) = P(B), with the same result. This gives us a tool for computing
probabilities of multiple independent events as well as a criterion for deter-
mining whether events are independent.

Example 14.5.6. Are the two events receiving a postcard and owning a cat from
Example 14.5.4 independent? If they are, then P(C = 1 and R = 1) =
P(C = 1)P(R = 1). We have already determined their values; does 1

2 equal
2
3

17
30 = 17

45? No, so these events are not independent. We could also see this by
noticing that P(C = 1) ̸= P(C = 1|R = 1) (because 1

2 ̸= 15
17 ) and that P(R = 1) ̸=

P(R = 1|C = 1) (because 17
30 ̸= 3

4 ).

Independence as a concept means that two events have nothing to do with each
other; each occurs or does not occur independent of whether the other occurs (or
does not occur). But we need to have a mathematical definition of independence
as well, so that we can test to make sure that our assignments of probabilities to
events are consistent. Notice that if P(A|B) = P(A), then P(A and B) = P(A)P(B),
from which it follows that P(A and B)

P(A) = P(B) = P(B and A)
P(A) , i.e., P(B|A) = P(B).

An independence criterion. From the previous paragraph, P(A|B) = P(A)
⇐⇒ P(B|A) = P(B); this means we only need to check one of the two con-
ditions in practice.

14.5.1 The Helpfulness of PIE in the Real World of Probability

An insurance company wants to offer a bare-bones policy for health insurance. It
will cover visits to the emergency room (ER), and it will cover hospitalizations.
(A hospitalization means that someone was checked into the hospital.) What is
the expected annual cost of issuing such a policy? The company needs to charge
more than the expected annual cost in order to break even (because there are also
administrative costs of running a business).

We will compute the expected annual cost incurred by a holder of an ER-and-
hospitalizations policy in Massachusetts in the 2008–2010 time frame. During
these years, there were about 28 outpatient ER visits per 100 people, 7 ER visits
that resulted in hospitalization per 100 people, and 5 hospitalizations from sources
other than the ER per 100 people (and all frequencies are given per year). If we let
EO represent the event of an outpatient ER visit, EH represent the event of an ER
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visit that results in hospitalization, and HN represent the event of a hospitalization
not occurring as the result of an ER visit, then we have (on average) that P(EO) =
.28, P(EH) = .07, and P(HN) = .05 per person per year.

However, there is some overlap because people who have outpatient ER visits
and hospitalizations not from ER visits (also known as the event EO and HN) are
counted in the 28 outpatient ER visits per 100 people and in the 5 non-ER hospital-
izations per 100 people. In order to compute the expected annual cost incurred by
all possible ER-and-hospital healthcare events, we will need to find P(EO andHN)
(and, for that matter, P(EO and EH), P(EH and HN), and P(EO and EH and HN)).

Remember the principle of inclusion-exclusion from Sections 7.3 and 7.5? In
its simplest form for sets A,B, PIE says that |A∪B|= |A|+ |B|− |A∩B|.

ProbabiliPIE. PIE applies to probabilities of events E1,E2, so that P(E1 or E2)
= P(E1)+P(E2)−P(E1 and E2). (Of course, PIE generalizes to probabilities
of many events in the same way that PIE generalized for sets.)

We have to assume that EO, EH, and HN are independent of each other, be-
cause no data are readily available to calculate otherwise. We can now find

P(EO and HN) = (.28) · (.07) = .0196,

P(EO and EH) = (.28) · (.05) = .014,

P(EH and HN) = (.07) · (.05) = .0035,

P(EO and EH and HN) = (.28) · (.07) · (.05)≈ .001.

Notice now that the event EO measures whether or not an outpatient ER visit
happens—it does not exclude the possibility of some sort of hospitalization hap-
pening as well. So we need to also compute, using PIE,

P(EO only)

= P(EO)−P(EO and EH)−P(EO and HN)+P(EO and EH and HN)
= 0.28− .0196− .014+ .001 = .2474.

Similarly, P(EH only) = .07− .0196− .0035+ .001 = .0479, and P(HN only) =
.05− .014− .0035+ .001 = .0335. Additionally, we must compute

P((EO and EH) only) = P(EO and EH)−P(EO and EH and HN)
= .0196− .001 = .0186,
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and similarly, P((EO and HN) only) = .014− .001 = .013 and P((EH and HN)
only) = .0035− .001 = .0025.

Even though we have broken down the possible healthcare events into a collec-
tion of exclusive events, we cannot yet compute the expected annual cost incurred!
We have to define a random variable for which we can compute an expected value.
LetC(event) be the average cost of that event, whereby healthcare data shows that
C(EO) = $700 andC(EH) =C(HN) = $12,073. This tells us that

C(EO and EH) = $700+$12,073 = $12,773,

C(EO and HN) = $700+$12,073 = $12,773,

C(EH and HN) = $12,073+$12,073 = $24,146,

C(EO and EH and HN) = $700+$12,073+$12,073 = $24,846.

Now we can calculate the expected annual cost using the Lemma 14.3.10 ex-
pressionE[C] =∑s∈S C(s)P(s), which in this case producesE[C] = $700·(.2474)+
$12,073 · (.0479) + $12,073 · (.0335) + $12,773 · (.0186) + $12,773 · (.0025) +
$24,146 · (.013)+$24,846 · (.001) = $1,764.

For comparison, in this same time period, an individual healthcare policy in
Massachusetts that covers ER visits and hospitalizations costs $400/month, for a
total annual revenue of $4,800 for the insurance company. (This policy also cov-
ered routine physician visits and prescription drugs and had a $1,000 deductible,
but we could consider those to roughly cancel out over a year.)

14.5.2 Independence versus Exclusivity

We have earlier noted that two events being independent means that one event has
no bearing on whether the other happens or not. We know that two events being
exclusive means they cannot happen at the same time. So they are dependent on
each other! If E1 and E2 are exclusive, when E1 happens then P(E1) = 1 and this
implies P(E2) = 0. That is, P(E1 ∩E2) = 0. In other words, independence and
exclusivity are in some sense opposite ends of a spectrum.

Example 14.5.7. Let us again consider a fair die with six faces and the random
variable Y as defined at the start of the section. Certainly the probability of rolling
an even number is equal to the probability of rolling an odd number, so P(Y =
1) = P(Y = 0) = 1

2 . And the events of rolling an even number and of rolling an
odd number are exclusive (and commensurately, Y cannot equal both 1 and 0) so
that P(Y = 1 and Y = 0) = 0. Now, notice that P(Y = 1)P(Y = 0) = 1

2 ·
1
2 = 1

4 ̸= 0.
So these exclusive events are not independent! Again, we can see that PIE works
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here, as P(Y = 1 or Y = 0) = P(Y = 1)+P(Y = 0)−P(Y = 1 and Y = 0) or in
other words, 1 = 1

2 +
1
2 −0.

Example 14.5.8. Here is an example of PIE with whipped probability topping.
Suppose that we know that P(E1) =

3
5 and that P(E2) =

1
3 . How large and how

small might P(E1 and E2) and P(E1 or E2) be?
There are three possibilities for the behavior of E1 and E2: E1 and E2 are in-

dependent; E1 and E2 are exclusive; or, E1 and E2 are neither independent nor
exclusive.

If E1 and E2 are exclusive, then from the probability axioms (or using PIE)
we have P(E1 or E2) = P(E1)+P(E2) =

3
5 +

1
3 = 14

15 . This is the maximum value
P(E1 or E2) can have, as if E1 and E2 are not exclusive, then P(E1 and E2) > 0.
The minimum value of P(E1 or E2) = max{P(E1),P(E2)}= P(E1) =

3
5 .

If E1 and E2 are independent, then P(E1 and E2) = P(E1)P(E2) =
3
5 ·

1
3 = 1

5 .
Notice that this is not the maximum value possible for P(E1 and E2)! Suppose,
for example, that whenever event E2 happened, event E1 happened as well. Then
P(E1 and E2) = min{P(E1),P(E2)} = 1

3 . Another way to see this is to use PIE;
P(E1 and E2) = P(E1)+P(E2)−P(E1 or E2) ≤ 3

5 +
1
3 −

3
5 = 1

3 . We also know
that the minimum value for P(E1 and E2) = 0 in the case that E1,E2 are exclusive.
Additional information about either E1 or E2 informs our understanding of the
probabilities of both.

Check Yourself

Verify your understanding by attempting these problems.

1. In Example 14.5.4, what if only 1
10 of the friends own cats?

2. Are the eventsW = 0 and Z = 0 (as defined above) independent?

3. Consider the random variable Y as defined at the start of the section and a new
random variable

V (roll k) =
{

1 k ≤ 3,
0 k > 3.

Are the events Y = 1 and V = 1 independent?

4. Examine Problem 3 of Section 14.4, and redo the problem using your new knowl-
edge of independence and PIE.

5. State a version of PIE for the probabilities of three events.
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14.6 Try This! …, Probably, Under Certain Conditions

Experiment with conditional probability with your peers, and do not be surprised
if some of the later questions take you quite a while to resolve.

1. The Minbari have three castes (worker, religious, and warrior), and some
Minbari enjoy eating the ceremonial food flarnwhereas others do not. Trans-
late the following questions into the language of random variables and con-
ditional probability—no computations are desired.

(a) What is the probability that a Minbari is religious caste and likes to eat
flarn?

(b) What is the probability that a religious-caste Minbari likes to eat flarn?
(c) If a Minbari is religious caste, what is the probability that ze likes to

eat flarn?
(d) If a Minbari likes to eat flarn, what is the probability that ze is religious

caste?
(e) What is the probability that a Minbari who likes to eat flarn is religious

caste?

2. The game SET is played with a deck of cards. Each card has one, two, or
three symbols; each symbol is red, green, or purple; each symbol is shaded,
open, or filled; and each symbol is a diamond, oval, or squiggle. There is
exactly one card with each possible combination of attributes.

(a) How many SET cards are there?
(b) Draw a card from the SET deck. What is the probability that …

(i) … the card has three symbols?
(ii) … the card is shaded?
(iii) … the card is shaded and has three symbols?
(iv) … the card is shaded or has three symbols?

(c) Are three-ness and shaded-ness independent events or not?
(d) Draw two cards. What is the probability that both cards have filled

symbols?
(e) Draw two cards. What is the probability that at least one card is green?
(f) Draw two cards. What is the probability that at least one card has two

diamonds?
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(g) Draw two cards. Use conditional probability to determine whether or
not the first card being green is independent of the second card having
two diamonds. (Think carefully. Does it matter whether the second
card is green? Whether the first card has two diamonds?)

(h) Draw two cards. Use conditional probability to determine whether or
not both cards having filled symbols is independent of at least one card
being green.

(i) If you have never before played SET, go find a deck and learn how to
play it. SET is way fun!

3. You enter the local doughnut shop. The pickings are slim:

one maple-frosted raised doughnut,
two chocolate-frosted chocolate cake doughnuts with sprinkles,
one chocolate-frosted raised doughnut,
three glazed raised doughnuts,
one white-frosted raised doughnut with sprinkles,
one blueberry cake doughnut,
one chocolate-frosted cake doughnut,
one glazed chocolate cake doughnut.

Sighing, you ask the counter clerk to choose three doughnuts for you arbi-
trarily. Assuming that hir choices are arbitrary, what is the probability that
you will get…

(a) … three raised doughnuts?
(b) … exactly two raised doughnuts?
(c) … at least one doughnut with sprinkles?

14.7 Higher Expectations

In practice, the following theorem will make computing expected values much
easier.
Theorem 14.7.1. For a bunch of random variables X1,X2, . . . ,Xn on a state
space S, we have that ES[X1 + X2] = ES[X1] + ES[X2], and, in fact,
ES[∑n

j=1 X j] = ∑n
j=1ES[X j].
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Before we try to prove this statement, we need to know what it means! Basi-
cally, it says that if we want to compute the expected value of a random variable R,
and we happen to be able to write R as a sum of other random variables (that is,
R = ∑n

j=1 X j), then we can compute the expected values for the individual X j and
add them up. Usually this is much easier than trying to figure out E[R] on its own.

We also need to knowwhat it means to take the sum of some random variables!
We will think of this in the sense of adding functions, because random variables
are functions. Thus, X1 +X2 : S → N, defined by (X1 +X2)(s) = X1(s)+X2(s).

Proof: We will show that ES[X1]+ES[X2] = ES[X1 +X2]. Then the statement can
be shown by induction on n.

By definition, ES[X ] = ∑k∈N kP(X = k). Thus, ES[X1] + ES[X2] = ∑k∈N k
· P(X1 = k) + ∑k∈N kP(X2 = k). By Lemma 14.3.10, this expression is equal
to ∑s∈S X1(s)P(s) + ∑s∈S X2(s)P(s). Combining the sums, ∑s∈S X1(s)P(s) +

∑s∈S X2(s)P(s) = ∑s∈S X1(s)P(s)+X2(s)P(s); collecting the terms, this is equal
to ∑s∈S(X1(s)+X2(s))P(s), which by definition is equal to ∑s∈S(X1 +X2)(s)P(s).
Again by Lemma 14.3.10, this expression equals ∑k∈N kP((X1 + X2) = k) =
ES[X1 +X2].

By induction, the statement is also true for n random variables. (The induction
portion of the proof is assigned as Problem 22 in Section 14.12.) �

Notice that we did not require any of the events involved in these random vari-
ables to be independent or exclusive! That makes the result somewhat surprising.
Theorem 14.7.1 turns out to be incredibly useful because it reduces complex prob-
lems to collections of simpler problems.

Example 14.7.2. There are generally a dozen cat toys in rotation at any one time
in the author’s house. Every week when the vacuuming is done, these are rounded
up and put in a pile, and every week the cats redistribute toys through the house.
On any given day, what is the expected number of toys removed from the pile?

The random variable T describes the number of toys in the pile. We will write
T = ∑12

i=1 Ti, where

Ti(day d) =
{

1 toy Ti is grabbed,
0 toy Ti is in the pile

because it is easier to compute with the Ti.
Note that P(Ti = 1) = 1

7 because it is equally likely that a cat will first grab a
toy on any day, so E[Ti] = 1P(Ti = 1)+0P(Ti = 0) = 1

7 .
In turn, by Theorem 14.7.1, E[T ] =∑12

i=1E[Ti] =∑12
k=1

1
7 =

12
7 . Thus, we expect

there to be almost two toys removed from the pile on any given day.
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Example 14.7.3. Let’s generalize our earlier example of two ebullient children
playing near chairs. Imagine n staid adults, each of whom has a chair. When a
musical triangle sounds (*ding!*), the adults tiredly arise and shuffle about, sit-
ting again only on a second ding of the triangle. But wow, is that boring. Forget
about boring adults! Instead, consider n ducks, each of whom has a paddlepool.
The ducks are d1, . . . ,dn and the paddlepools are p1, . . . , pn. Every so often, a hu-
man walks by and the ducks become alarmed, quacking and beating their wings
and waddling and flying about. After the human leaves, the ducks settle down
again to their one-duck-per-pool state. Question: How many ducks do we expect
will be swimming in paddlepools of the same label?

We have a natural random variable X that counts the number of ducks paddling
in their matching pools. If it is equally likely that any arrangement of ducks in
paddlepools happens, then the ith duck paddles in hir namesake pool about 1

n of
the time. Now, if we let Xi be the indicator random variable with value 1 when
the ith duck paddles in hir same-label pool and value 0 when the ith duck paddles
elsewhere, then we can describe X as follows. The number of ducks paddling in
their matching pools is the number of the Xi with value 1. So adding the Xi as
functions, we have that ∑n

i=1 Xi = X .
Nowwe can answer, “Howmany ducks dowe expect will be swimming in pad-

dlepools of the same label?” by computing E[X ]. We know that E[X ] = E[∑n
i=1 Xi]

and can use Theorem 14.7.1 to see that this is equal to ∑n
i=1E[Xi]. Now we just

need to compute E[Xi] and we should be all set. Each Xi only takes on the values
0 and 1, so E[Xi] = 0 ·P(Xi = 0)+ 1 ·P(Xi = 1) = 0+P(Xi = 1) = 1

n . Finally,
∑n

i=1E[Xi] = ∑n
i=1

1
n = n 1

n = 1. So, no matter how many ducks are involved in
swapping paddlepools, we expect that just one will be in its own pool!

14.7.1 That’s Wild! (A Hint at the Probabilistic Method)

Some people are invited to a silly party. As they arrive, some of the guests shake
hands, for a total of m handshakes. The host also hands out party hats, some of
which are teal and the rest of which are emblazoned with ducks. Is there a way
for the host to hand out hats so that no more than m

2 of the handshakes take place
between duck-emblazoned-hat-wearing and teal-hat-wearing party-goers? The an-
swer is “yes,” as follows.

Theorem 14.7.4. Supposewe have a simple connected graphwithm> 3 edges
and at least four vertices. Then there exists a set of at most m

2 edges whose
removal disconnects the graph.
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At first glance, and probably even at sixth glance, this theorem has nothing to
do with probability or expectation. Yet we would not mention it here if there were
no connection! So hang on and bear with us.

It suffices to show that there exists a way of assigning the letters D (for duck-
emblazoned) and T (for teal) to the vertices (party-goers) of the graph such that
there are no more than m

2 edges (handshakes) with D on one vertex and T on the
other. Why? Because if we ask all of theD vertices (people) to collect in one place
and all of the T vertices to collect in another place, and remove all of the D−T
(or T −D) edges, then there will be no way to get from the D collective to the T
collective, and therefore, the graph will not be connected.

Let’s set up a state space, probability measure, and random variables. And
let us label the vertices of the graph at random. Each edge could have its ends
labeled as D−D, D− T , T −D, or T − T . The state space of a single edge is
Se = {D − D,D − T,T − D,T − T}. Because there are m edges, a state of the
system can be represented by an m-tuple of edge labelings. We could think of a
state as an element in the Cartesian product (m times) of the state space of a single
edge.

It is equally likely that a vertex would be labeled D or T , and the vertex la-
bels are independent of each other, so the probabilities for a single edge e are
Pe(D−D) = 1

4 , Pe(D− T ) = 1
4 , Pe(T −D) = 1

4 , and Pe(T − T ) = 1
4 . There is a

random variable associated with each single edge e,

Xe(Se) =

{
1 e has a mixed label (two different vertex labels),
0 e has the same label on both vertices.

Note that P(Xe = 1) = 1
2 = P(Xe = 0). Then we may define a random variable X

as the number of edges with mixed labels, and X = ∑e Xe.
Nowwe can reveal the crux of the proof. Oh, wait, we haven’t even announced

we are doing a proof!

Proof of Theorem 14.7.4: Using the notation introduced in the previous para-
graphs, let us compute E[X ] = E[∑e Xe]. By Theorem 14.7.1, E[∑e Xe] =

∑eE[Xe] = ∑e(1 ·P(Xe = 1)+0 ·P(Xe = 0)) = ∑e
1
2 . There are m edges, so ∑e

1
2 =

m · 1
2 = m

2 . So, the expected value of the number of edges with mixed labels is
m
2 .

We may interpret the expected value as calculating the average number of edges
with mixed labels; if on average there are m

2 edges with mixed labels, then there
must exist some labeling with fewer than (or equal to) m

2 edges with mixed labels
because not all labelings can have more mixed-label edges than the average. For
this labeling, we put all of theD-labeled vertices in one pile and all of the T -labeled
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vertices in another pile. Then, removing the mixed-label edges disconnects the D
vertices from the T vertices; we have thus produced an edge cut of size no more
than m

2 . �

This is a hint at the type of proof discrete probability is used for most often.
The probabilistic method is an approach to proofs whereby one proves existence
by showing that the probability of the desired object occurring is greater than zero,
or in this case, by showing that the expected value is greater than zero. Another
example is given in Bonus Section 14.10.

Check Yourself

Make sure you can answer at least one of these problems.

1. Suppose five fair coins are flipped and consider the random variable H, defined as
the number of heads revealed. Rewrite H as a sum of simpler random variables.

2. For the situation of rolling an eight-sided die, consider the random variables E = 1
when the result is even and E = 0 otherwise, and G = 1 if the result is greater than
or equal to 5 and G = 0 if the result is four or less. Compute (E +G)(roll 2),
(E +G)(roll 3), (E +G)(roll 5), and (E +G)(roll 6).

3. Consider a deck of four cards, labeled 1△, 1⃝, 2△, and 2⃝. Draw a card, put
it back, shuffle the deck, and draw a second card. Compute the expected value of
Z = X +Y , where X is the numerical value of the first card and Y is the numerical
value of the second card.

14.8 Where to Go from Here

There are entire courses on probability; most require calculus as a prerequisite,
as they focus on not-necessarily-discrete probability. Some famous mathematics
problems, such as the Monty Hall problem, fall under the purview of probability.
For an elementary and yet comprehensive introduction to the Monty Hall prob-
lem, check out The Monty Hall Problem: The Remarkable Story of Math’s Most
Contentious Brain Teaser by Jason Rosenhouse.

For a bit more on the uses and misuses of conditional probability in medicine
and politics, see Steve Strogatz’s New York Times column on the subject at https:
//opinionator.blogs.nytimes.com/2010/04/25/chances-are/?_r=0.

The probabilistic method is the primary use of probability in research in dis-
crete mathematics, and the reference of choice (which is both challenging and ad-

https://opinionator.blogs.nytimes.com/2010/04/25/chances-are/?_r=0
https://opinionator.blogs.nytimes.com/2010/04/25/chances-are/?_r=0
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vanced) is The Probabilistic Method by Noga Alon and Joel Spencer. Their first
example (described there as “simple”) is that given in Section 14.10.

Credit where credit is due: Thanks incredibly to Adam Marcus for teaching me the ma-
terial exposed in this chapter. Much of my writing is based on notes taken from his in-
troductory lectures in 2007. Some is enhanced by my reading of Ed Scheinerman’s book
Mathematics: A Discrete Introduction. Thanks also to Dylan Shepardson for suggesting
the addition of sensitivity/specificity via Steve Strogatz’s approach.

The Yarn Harlot mentioned in Problem 3 of Section 14.4 is real; her name is Stephanie
Pearl-McPhee, and she is a New York Times best-selling author who writes about knitting.
A brief description of her living-room-became-a-mitten-factory episode is at http://www.
yarnharlot.ca/blog/archives/2011/12/05/resisting_only_makes_it_take_longer.html
and http://www.yarnharlot.ca/blog/archives/2011/12/02/i_am_sure_it_will_pass.html.

Data for the healthcare example of Section 14.5.1 came from the sources “The Effect
of Insurance on Emergency Room Visits: An Analysis of the 2006 Massachusetts Health
Reform,” by Sarah Miller, November 2011, downloadable from https://pdfs.semantic
scholar.org/0b32/6cd7426ef7514c60d9bff2f7796ebd73f81b.pdf; “Potentially Preventable
Hospitalizations in Massachusetts: Fiscal Years 2004 to 2008,” July 2010, Publication
Number: 10-200-HCF-01, downloadable from http://archives.lib.state.ma.us/handle/
2452/50109; “Massachusetts QuickFacts from the US Census Bureau” at https://www.
census.gov/quickfacts/MA; “Harvard Pilgrim Health Care – Cost of Services – MA” at
https://www.harvardpilgrim.org/ (specific page no longer available); and “Health Connec-
tor: Health Insurance for Massachusetts Residents” at https://www.mahealthconnector.
org/.

The Minbari in Problem 1 of Section 14.6 are from the television series Babylon 5
by J. Michael Straczynski. Bonus Check-Yourself Problem 3 was suggested by Tom
Hull. In Section 14.11, the Blue Sea Deck from Problem 6 can be found at https://www.
thegamecrafter.com/games/the-blue-sea-deck. In Section 14.12, Problem 8 was inspired
by Woot!.com’s Bag of Crap, and data for Problems 29–32 came from the CDC at https://
www.cdc.gov/cancer/colorectal/statistics/index.htm and https://www.cdc.gov/cancer/
colorectal/statistics/age.htm; from “Multitarget Stool DNATesting for Colorectal-Cancer
Screening” in the New England Journal of Medicine (2014), available at https://www.
nejm.org/doi/full/10.1056/NEJMoa1311194; and from “Emerging stool-based and blood-
based non-invasive DNA tests for colorectal cancer screening” in Abdominal Radiology
(2016), available at https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4974132/.

14.9 Chapter 14 Definitions

probability: The likelihood that some
given event will occur.

state: A configuration that a system might
have.

state space: The set of different possible
states.

sample space: A state space.

http://www.yarnharlot.ca/blog/archives/2011/12/05/resisting_only_makes_it_take_longer.html
http://www.yarnharlot.ca/blog/archives/2011/12/02/i_am_sure_it_will_pass.html
https://pdfs.semanticscholar.org/0b32/6cd7426ef7514c60d9bff2f7796ebd73f81b.pdf
http://archives.lib.state.ma.us/handle/2452/50109
https://www
https://www.harvardpilgrim.org/
https://www.mahealthconnector.org/
https://www.thegamecrafter.com/games/the-blue-sea-deck
http://www.cdc.gov/cancer/colorectal/statistics/index.htm
https://www.cdc.gov/cancer/colorectal/statistics/age.htm
https://www.nejm.org/doi/full/10.1056/NEJMoa1311194
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4974132/
http://www.yarnharlot.ca/blog/archives/2011/12/05/resisting_only_makes_it_take_longer.html
https://pdfs.semanticscholar.org/0b32/6cd7426ef7514c60d9bff2f7796ebd73f81b.pdf
https://www.mahealthconnector.org/
https://www
https://www.thegamecrafter.com/games/the-blue-sea-deck
https://www.cdc.gov/cancer/colorectal/statistics/age.htm
https://www.nejm.org/doi/full/10.1056/NEJMoa1311194
http://www.cdc.gov/cancer/colorectal/statistics/index.htm
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event: A collection of states; a subset of the
state space.

exclusive: Two events that cannot happen
at the same time. States are always exclu-
sive; some events are exclusive and some
are not.

probability axioms: Conditions that all
probability functions must satisfy in or-
der to actually measure probability, as
follows; details are on page 447.
Let P : P(S)→ [0,1] be a function from
all subsets of a state space to the unit
interval {x | 0 ≤ x ≤ 1}:

P(S) = 1.
P( /0) = 0.
For any element s ∈ S, P(s) ≥ 0
and likewise for any subset (event)
E ⊂ S, P(E)≥ 0.
Whenever two events E1,E2 are
exclusive, P(E1 or E2) = P(E1)+
P(E2).

random variable: A function X : S → N
from a state space S to a finite set of real
numbers N.

probability distribution: A display of all
possible values for a random variable X
with the corresponding probabilities.

expected value: The weighted average of
the probability distribution for a random
variable X , denoted E[X ], and defined as
E[X ] = ∑k∈N kP(X = k).

conditional probability: The probability
that event E1 happens, given that E2 def-
initely occurs. Denoted P(E1|E2) and
measured by P(E1 and E2)

P(E2)
.

independent: Two events A and B are
independent if P(A|B) = P(A) and
P(B|A) = P(B). In other words, if the
probability that A happens is the same
whether B happens or not, and if the
probability that B happens is the same
whether A happens or not, then events A
and B are independent of each other.

sensitivity: The measure, for a disease test,
of someone having a disease testing pos-
itive for that disease.

specificity: The measure, for a disease test,
of someone not having a disease testing
negative for that disease.

probabilistic method: A way to prove ex-
istence by showing that the probability of
the desired situation occurring is greater
than zero.

14.10 Bonus: Ramsey Numbers and the Probabilistic
Method

Recall from Section 3.9 that the Ramsey number R(k,k) is the smallest number n
such that a 2-edge-colored complete graph Kn must contain a monochromatic Kk.
We would like to show that R(k,k)≥ 2⌊

k
2 ⌋. Yes, really. The plan will be to compute

the expected number of monochromatic Kks in a Kn and use this to obtain a lower
bound on R(k,k).
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Consider a complete graph Kn. We want to choose a Kk in this Kn, which can
be done by choosing k of the n vertices and then including the edges that connect
those k vertices. There are

(n
k

)
ways for us to choose such a Kk.

We will color the edges of the chosen Kk with two colors (azure and lavender),
so that Pe(azure) = 1

2 = Pe(lavender). The color of each edge is independent of the

color of each other edge, so the probability that all edges are azure is 1
2
(k

2) because

Kk has
(k

2

)
edges. Similarly, the probability that all edges are lavender is 1

2
(k

2).
Therefore, the probability that all edges of the chosen Kk are azure or all edges of
the chosen Kk are lavender is 2 · 1

2
(k

2) = 1
2
(k

2)−1.
Now, consider the state space of all possible 2-edge colorings of Kn. We shall

define a random variable on this state space. Let M be the number of monochro-
matic Kks in a Kn. We can write M = ∑

(n
k)

j=1 M j, where for the jthKk we have

M j(Kk) =

{
1 Kk is monochromatic,
0 Kk has edges of two colors.

We will compute the expected number of monochromatic Kks in Kn by com-
puting E[M] = E[∑(n

k)
j=1 M j] = ∑

(n
k)

j=1E[M j] = ∑
(n

k)
j=1(1 ·P(M j = 1)+0 ·P(M j = 0)).

We know that P(M j = 1) = 1
2
(k

2)−1 and that there are
(n

k

)
terms in the sum, so

E[M] =
(n

k

)1
2
(k

2)−1.
Now, what do we do with this computation? Remember that we want to find

a lower bound on R(k,k). That means we need to find a lower bound for n such
that Kn definitely contains a monochromatic Kk. If we have an n for which Kn has
no monochromatic Kk, we know that we need a larger n so that there could be a
monochromatic Kk. Thus, such an n will provide a lower bound (though perhaps
a terrible lower bound).

IfE[M]< 1, then we expectKn to have less than one monochromaticKk, which
means we actually expect it to have no monochromatic Kk. This, in turn, means
that it is possible for Kn to have no monochromatic Kk, and so if E[M] < 1, then
we have found an n such that R(k,k)> n.

Therefore, we want to figure out what conditions on n make

E[M] =

(
n
k

)
1
2

(k
2)−1

< 1.

This will require a close-to-ridiculous amount of algebra, so get ready and hang
on tight to your mental seat!
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First, let us show that
(n

k

)
< (n

2)
k. By Section 6.7,(

n
k

)
=

n · (n−1) · (n−2) · · · · · (n− (k−1))
1 ·2 ·3 ·4 · · · · · k

.

There are k terms in the numerator and k terms in the denominator. Observe that
n · (n − 1)·(n − 2)· · · · ·(n − (k − 1)) < n · · · · · n (k times) = nk. So,

(n
k

)
<

nk/(1 ·2 ·3 ·4 · · · · · k). Also, 1 ·2 ·3 ·4 · · · · · k = 24 ·5 · · · · · k > 16 ·5 · · · · · k >
16 ·2 · · · · ·2 = 2k. Therefore, 1/(1 ·2 ·3 ·4 · · · · · k)< 1

2k . This tells us that(
n
k

)
<

nk

1 ·2 ·3 ·4 · · · · · k
<

nk

2k =
(n

2

)k
.

Now, this means that(
n
k

)
1
2

(k
2)−1

<
(n

2

)k 1
2

(k
2)−1

=
nk

2k2(
k
2)−1

.

Because
(k

2

)
= k(k−1)

2 , we know that

k+
(

k
2

)
−1 =

2k+ k2 − k−2
2

=
k2 + k+2

2
.

Thus,
nk

2k2(
k
2)−1

=
nk

2
2k+k2−k−2

2

.

If it were to be true that n = 2something, then

nk

2
2k+k2−k−2

2

=
(2something)k

2
2k+k2−k−2

2

=
2k·something

2
2k+k2−k−2

2

= 2k·something− 2k+k2−k−2
2 .

If by chance

k · something− 2k+ k2 − k−2
2

< 0,

then
2k·something− 2k+k2−k−2

2 < 1.

In turn, this would mean (
n
k

)
1
2

(k
2)−1

< 1,
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which is what we desire. So let’s see what something needs to be to get this to
work out. If

k · something− 2k+ k2 − k−2
2

< 0,

then

k · something < 2k+ k2 − k−2
2

or something <
2k+ k2 − k−2

2k
.

Certainly ⌊
k
2

⌋
<

k
2
<

k+(1− 1
k )

2
=

2k+ k2 − k−2
2k

.

So what is our conclusion? It’s that if n = 2⌊
k
2 ⌋, then

(n
k

)1
2
(k

2)−1
< 1, which in

turn means that E[M]< 1 and so R(k,k)> n = 2⌊
k
2 ⌋.

14.11 Bonus Check-Yourself Problems
Solutions to these problems appear starting on page 628. Those solutions that model a
formal write-up (such as one might hand in for homework) are to Problems 2, 5, and 6.

1. In Lucy Worsley’s If Walls Could Talk:
An Intimate History of the Home, the au-
thor says, “The medieval death rate was
one in every fifty pregnancies. Consid-
ering that it wasn’t unusual for a woman
to give birth a dozen times, the odds
quickly mounted up for reproductive
wives.”
So… what are these odds? Compute
the probability of dying while pregnant
for each of 1, 4, 6, and 12 pregnancies.
What is the probability of dying dur-
ing some one of 12 theoretical medieval
pregnancies?

2. Suppose you have a box of colored pens
(fuchsia, cinnamon, tangerine, gold,
lime, forest, teal, cobalt, plum) and
three pencils (mechanical, yellowNo. 2,
printed with cupcakes).

(a) Describe the state space of grabbing
a pen and a pencil. What is the prob-
ability of each individual state?

(b) What is the probability of grabbing a
pen whose color begins with “f” and
a mechanical pencil?

(c) What is the probability of grabbing
a pen whose color is greenish and a
non-mechanical pencil?

(d) What is the probability of (grab-
bing a pen whose color begins with
“f” and a non-mechanical pencil)
or (grabbing a pen whose color
is greenish and a non-mechanical
pencil)?

3. A computer lab has 20 computers in
it. On any given day, the probability
that a given computer is not working
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is p. How many computers do you ex-
pect will be functioning when you enter
the lab today? Answer the question for
p = .001, p = .05.

4. Chips of the World come in lots of fla-
vors. In the sale bin are
2 bags of bacon ranch pita chips,
1 bag of salt and vinegar potato chips,
3 bags of hot-sauce cheese corn chips,
5 bags of crab potato chips, and
2 bags of peppercorn salsa pita chips.
If you close your eyes and grab three
bags of chips (one at a time, so you
know you have three), what is the prob-
ability you will get…

… all three bags of potato chips?
… exactly two bags of spicy
chips?
… at least one bag of pita chips?

How many bags of corn chips do you
expect to find in your three bags?

5. Shoes ‘R’ Us has a lot of different kinds
of shoes in their display case, one of
each kind they sell. A shoe can be
brown, black, silver, or green; it can be
a low shoe, a boot, or an athletic shoe;
and, it can have laces or be a slip-on.
(a) How many different kinds of shoes

does Shoes ‘R’ Us have in its display
case?

(b) What is the probability that a Shoes
‘R’ Us display shoe is brown and
slip-on?

(c) What is the probability that a Shoes
‘R’ Us display shoe is silver or a
boot?

(d) Given that a Shoes ‘R’ Us display
shoe is silver, what is the probabil-
ity that it is a boot?

(e) Given that a Shoes ‘R’ Us display
shoe is a green athletic shoe, what is
the probability that it has laces?

(f) Are the properties silver and boot in-
dependent?

6. Consider a deck of cards that is stan-
dard, except for having six suits—the
two additional suits are stars and squids.
(This deck exists: it is the Blue Sea
Deck.) Draw a card.
(a) What is the probability that the card

is a queen or a squid?
(b) What is the expected value of the

number on the card? (Here, Ace
= 1, King = 13.)

7. The game Elder Sign has unusual dice.
There are six six-sided green dice, each
of which has three sides showing mag-
nifying glasses, one side with a tentacle,
one side with a skull, and one side with
a scroll. There is also a six-sided yel-
low die with four sides showing magni-
fying glasses, one side with a skull, and
one side with a scroll. Finally, there is a
six-sided red die with three sides show-
ing magnifying glasses, one side with a
Wild sign, one side with a skull, and one
side with a scroll.
(a) If you roll the six green dice, what is

the expected number of magnifying
glasses you’ll see?

(b) If you roll seven of the dice, what is
the probability that you will roll ex-
actly one skull?

(c) If you roll seven of the dice, what is
the probability that you will roll at
least one scroll?

8. The game ofQwirkle uses a bag of tiles.
Each black tile has a shape on it (circle,
diamond, square, crisscross, starburst,
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clover) that is colored (red, orange, yel-
low, green, blue, purple). There are
three copies of each kind of tile.
(a) How many tiles are in a Qwirkle

bag?
(b) What is the probability that a tile

drawn is red?
(c) What is the probability that a tile

drawn is a sunburst?
(d) What is the probability that a tile

drawn is a red sunburst?
(e) What is the probability that a tile

drawn is red or a sunburst?

(f) Is red-ness independent of sunburst-
ness?

9. Another Qwirkle qwestion: pull two
tiles from the bag.
(a) What is the probability that both are

blue?
(b) What is the probability that the sec-

ond tile is blue?
(c) What is the probability that at least

one tile is blue?
10. What’s the expected number of fixed

points (items that do not move) in a per-
mutation of n items?

14.12 Expect Problems, Probably

1. Above your mirror in the dressing room
is a bank of four lightbulbs. Each light-
bulb has a probability of .02 of being
out when you flip the switch in your
dressing room, and the workingness of
each lightbulb is independent of the oth-
ers. Describe the state space of the bank
of lightbulbs and list the probability of
each state.

2. Someone flips seven fair coins. De-
scribe the state space for this situation.
Define a random variable correspond-
ing to the number of heads that show
when the coins land. What is the prob-
ability that this random variable has
value 3?

3. You and a friend are asked to each
choose a number 1 to 8. Describe the
state space for this situation. What is
the probability that you each choose the
same number? What is the probability
that your numbers are one apart?

4. A gumball machine requests 25 cents
and, in return, sends a colorful gum-

ball down a chute into your waiting
hands. The gumballs in this machine
come in white, red, yellow, blue, pink,
green, and orange. The colors are not
evenly distributed; 1

10 of the gumballs
are white, 11

40 of the gumballs are orange,
and each remaining color represents 1

8
of the gumballs.

(a) Let the random variable R = 1 when
a red gumball arrives, R = 1

2 when
a pink or orange gumball arrives,
and R = 0 otherwise. (R measures
the redness of a gumball.) Compute
E[R].

(b) Let the random variableY = 1 when
a yellow gumball arrives, Y = 1

2
when a green or orange gumball ar-
rives, and Y = 0 otherwise. (Y mea-
sures the yellowness of a gumball.)
Compute E[Y ].

(c) Compute the expected value of
R+Y .
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5. Some of the Fairly Fun Folks own pets
(but only ferrets and fish; no frogs). Of
these Folks, 2

5 own fish, 3
20 own both

ferrets and fish, and 11
20 have no pets at

all. The Fairly Fun Folks also have a va-
riety of hair types: 1

10 have wavy hair,
2
5 have curly hair, 1

5 have kinky hair, 1
5

have straight hair, and 1
10 have no hair.

(a) What fraction of the Folks own
ferrets?

(b) What is the probability that a Folk
has curly hair and owns a ferret?

(c) What is the probability that a curly-
haired Folk owns a ferret?

(d) If a Folk has curly hair, what is the
probability that ze owns a ferret?

(e) If a Folk owns a ferret, what is the
probability that ze has curly hair?

(f) What is the probability that a ferret
owner has curly hair?

(g) Explain your answers to the pre-
vious questions using the language
of random variables and conditional
probability (if you have not already
done so).

(h) What is the probability that one of
the Folk with no hair owns fish?

(i) What is the probability that someone
who owns both fish and ferrets has
kinky hair?

(j) What is the probability that someone
has straight hair and no pets?

6. Explain why computing the average
value of a random variable is the same
as computing the expected value of a
random variable in discrete probability.

7. Show that the Cartesian product C =
S1 × S2 of any two independent two-
element state spaces has P(C) = 1.

8. The website Noot!.com sells one
aquatic thing (like newts) each day.
Every so often, the item for sale is a
Bag of Carp, recognizable by its iconic
chartreuse question mark on a plain
brown lunchbag. A Bag of Carp con-
tains three random carp-related items
from the Noot! overstock. The possi-
bilities are preserved and salted dried
carp snacks (for people to eat), living
koi, photos of carp in the wild, origami
carp, crocheted carp, bead-knitted carp,
aquatic insect pieces (for feeding carp),
books on caring for carp, or a CD of
carp music (made by carp for carp).
Each item in a Bag of Carp is equally
likely to be any of these possibilities.

(a) Let R be a random variable that indi-
cates whether the Bag of Carp con-
tains a representation of carp (R= 1)
or not (R = 0). Compute E[R].

(b) LetC be a random variable that indi-
cates whether the Bag of Carp con-
tains an item that can be used by
a pet carp (C = 1) or not (C = 0).
Compute E[C].

(c) What is P(R = 1 and C = 1)? How
about P(R = 1 or C = 1)?

9. Suppose that we know that P(E1) =
3
8

and that P(E2) =
7
9 . How large and

how small might P(E1 and E2) and
P(E1 or E2) be?

10. You have Xs and Os (nine of each) in a
bag near a tic-tac-toe board. You arbi-
trarily select an X or an O, and then you
place it arbitrarily on the board. Toss
your letter back in the bag, shake the
bag, and again arbitrarily select an X
or an O and place it arbitrarily on the
board.
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(a) Consider the event in which you se-
lect the same letter twice; define
a random variable corresponding to
this event and compute its expected
value.

(b) Consider the event of placing both
letters in the same row; define a
random variable corresponding to
this event and compute its expected
value.

(c) Consider the event of placing both
letters in the same column; define
a random variable corresponding to
this event and compute its expected
value.

(d) What is the probability that both let-
ters are placed in the same column
and in the same row?

(e) What is the probability that the same
letter is selected twice and both are
placed in the same row?

(f) Are any two of these three events in-
dependent?

11. You have Xs and Os (nine of each) in a
bag near a tic-tac-toe board. You arbi-
trarily select an X or an O, and then you
place it arbitrarily on the board. Shake
the bag, and again arbitrarily select an
X or an O and place it arbitrarily on the
board (in an open spot).
(a) Consider the event in which you se-

lect the same letter twice; define
a random variable corresponding to
this event and compute its expected
value.

(b) What is the probability that both let-
ters are placed in the same row?

12. There is a throwing accuracy game in
which a velcro board is hung on the
wall (see Figure 14.2) and players throw

small prickly balls that stick on the
board. Points are awarded to players
depending on the region in which each
prickly ball lands. The probability that
a prickly ball lands in any particular one
of the outer teal regions is 1

16 , the prob-
ability that a prickly ball lands in any
particular one of the white regions is 5

48 ,
and the probability that a prickly ball
lands in the center oval is 1

12 .
(a) What assumption has been made in

assigning these probabilities?
(b) What is the probability of hitting the

upper-left-most region, given that
you hit a region that is not white?

(c) You are awarded one point if your
prickly ball lands on an outer teal
region, three points if your prickly
ball lands in a white region, and
five points if your prickly ball lands
within the oval. What is your ex-
pected number of points?

Figure 14.2. A velcro board.

13. (Also about the game using the board in
Figure 14.2) Suppose that each time you
throw a prickly ball, there is a probabil-
ity of 1

3 that you will miss the board en-
tirely and a probability of 1

5 that if the
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prickly ball hits the board, it will not
stick and will drop to the ground. Now
what is your expected number of points?

14. Suppose you flip two identical coins
simultaneously. Show that assign-
ing P(two heads) = P(two tails) =
P(one head, one tail) = 1

3 violates the
probability axioms for each individual
coin.

15. Challenge: Show that there is no way
to assign probabilities to heads and tails
for two not-necessarily-identical coins
so that

the probability axioms are sat-
isfied for both individual coins’
state spaces and
P(two heads) = P(two tails) =
P(one head, one tail) = 1

3 .

16. Suppose you play the venerable game
rock-paper-scissors. If you pick pa-
per and your opponent chooses arbi-
trarily, what is the probability that you
will win? If each of you pick arbitrar-
ily, what is the probability that you will
win?

17. Suppose you play rock-paper-scissors
and there is a draw (that is, both you
and your opponent choose the same ob-
ject). You decide to try to break the tie
by playing again. What is the proba-
bility that you win in the second game,
given that you reached a draw in the first
game? What is the probability that you
draw in the first game and win the sec-
ond game?

18. Consider flipping a fair coin while
rolling an eight-sided die. Compute the
expected value of B = H + F , where
H is the number of heads revealed and

F = 1 when the roll is a multiple of four
and F = 0 if not. Are the events H = 1
and F = 1 independent?

19. In the United States, mail is delivered
six days each week. Your BFF (best
friend forever) is on a trip and has
sent you ten packages, all of which are
scheduled to arrive this week. However,
you have no idea on what day any of
the packages will arrive. What is the
expected number of packages that you
receive on a particular weekday?

20. Consider a deck of four cards, labeled
1△, 1⃝, 2△, and 2⃝. Draw two of
the cards. Compute the expected value
of Z = X +Y , where X is the numerical
value of the first card and Y is the nu-
merical value of the second card.

21. (Also about the deck of four cards) Is
X = 1 independent of Y = 1?

22. (Finishing the proof of Theorem 14.7.1)
Given that ES[X1 + X2] = ES[X1] +
ES[X2], prove by induction that
ES[∑n

j=1 X j] = ∑n
j=1ES[X j].

23. (About the doughnut shop in Problem 3
of Section 14.6) Before the counter
clerk has a chance to move, you change
your mind and decide you are only in
the mood for raised doughnuts, so you
request that the three arbitrarily chosen
doughnuts all be raised.
(a) What is the probability that all three

doughnuts will be glazed?
(b) What is the probability that you get

the maple doughnut?
24. (More doughnut shop adventures) Sud-

denly you remember that your best
friend desperately wants a cake dough-
nut, so you ask for two arbitrarily cho-
sen cake doughnuts instead.
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(a) What is the probability that you get
both double-chocolate doughnuts?

(b) What is the probability that you re-
ceive the blueberry doughnut?

25. (Still about the same doughnut shop)
Supposing you are getting three arbi-
trary doughnuts… is getting at least one
raised doughnut independent of getting
at least one doughnut with sprinkles?

26. In the game Neko Atsume, cats visit a
yard, eat food, engage with objects, and
leave metal fish as gifts. Identify each
of the following as a state, an event,
both, or neither.
(a) Joe DiMeowgio plays with a base-

ball.
(b) The only cat present is Snowball,

who sleeps on a sheepskin.
(c) Tubbs has eaten the sashimi.
(d) Pickles plays with a squishy ball and

Bolt kicks a green fish; the rest of the
yard is empty.

(e) Mr. Meowgi meditates on the pink
silk pillow.

27. Suppose we roll an eight-sided die.
What is the probability that we roll less
than 5 given that the roll is even? Are
the events roll less than 5 and roll even
independent?

28. Suppose we flip a coin and roll an eight-
sided die. What is the probability that
we get heads or roll a prime number?

29. The population incidence of colorec-
tal cancer (CRC) is about 0.2% for
average-risk individuals. (About 3%
of 50-year-olds will get CRC by age
80, and CRC is the third most common
cancer in both men and women.) For
average-risk individuals ages 50–75,
Cologuard (a multi-target stool DNA

test) has 92.3% sensitivity and 86.6%
specificity. (These terms are defined in
Example 14.5.3.) Given that a person
of average risk has a positive Cologuard
test, what is the probability that ze has
CRC?

30. (Also about Cologuard) Given that a
person of average risk has a negative
Cologuard test, what is the probability
that ze has CRC?

31. (Also about CRC screening tests) For
average-risk individuals ages 50–75, a
fecal immunochemical test (FIT) has
73.8% sensitivity and 94.9% speci-
ficity. Given that a person of average
risk has a positive FIT test, what is the
probability that ze has CRC?

32. (Yet more on CRC screening) For
average-risk individuals ages 50–75, the
Epi proColon blood test has 49.2% sen-
sitivity and 91.5% specificity. Given
that a person of average risk has a posi-
tive Epi proColon test, what is the prob-
ability that ze has CRC? Given that a
person of average risk has a negative
Epi proColon test, what is the probabil-
ity that ze has CRC? (What can we con-
clude?)

33. Consider the Blue Sea card deck from
Bonus Check-Yourself Problem 6.
Draw a card. What is the probability
that the card is squid suit or star suit
given that it is a face card (king, queen,
jack)?

34. Give the probability distribution for the
random variable Sk that measures the
number of skulls rolled when rolling the
red die and the yellow die in the game
Elder Sign described in Bonus Check-
Yourself Problem 7. What is the sum
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of the values in the distribution? (What
should it be?)

35. Give the probability distribution for the
random variable M that measures the

number of magnifying glasses rolled
when rolling all eight dice in the game
Elder Sign described in Bonus Check-
Yourself Problem 7.

14.13 Instructor Notes
Often in discrete mathematics texts, the big ideas of probability are hidden and the science
of probability has been reduced to combinatorics. Such combinatorial approaches to prob-
ability (particularly those introduced in high school) measure ratios of things we care abouttotal things and
concentrate on counting techniques to do such computations. There is a strong effort here
to reveal the big ideas of probability instead.

Even though probability is widely used in mathematics, and in discrete mathematics
via the probabilistic method, it is not central to an introductory discretemathematics course
(partly because the probabilistic method is so challenging). That’s why this chapter has
been placed outside the stream of the main course. Should you include this chapter in
your course, it has some prerequisites, namely graphs, some elementary counting, and
the principle of inclusion/exclusion. Therefore, it would most naturally fit after the major
combinatorics chapters.

This material is reasonably challenging for students, so it is not presented in a
discovery-basedmanner. For the first class day, assign students to read Sections 14.1, 14.2,
and 14.3 as preparation. Review this material in a short lecture (and take questions!) be-
fore asking students to work in groups on Section 14.4. It will likely take at least two-thirds
of a class period for most students to complete. Repeat this technique for the second day,
asking students to read Section 14.5 before class, reviewing the material at the start of
class, and then asking students to work in groups on Section 14.6. For the third day, ask
students to read Section 14.7 as preparation and then spend the bulk of class going over
the example in Section 14.7.1 in detail. With any remaining time, have students revisit the
problems in Sections 14.4 and 14.6.



Chapter 15

Fun with Cardinality

15.1 Introduction and Summary

When it comes to infinity, just how big is it? And is that even a well-posed
question—could there be more than one size for infinity to have? Addressing this
mountainous question is the focus of our chapter. The vehicle for exploring the
sizes of infinite sets is a play (that’s Section 15.2) in which the characters encounter
and discuss ways of relating infinite sets to each other.

This is followed by (or interleaved with, depending on how you decide to read
the chapter) a lot of exploratory questions in Section 15.4. Some of the more chal-
lenging ideas are reviewed in Section 15.5, and then of course there are problems
to think about. Along the way, we will need to introduce new ideas, new notations,
and new sets… and we will even leave the realm of discrete mathematics, though
just for a minute or two.

15.2 Read This! Parasitology, the Play

Perhaps a dramatic reading is in order. You will want ten willing readers (though
you can make do with five), and a chalkboard or whiteboard would be handy for
investigational pauses. Particularly good pausing moments are marked with [⋆k]
and have matching exploratory questions in Sections 15.4.1–15.4.4.

Characters:
C N
L A P
L A 2 (LA2) R
L A 3 (LA3) S C
L A 4 (LA4) T

481
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15.2.1 Scene 1: The Storage Coordinator

Characters: L A , N , P , R , S
C .

Enter R , who stands as at a desk, and N . P enters
as N speaks.

N : (in a declarative tone) Recently when visiting the friendly neighbor-
hood ducks, our protagonist noticed something odd about the fecal matter in
the duck yard and, having recently read Carl Zimmer’sParasite Rex, wondered
whether a parasite might be to blame. Our protagonist did a quick search and
found that not only is there a local parasitology lab, but that this lab is a national
center that accepts specimens for examination and among its specialities is par-
asites of waterfowl! We enter the scene as our protagonist arrives at the lab.

R : Welcome to Parasite Central! How may I help you?

P : Hello. I understand that you accept specimens from the public for
examination and identification?

R : Indeed we do. Have you brought a specimen with you? And if so,
what kind of specimen is it, and what is your reason for bringing the specimen
to us?

P : Yes, I have brought a sample of duck fecal matter that I suspect
contains parasites of some kind. I was hoping you could tell me what’s in
there.

R : Certainly. Let me page a lab assistant and we’ll get that sample
taken care of. (The R presses a button.)

Enter L A .

R : (to L A ) We have a member of the public here who has
an avian waterfowl sample to submit.

L A : (to P ) Excellent. Please accompany me to the sample
analysis area.

Exit L A , followed by P ; exit R in a different
direction. Soon after, enter L A , followed by P .
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L A : Let me quickly check your sample under a microscope. (takes the
sample from P and quickly mimes creating a slide and examining it
under the microscope) That’s interesting. There are definitely parasites in here,
but I don’t recognize them as a known species. (looks up) We will definitely
want to store this sample for further study, and I’ll need to consult with one of
the senior scientists to find out whether the specimen warrants cataloguing as
a probably new species. Would you like to accompany me on these tasks? I
could give you a quick tour of part of the lab while I’m doing them.

P : That would be great. (They start to walk off.) Do you get new
samples all the time? If so, how do you have room for them all? Or do you not
store that many of the samples?

L A : Oh, yes, we get new samples all the time. Many of them don’t
have parasites, but many do and many are new. Luckily, we have infinitely
many sample drawers and so storage is not a problem.

Exit L A , followed by P ; soon after, re-enter L A ,
followed by P , whilst S C enters from another
direction.

L A : (to P ) This is our storage area.

S C : Are you bringing me a sample? I must warn you, all of
the drawers are full at the moment.

P : But I thought you had infinitely many sample drawers …?

S C : We do. But as samples get analyzed, it’s often realized
that we don’t need them anymore and so drawers free up regularly. At the
moment, all of them are full.

L A : Well, we need to put this sample somewhere. Should I just leave
it on the desk here until a drawer is vacated?

S C : Oh, no, we can’t do that. What if more samples come
in before drawers are available? They could pile up, and imagine what a mess
we would have—both literally and logistically. No, hang on and let me think
for a moment… do you have a favorite number? We can move all the samples
from that number onwards up a drawer, and then we can put your sample in
the drawer with your favorite number.
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P : (staring) Seriously? Isn’t moving all those samples going to create
havoc with your system? And what about the last sample? Where does it go?

S C : You know how some library stacks have wheels so you
can compress a bunch of aisles and just leave an opening for the aisle you
want to go into? We have a system like that, except it moves drawers over
and relabels them. It just takes a while to go into effect. And there is no last
sample, because there are infinitely many.[⋆1]

What number drawer would you like?

P : Umm… okay… drawer 59?

S C : Certainly. (reaches to take sample)

N : Brrrrring! (pause) Brrrrrrrring!

S C : (answering the phone) Yes? Storage facility…

R : (from offstage) I thought I should let you know that a field biologist
has arrived with another eight samples, preverified as previously unknown.
Are you able to handle them?

S C : Sure. Send them over with a lab assistant. (sets down
phone, speaks to P ) I can’t guarantee that your sample will remain
in drawer 59. It seems that I’ll have to make room for more samples.[⋆2]

N : Brrrrring! (pause) Brrrrrrrring!

S C : (answering the phone) Yes? Storage facility…

R : (from offstage) I’m sorry to bother you again, but another field
biologist has arrived, and this one has infinitely many samples. What should I
say? Can we take that many samples today?

S C : Oh, I think so. Send the field biologist here with a lab
assistant and we’ll work something out. (setting down the phone and speaking
to P and L A ) Infinitely many samples have arrived. I
really cannot guarantee the number of the drawer in which your sample will be
stored. Will that be all right?

P : Of course. But how will you store infinitely many more samples?
You can’t just move them all up by infinitely many places—that would take an
infinite amount of time.
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S C : It would take less time than you think. But no, there’s a
simpler way. Every sample is in a numbered drawer. I’ll just move every sam-
ple to the drawer with twice the current number, and then all the odd-numbered
drawers will be free. And there are infinitely many of those, so it should all be
fine. [⋆3]

L A : Thank you. We do need to get the slide from this sample checked
by a senior scientist, so we’ll be going now. Thanks again for your time.

S C : Wait, you can’t go yet. I will need to write you a receipt
for the sample, so that you can deduct it from your taxes as a charitable dona-
tion, and so that other scientists can find it if they need further observations of
the sample.

N : Brrrrring! (pause) Brrrrrrrring!

S C : I’m sorry for the delay caused by all these interruptions.
(answering the phone) Yes? Storage facility…

R : (from offstage) Oh, dear! I’m afraidwe’re being deluged—infinitely
many field biologists are arriving now, each with infinitely many specimens to
store. Should I turn them away? Let some through? Which are most impor-
tant?! Help!

P : (aside, to L A ) The receptionist must be frantic. I can
hear the conversation through the phone!

L A : (aside, to P ) Yes, but it will be all right. You’ll see.

S C : (into the phone)Well, I have a sample at the desk to store,
and then there are the eight new samples you’ve sent over, and the infinitely
many samples with the first field biologist, so… if you can delay the other
infinitely many field biologists by about 15 minutes and then send them here
with a coterie of lab assistants, I should be able to take them all. But hopefully
that’s all we will have to deal with today!

P : (aside, to L A ) Infinitely many field biologists will be
a lot for a few lab assistants to handle. Aren’t you going to need to help with
managing these people? Maybe I should just go…

L A : (aside, to P ) It’s not a problem. We have infinitely
many lab assistants here.
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S C : (sets down the phone) Whew. Perhaps you overheard
that we have a bit of a situation. Let me get you on your way.

N : The storage coordinator grabs a slip of paper and a pair of linked tags.

P : I don’t mean to delay things further, but how will you manage all
infinitely many field biologists at once?

S C : It’ll be a bit complicated, but totally doable. I’ll leave
the first specimen in the first drawer. Then I’ll put two specimens from the
first field biologist in the second and third drawers. I’ll move the specimen
that was in the second drawer to the fourth drawer, and the specimen from the
third drawer to the ninth drawer. Then two more specimens from the first field
biologist will go in drawers 5 and 6, and two specimens from the second field
biologist will go in drawers 7 and 8. The specimens from those drawers will
get moved down further… are you with me so far?

P : I think so. You’ve moved the old specimens up by some number of
drawers, and you’ve started placing specimens from the first and second field
biologists. So far you’ve filled the first nine drawers. But you’ll have to work
in specimens from more field biologists, right?

S C : Yes, and that happens in the next round of placements.
Two more specimens from the first field biologist will go in drawers 10 and
11, two more specimens from the second field biologist will go in drawers 12
and 13, and two specimens from the third field biologist will go in drawers 14
and 15. And so forth and so on, including specimens from an additional field
biologist in each round of placements, until every specimen has been placed in
a drawer or moved to a new drawer.[⋆4]

Anyway, (making some notes on the form and attaching one of the two tags)
here is your receipt and the tag that identifies your specimen. The matching
tag stays with the specimen, so you can be sure upon retrieval that you got the
specimen you submitted. Have a lovely day and enjoy your time at Parasite
Central.

All characters exit.

15.2.2 Scene 2: The Taxonomist

Characters: L A , P , T .

L A enters, followed by P ; from another direction, T -
enters.
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T : Greetings! Do you have some slides for me?

L A : Yes, I have a slide for you. I am also showing the collector of the
specimen around part of our lab.

T : Lovely—(to P ) Let me tell you a little bit about what
we do here. (gestures to the room) I examine slides of waterfowl parasites and
note their characteristics. With this information, I classify the parasites; if they
are rare, or if they are different enough to be considered a new species, I store
the slides in this array. The bulk of my job is deciding where in the “family
tree” of waterfowl parasites new species should go.
(to L A ) The slide, please?

L A mimes handing a slide to T , who mimes examining it
under a microscope.

T : That’s interesting… hmmm… (looks up) I’m going to need to do a
little bit more work with this one before I can tell you whether it needs to be
taken to Cataloguing. Could you take our guest to get some coffee or something
for a fewminutes? I should have an answer for you relatively soon. Oh, but I’ll
need your receipt for now, so I can make notes on it for potential cataloguing
purposes.

P : I’m confused. You need the receipt to take notes? I thought it was
for tax purposes…

T : Oh, it is, as far as you are concerned. But before you leave with it,
we will have preliminary notes recorded on it and a copy will be stored either
here or with Cataloguing, depending on what the eventual fate of the sample
and slide are.

P : Okay. Here’s the receipt. Do you need the tag as well? … (drifts
off ) … that’s odd; it says 134. But I thought we were told it was going to be
number 59. Oh, well. [⋆5]

T : Thanks. The tag isn’t necessary at this point. If I’ve already finished
with your slide when you return, I’ll be storing it in holder (147,2032) in the
array. That one’s empty at the moment.

P : As in the hundred-and-forty-seventh holder in the two-thousand-
and-thirty-second row? You must have a lot of slides here!
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Figure 15.1. The old numbering of slide holders in Taxonomy.

T : It’s more like the two-thousand-and-thirty-second holder in the
hundred-and-forty-seventh aisle. These coordinates are just like (x,y) coor-
dinates of a point in the plane. And yes, we have a lot of slides here. Infinitely
many, in fact.

P : With two coordinates to count with, you must have room for in-
finitely many more than the Storage area has!

T : Actually, I have exactly the same amount of room as Storage has.
The only reason I use two coordinates is because my laboratory area is a dif-
ferent shape than the Storage area—when we first moved in, I numbered my
holders in the array to match the drawers in Storage. It was like this, as shown
in Figure 15.1: (gestures) holder 1 was in the corner here, holder 2 to the right
of it, and then diagonally up and left was holder 3, holder 4 was just above it,
and then I kept numbering by going diagonally back until I was at the right
of holder 2, and so forth. But then over time, I got tired of zig-zagging back
and forth from the corner to find a slide and decided to use array numbering
instead. Besides, when we started, there were the same number of slides as
samples, and now there are way more samples than slides—not everything we
need to store is studied by me, but everything I study has a corresponding sam-
ple in Storage.[⋆6]

L A : Before we go, I should warn you that a large influx of specimens
arrived earlier today.
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T : How large are we talking?

L A : Well, over in Storage we heard that infinitely many field biologists
had arrived with infinitely many samples each.

T : Oh. Great.

L A : Will this be a problem? I mean, should we take a loooong coffee
break, or …?

T : Don’t worry. It’s not like Storage will process all of them at once,
and besides, there will probably not be very many that get slides passed to me;
I just get the avian waterfowl slides, and even with infinitely many samples,
there could be finitely many of those. And it’s not like I could analyze more
than one slide at a time anyway, so whoever comes in while I’m working can
just wait. Or… I could pretend I’m on break and then no one will disturb me…
just don’t worry about it.

L A : Okay. We’ll see you later.

P : (to T ) Thanks for explaining your slide storage system
to me! It was lovely viewing your area and hearing about your work.

All exit, L A and P in a different direction from T -
.

15.2.3 Scene 3: The Café

Characters: L A , L A 2 (LA2), L A 3 (LA3),
N , P .

Enter L A followed by P ; from another direction, enter L
A 2 (LA2) and L A 3 (LA3), who sit down.

N : There is a counter with stools that stretches across the room. All the
stools are occupied.

L A : Can I get you some coffee?

P : (looking around, staring) … Sure. … There are a lot of people
here. And I don’t see anywhere to sit… is there anywhere besides the counter?
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L A : Well, this is a common break time for lab assistants, so it’s not
surprising that there are a lot of people here. (gazes towards where the counter
would be, where LA2 and LA3 are sitting) I’m pretty sure that while there
are infinitely many people at the counter, there are also infinitely many lab
assistants who aren’t here. I don’t see anyone whose name begins with “J,”
for example, and there are infinitely many of those. Anyway, we can sit at the
counter. (to LA2 and LA3) Could you make room for two? I have a guest here
who brought in a specimen.

LA2: Sure! (to invisible people seated on the left) Could you move over, please?
We have a new arrival over here.

LA3: (to invisible people seated to the right) Please move down a seat; pass on
the message.

L A : (to LA2, while sitting down just to LA2’s right) Has coffee been
poured recently?

LA2: No, I think it will be soon, though. I heard some mugs clinking a moment
ago.

N : A server comes by, setting down steaming mugs of coffee while walk-
ing past.

L A : (to LA2) I usually like to have two cups. You?

LA2: Not usually, but today I’m very tired. (turns to the left) Could you please
give me your coffee? And the coffee given to the person on your left?

L A : (to P ) You didn’t want two cups of coffee, did you?

P : No… but I would like cream for my coffee. And is it seriously okay
to make those people to the left give up their coffee for you?

L A : Cream should be along in a minute; also, sugar. And the people
to our left will get coffee from the people on their left. We’re used to passing
the mugs around before drinking.[⋆7]

N : A server comes by, setting down dishes of creamer and sugar cubes
while walking past.

LA3: (to P ) Could you pass me the dish of creamer and sugar cubes?
We don’t have enough over here.
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LA2: (overhearing) Extra creamer is being passed up this way, hang on a mo-
ment… here.

LA2 hands a dish of creamer to L A , who hands it to P ,
who takes two creamers before passing it to LA3.

P : A snack would be lovely… can we order anything? … from any-
one?

N : A server walks by with an armload of cookies but doesn’t set any
down.

L A : We’ll have to ask around. No one stops long enough for us to
order drinks or snacks. (to LA2) Any cookies down that way? (to LA3) Do
you see any cookies?

LA2: I’ll ask. I’m pretty hungry myself.

LA3: Let me see….

LA2: (to invisible people seated on the left) Do you have any cookies?

LA3: (to invisible people seated on the right) Could we… Hey! You down there,
stop hoarding all the cookies! (pauses to listen) It doesn’t matter if you want in-
finitely many cookies, you can still send a few our way! (turning to P -

and shaking head) Some people… [⋆8]

LA2: (to L A ) What group meeting do you have today?

L A : That’s a good question. I’ll have to check the schedule; it changes
so often. You?

LA2: I’m lucky—for today I’m assigned to a group that’s discussing my primary
project!

L A : Wow, nice. Is it a big group?

LA2: Not too big. I think there are under 50 people.

L A : That’s good. Last week I was in a group with 30,000,000 people,
and it was tough for anyone to hear each other during the meeting.

P : How often do you get to work on your primary project?
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L A : We work on our primary projects whenever we have no other
specific duties—dealing with sample intake, assisting senior scientists, and so
on. But it’s rare to have group meetings about our primary projects, because
we are but lowly lab assistants.

P : Oh, so most of the group meetings are about senior scientists’
projects?

L A : No… they’re about other lab assistants’ primary projects. It’s part
of a workflow experiment. Every lab assistant has hir own primary project,
but until recently we worked in relative isolation on our projects. One of the
heads of the lab thought that some collaboration would increase research pro-
ductivity on lab assistant projects and so asked the lab’s operations researcher
to figure out what would be best. But it’s not a straightforward problem—
What size discussion group is best? Should discussion groups be formed of
lab assistants with close expertise to the project topic, or lab assistants who
know very little and so bring fresh thoughts, or a mixture of the two? So the
operations researcher decided we would try having every possible collection
of lab assistants meet and have everyone take notes on the meetings, and then
see what works best.

P : Wow. That’s a lot of meetings.

L A : Yeah, we have at least one in the schedule every day. And it’s
kind of random because the operations researcher is still trying to figure out
the whole schedule, and so we don’t know very far in advance when we’re
meeting about what with whom. But to answer your original question, some
lab assistants don’t get group meetings about their primary projects. They do
get the notes from the meetings about their projects, though. I suspect that
mostly meetings like that are a waste of time, but we’ll see.

LA3: I heard that the operations researcher ran into a massive scheduling problem
recently, and it might derail a chunk of the experiment.

L A : Really? What’s going on?

LA3: The operations researcher made a list of all possible groups of lab assistants,
right? And every group has to meet about someone’s primary project because
they have to have something to talk about, and it would be silly to have them
talk about something that has nothing to do with the lab. But rumor has it that
there is a group with no project, and this is throwing the operations researcher
for a loop.
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P : Can’t the operations researcher just pick a project no one has met
about yet?

LA3: No, it’s super-weird. It has to do with the particular group. The operations
researcher came up with every possible group, and one of those is the group
of lab assistants who are not in the group that discusses their primary project.
And apparently there’s no project for that group to discuss.

P : I still don’t see why the operations researcher can’t just pick a
project.

L A : Let’s pretend that this particular group is going to discuss my
primary project. I would love to be there, not that I’m bitter about not having
had a group talk about my project yet, or anything…. Anyway, I want to be
in the group. But every lab assistant in this group is not in the group that
discusses hir primary project. So I can’t be in the group. And that means I am
not in the group that discusses my primary project, which means I am in the
special group, which is discussing my primary project. It just goes ’round and
’round. [⋆9]

P : … Uhhh….

LA3: Well, I also heard that the operations researcher is considering expanding the
focus of these groups; the problematic group might be told to discuss the func-
tioning of this café, for example. That’s not a lab assistant’s primary project.
But there might be other issues that come up.

L A : (to P ) Did you ever get the cookie you wanted? We
should be getting back to Taxonomy to check on your slide. You still have your
tag?

P : Yeah, somewhere in there I got a cookie. The tag is in my pocket…
(pulls tag out of pocket) Here. Wait a minute! The tag says 17,956, and I’m
sure it was a much smaller number before. Wasn’t it supposed to be 59?

L A : Oh, the tags are quantum entangled. Remember how it was origi-
nally one of a pair? They’re linked, so when the Storage Coordinator moves a
sample to a new drawer, the storage tag gets relabeled and that relabels the tag
you have here. [⋆10]

P : (to LA2 and LA3) It was nice to meet you. Good luck with your
meetings and projects!

LA2 and LA3wave as L A and P exit, then exit themselves.
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15.2.4 Scene 4: Cataloguing

Characters: C , L A , L A 4 (LA4), N ,
P , T .

L A and P enter from one direction and T enters
from another direction.

T : Ah! You’re back! I have news—the avian waterfowl parasites on
your slide are likely an unknown species, which means that they need to be
catalogued. That means you will take the receipt and the sample tag down to
Cataloguing, where a catalogue number will be assigned, a copy will be made
of the receipt, and the tag will be stored with the catalogue information. Here.
(hands them the receipt)

P : Thanks!

All exit. Then L A and P enter from one direction and L
A 4 (LA4) enters from another direction.

LA4: Whoa! You can’t go through here.

L A : Why not? We need to take some information to Cataloguing.

LA4: All infinitely many specimens in the Liver Fluke Lab need to be collected
for transport and we are about to start. So you will need to wait.

P : … Are we going to be waiting forever?

LA4: No. Just hang on a minute. (backs away)

N : As P and L A watch, a dolly stacked with boxes
is brought across the hall and then brought back empty. This process takes
about 30 seconds. In the next 15 seconds, the dolly passes across the hall full
and returns empty. Again a load of boxes passes across, but in one-eighth of
a minute. Continuing to pass back and forth twice as fast with each trip, the
dolly becomes a blur, and about five seconds later the hall is still.

LA4: (coming forwards again) Okay, all clear. You can pass through.[⋆11]

L A and P cross and exit. Then LA4 exits. After a short
pause, L A and P enter from one direction and
C enters from another direction.

C : Hello. How may I help you?
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L A : We’ve been informed by the avian waterfowl parasites taxonomist
that the specimen brought in by this guest represents a new species, and so the
specimen needs to be assigned a number in the catalogue.

C : Excellent! That should be no problem. May I see the receipt? I’ll
need the sample tag as well.

P : Here you go. (hands over the receipt and sample tag) I’ve noticed
that every department at Parasite Central seems to have its own way of orga-
nizing information. How do you do it here?

C : It’s very simple. We create a catalogue entry for every identified
species. The entries are numbered and have all the taxonomic and descriptive
information reported by other departments. We can look up species by entry
number or we can search the catalog by key words, though that’s less useful as
sometimes there are infinitely many results for a search.

P : So when you get a large number of new species, you renumber?

C : (runs the receipt through a scanner) Oh, no. We’d never be able
to find anything again! Besides, we don’t just have the species identified at
Parasite Central in our catalogue. We have every parasite species ever iden-
tified anywhere in our catalogue. One way we know a species is new is if its
description doesn’t match any of the entries in the catalogue.

P : I’m confused. How do you avoid the renumbering? Do you have
finitely many catalogue entries? I thought you said there were infinitely many
search results….

C : We have infinitely many entries. But we don’t renumber; we just
find a number that hasn’t been used yet. Here, let me show you how this works
with the species you brought in. First, I’ll pull up a few catalogue entries for
you to see. (types and then rotates the computer monitor so P can
see it) Notice that at the top of the entry is the entry number. You can’t see the
whole thing on screen because it has more digits than will fit. And then below
it is the description.

P : (squinting a bit) Wait, is that a decimal point in front of the entry
number? Or is it just a symbol in front of the number?

C : Yes, that’s a decimal point—every entry number has a value between
0 and 1. Anyway, let’s say I have a list of entry numbers and I need a new one.
I just write down a decimal point, and then I go through the list. I write down
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a digit that is different from the first digit of the first number, and then I write
down a digit that is different from the second digit of the second number, and I
continue in this fashion. When I’ve gotten through the list, I know that I have
a new number because it is different in at least one place from each number on
the list. Easy peasy.

P : Wouldn’t it be even easier to use regular numbers instead of the
numbers between 0 and 1?

C : No, because there wouldn’t be enough of them unless I renumbered
all the time. Imagine this: I number all of my current catalogue entries using
regular counting numbers. The new entry I made a moment ago can’t get a
regular counting number because all of those are already in use. The decimals
are much better. Anyway, here’s your receipt back. The tag will be attached to
a copy of the receipt.[⋆12]

P : Thanks somuch. It’s exciting to have a description of a new species!

L A : Come on, I’ll walk you back to the reception area. Or did you take
a shuttle to the building? It might be closer to leave through the café.

All characters exit. Soon L A and P enter from one direc-
tion and LA2 and LA4 enter from another direction and sit as at a café counter.

N : Again, there is a counter with stools that stretches across the room.
And again, all the stools are occupied.

P : It’s still crowded in here. Is the café always full?

L A : Not always. It’s a popular break time, so most of the lab assistants
will be here now. Let me see…(looks around) In fact, I think that all but finitely
many of the lab assistants are here. That must mean that Storage is caught up
with all the specimens brought in by the infinitely many field biologists.[⋆13]

P : Thanks so much for the tour, and for letting me shadow your work
with my sample. I’ll have to tell my friendly neighborhood ducks that they’ve
contributed to science.

L A : You’re welcome! All in a day’s work. Well, it’s not every day that
I get to handle a new species. So thank you, too. The door to the outside is this
way…

Both characters exit.

N : The End.
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15.3 How Big Is Infinite?

Way back in Section 1.3, we gave the notation |A| as the number of elements in
a set A, and in Section 2.2, we explained that this is the cardinality of A. That all
makes sense for finite sets, but what do we do with infinite sets? Do we just say
|A| = ∞ and leave the matter at that? And how do we know whether two infinite
sets have the same cardinality, or have the same infinite size?

We answered this question in Chapter 3—long before we even asked it! Re-
member the Facts of Section 3.2? The pertinent one here is…

Fact 3. If there is a bijective map from A to B, then |A|= |B|.

Well, there you have it. We never said that this was only true for finite sets,
and so it gives us a way to determine when two infinite sets have the same size:
we consider two sets to be the same size if we can put them in one-to-one corre-
spondence.

15.4 Try This: Investigating the Play

There is a lot of mathematics embedded in Section 15.2, and our purpose here
is to find, expose, and figure out that mathematics. The questions that follow
correspond to the [⋆k] markers scattered throughout Section 15.2.

15.4.1 Questions about Sample Storage

[⋆1]. “… do you have a favorite number? We can move all the samples from that
number onwards up a drawer, and then we can put your sample in the drawer
with your favorite number … And there is no last sample, because there are
infinitely many.”

(a) To what set does the drawer numbering system correspond?
(b) Moving the samples can be described by a function. What is it? Make

sure to specify the domain and target of the function as well as the
defining rule.

(c) Is the function you just defined a bijection? If so, prove it; if not,
explain why not.

(d) Consider the following statements: ∞ = ∞+1; ∞ < ∞+1. Argue that
exactly one of these statements could be true.
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[⋆2]. Eight additional samples arrive and so the Storage Coordinator cannot guar-
antee that the Protagonist’s sample will remain in drawer 59. What two sets
seem to have the same cardinality here? Define a function to verify that their
cardinality is, in fact, the same.

[⋆3]. “Every sample is in a numbered drawer. I’ll just move every sample to
the drawer with twice the current number, and then all the odd-numbered
drawers will be free.”

(a) What is the sample-moving function proposed by the storage coordi-
nator?

(b) Make and prove a conjecture about cardinalities of sets. Is there a
bijection hiding here?

[⋆4]. Infinitely many field biologists arrive, each with infinitely many specimens.
“I’ll leave the first specimen in the first drawer. Then I’ll put two specimens
from the first field biologist in the second and third drawers. I’ll move the
specimen that was in the second drawer to the fourth drawer, and the spec-
imen from the third drawer to the ninth drawer. Then two more specimens
from the first field biologist will go in drawers 5 and 6, and two specimens
from the second field biologist will go in drawers 7 and 8. The specimens
from those drawers will get moved down further … two more specimens
from the first field biologist will go in drawers 10 and 11, two more speci-
mens from the second field biologist will go in drawers 12 and 13, and two
specimens from the third field biologist will go in drawers 14 and 15. And
so forth and so on, including specimens from an additional field biologist in
each round of placements, until every specimen has been placed in a drawer
or moved to a new drawer.”

(a) What is the sample-moving function described in this quotation?
(b) What is the algorithm the Storage Coordinator is using to place new

samples?
(c) Will there actually be enough room for all of the new samples? Ex-

plain.
(d) What monstrous cardinality fact is hiding here? Make and justify (but

don’t attempt to prove) a conjecture.
(e) Did you expect that the set of drawers and the set of new samples would

have the same cardinality? Why or why not?
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15.4.2 More Questions about Sample Storage

[⋆5]. “… that’s odd; [the sample tag] says 134. But I thought we were told it was
going to be number 59.”
Assuming the sample was originally going to get the number 59, what does
this tell us about how many of the constantly arriving specimens the storage
coordinator has processed?

[⋆6]. “… holder 1 was in the corner here, holder 2 to the right of it, and then
diagonally up and left was holder 3, holder 4 was just above it, and then I
kept numbering by going diagonally back until I was at the right of holder
2, and so forth. But then over time, I got tired of zig-zagging back and forth
from the corner to find a slide and decided to use array numbering instead.
Besides, when we started, there were the same number of slides as samples,
and now there are way more samples than slides—not everything we need
to store is studied by me, but everything I study has a corresponding sample
in Storage.”

(a) Add array numbering to Figure 15.1. What bijection does this suggest
(in particular, what sets are involved)? And what interesting cardinal-
ity fact can you thereby deduce?

(b) Find a surjection from array numbering to the rational numbers Q.
(Why is this not an injective map?) What surprising and interesting
cardinality fact does this suggest?

(c) The taxonomist says that there are more samples than slides, but you
know that there are |N| samples (because the sample drawers are num-
bered) and |N| slides (because these slide holders used to be num-
bered). What gives? (How can both statements be true?)

15.4.3 Questions about Café Conversations

[⋆7]. Lab Assistant and LA2 each want to have two cups of coffee. LA2 turns to
the left and asks, “Could you please give me your coffee? And the coffee
given to the person on your left?” Lab Assistant explains that “… the people
to our left will get coffee from the people on their left.”

(a) The stools in the café stretch all the way across the room, left and right.
What set would be convenient to use in numbering the stools?

(b) What map on coffee cups is described (that will give Lab Assistant and
LA2 two cups of coffee each)?
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[⋆8]. “It doesn’t matter if you want infinitely many cookies, you can still send a
few our way!”
How is it possible for one person to have infinitely many cookies and still
send some down?

[⋆9]. “LA3: The operations researcher made a list of all possible groups of lab
assistants, right? And every group has to meet about someone’s primary
project …. The operations researcher came up with every possible group,
and one of those is the group of lab assistants who are not in the group that
discusses their primary project. And apparently there’s no project for that
group to discuss. …
“L A : Let’s pretend that this particular group is going to discuss
my primary project … every lab assistant in this group is not in the group
that discusses hir primary project. So I can’t be in the group. And thatmeans
I am not in the group that discusses my primary project, which means I am
in the special group, which is discussing my primary project. It just goes
’round and ’round.”

(a) LA3 and Lab Assistant’s dialogue suggests a function from the set of
groups of lab assistants to the set of projects. What is that function?
Describe/define it verbally and using function-and-set-theoretic nota-
tion.

(b) In turn, this suggests a function from the set of groups of lab assistants
to the set of lab assistants. What is that function? (Please call it f .)

(c) Consider the group of lab assistants who are not in the group that dis-
cusses their primary project. Define this group g using set-theoretic
notation.

(d) What is f (g)?
(e) Is f (g) ∈ g? Explain.
(f) Explain why there cannot be a bijection between the set of groups of

lab assistants and the set of lab assistants.
(g) What is the relationship between the groups of lab assistants and the

lab assistants themselves?
(h) What cardinality conclusion does this present?

[⋆10]. “Wait a minute! The tag says 17,956, and I’m sure it was a much smaller
number before. Wasn’t it supposed to be 59?”
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Assuming again that the sample was originally going to get the number 59,
what does this tell us about how many of the constantly arriving specimens
the storage coordinator has processed?

15.4.4 Indiscrete Questions

[⋆11]. The infinitelymany specimens in the Liver Fluke Lab are collected for trans-
port: “… a dolly stacked with boxes is brought across the hall and then
brought back empty. This process takes about 30 seconds. In the next 15
seconds, the dolly passes across the hall full and returns empty. Again a
load of boxes passes across, but in one-eighth of a minute. Continuing to
pass back and forth twice as fast with each trip, the dolly becomes a blur,
and about five seconds later the hall is still.”

(a) How long does it take for all of the boxes to be taken across the hall?
(b) How many trips does the dolly make?
(c) Write the duration of each trip as a fraction of the total time, and add

these up. Rewrite the result using summation notation to conclude an
interesting fact.

[⋆12]. The Cataloguer avoids relabeling as follows: “… every entry number has a
value between 0 and 1 … Let’s say I have a list of entry numbers and I need
a new one. I just write down a decimal point, and then I go through the list.
I write down a digit that is different from the first digit of the first number,
and then I write down a digit that is different from the second digit of the
second number, and I continue in this fashion. When I’ve gotten through
the list, I know that I have a new number because it is different in at least
one place from each number on the list.”

(a) What is the set of entry numbers?
(b) How does its cardinality compare to that of N? Explain.

[⋆13]. “In fact, I think that all but finitely many of the lab assistants are here. That
must mean that Storage is caught up with all the specimens brought in by
the infinitely many field biologists.”

Are there more lab assistants in the café now than there were earlier?
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15.5 How High Can We Count?

Hey! You! Don’t read this unless you have worked through the problems in Sec-
tion 15.4. I mean it!

We can only count at a finite pace (see Section 15.6 for other possibilities), so the
literal answer to the question raised in the title of this section is “to some large finite
number.” But considering the question more figuratively, we have a pretty good
idea of how many natural numbers there are, and thus |N| is a yardstick against
which we can measure the cardinalities of other sets. However, as we observed
in Sections 15.2 and 15.4, not all infinite sets have the same cardinality, so it is
not useful to say |N| = ∞ (even though that statement is true). Instead, we say
|N|= ℵ0 (pronounced aleph-naught or aleph-null) so that we have a name for this
particular size of infinity. We also say, because N is the set of counting numbers,
that any set with size ℵ0 is countable. (Indeed, any set with size larger than ℵ0 is
uncountable.)

With this terminology, N, Z, and Q are countable, whereas R is uncountable.
An indirect way to see that R is uncountable is to rewrite every real number in
binary; for any number, there are only finitely many places before the point, but
there may be infinitely many places after the point. So the number of possible real
numbers (in binary) is 2ℵ0 . This is the size of the power set of N, which we saw
in Problem 9 of Section 15.4.3 is larger than ℵ0. A different indirect way to see
that R is uncountable is to note that R ⊃ [0,1], and Problem 12 of Section 15.4.4
showed that [0,1] is uncountable.

Example 15.5.1. You are reading an element of an uncountable set! That is, you
are readingwords that form a subset of a page, which in turn is a subset of the plane,
and the plane is R2. Therefore, the text of this book is an element of P(R2). We
know that |P(R2)| ≥ |R2|> |N|= ℵ0.

The proofs that [0,1] andP(N) are uncountable have the same structure: they
both show by contradiction that there cannot be a one-to-one correspondence with
N. For [0,1], we use the naturals to list all elements of [0,1] (in any order!), which
is a one-to-one correspondence with N, and then produce an element of [0,1] that
does not appear on this list. Thus, the bijection produced by the supposed one-to-
one correspondence turns out to not be onto [0,1]. For P(N), we assume there
is a bijection between P(N) and N and produce an element of P(N) that cannot
correspond to any element of N.
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Figure 15.2. Cardinality is mysterious, perhaps because the iconic cardinal wears a mask.

Summary of approaches. Our three favorite sets N, Z, and Q are countable.
We show a set is countable by exhibiting a bijection with N.

On the other hand, R, [0,1] and P(N) are uncountable. To show a set
is uncountable, we show by contradiction that there cannot be a one-to-one
correspondence with N.

These proofs are conceptually challenging. Because it tangles with infinity, the
study of cardinality is inherently mysterious (see Figure 15.2), and in fact, brain-
twisting aspects of infinity arise even in relatively simple situations. For example,
the sets N and 2N have the same cardinality, but N has infinitely more elements
than 2N has. (The extra elements are the odd counting numbers.) This shows
the need for precision in language—we could colloquially say that N and 2N are
the same size (they have the same cardinality) and also that N is larger than 2N
(N⊃ 2N and N has way more elements).

In order to show that two sets have the same cardinality, we do not necessarily
need to give a single function that we can prove is a bijection. We can instead
show that a set of functions together provide an injection and a surjection.

Example 15.5.2. Let us show that |N∪N∪N∪N∪N|= |N|.
First, some setup. Wewill denote an element t ∈N∪N∪N∪N∪N by t =(n, p)

where n ∈ N and p ∈ {1,2,3,4,5} to indicate which copy of N we’re looking at.
Next, we partition N into five subsets, {n | n ≡ 0 (mod 5)}, {n | n ≡ 1 (mod 5)},
{n | n ≡ 2 (mod 5)}, {n | n ≡ 3 (mod 5)}, {n | n ≡ 4 (mod 5)}.

Now we will define our bijection by f (t) = f ((n, p)) = 5(n−1)+ p.
It is an injection: Suppose f (t1) = f (t2). Then we have 5(n1 − 1) + p1 =

5(n2 − 1) + p2. Examining this equation mod5, we see that p1 ≡ p2 (mod 5).
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Because p1, p2 ∈ {1,2,3,4,5}, we know p1 = p2. Then 5(n1 − 1) = 5(n2 − 1)
implies n1 = n2. Therefore, (n1, p1) = (n2, p2).

It is a surjection: For any m ∈N, we note that m = 5k+ r for some k ∈W and
r ∈ {0,1,2,3,4}, so f ((k+1,r)) = 5(k+1−1)+ r = m.

As another example, consider showing that infinitely many copies of N have
the same cardinality as N (as in Problem 4 of Section 15.4.1). Wait! What do we
mean by “infinitely many copies”? That phrase could indicate countably many
copies or uncountably many copies. Before we go further, let us give some nota-
tion for describing each of these sets. Countably many copies of N can be denoted∪

k∈NNk. (If you are disturbed by the notion that we are distinguishing between
copies of N, imagine that the kth copy of N is {k,k k,k k k,k k k k, . . .}.) Uncount-
ably many copies of N can be denoted

∪
α∈I Nα , where I is an uncountable index

set (such as [0,1]).
Now, when we say we want to show that infinitely many copies of N have the

same cardinality as N, we must mean to consider countably many copies of N.
After all, if we consider uncountably many copies, the number of copies of N is
already of larger cardinality than N itself!

Here is one way to show that infinitely many copies of N have the same car-
dinality as N, without using a lone function. We partition N into subsets that each
have cardinalityℵ0 (for example, 2N is one such subset) and then put each of these
subsets into one-to-one correspondence with copies ofN. The challenge is that we
must partition N into ℵ0 subsets!

We start with noting that N is in one-to-one correspondence with the square
numbers {1,4,9,16, . . .} via the map f (n) = n2. This is our first of the ℵ0 copies
of N. Actually, let’s call it the zeroth copy of N for ease in indexing and because
its map differs from the remaining maps. We will deal the elements of the kth
copy of N out like a deck of cards; element 1 will be sent to element k2 + 2(k−
1)+1 and element 2 will be sent to element k2 +2(k−1)+2. (This is exactly the
map described in Problem 4 of Section 15.4.1.) Element 3 will be sent to element
(k + 1)2 + 2(k − 1) + 1, element 4 will be sent to (k + 1)2 + 2(k − 1) + 2, and
elements 2n− 1 and 2n will be sent to elements (k+ n− 1)2 + 2(k− 1)+ 1 and
(k+n−1)2+2(k−1)+2, respectively. How can we see that this set of one-to-one
correspondences partitions N? Notice that we are filling in the numbers between
k2 and (k + 1)2 = k2 + 2k + 1 with pairs of elements from N1, . . . ,Nk. Because
there are 2k numbers between k2 and (k+ 1)2, we have at each stage exactly the
same number of “cards” dealt as places to deal them.

Further, here is a simpler observation that follows from the fact that ℵ0 copies
of N have the same cardinality as N. We can view

∪
k∈NNk as |N| columns, each
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containing a copy of N. This forms the set N×N but still has the same cardinality
as
∪

k∈NNk; therefore, |
∪

k∈NNk|= |N|= |N×N|.

15.5.1 The Continuum Hypothesis

We have shown that 2ℵ0 > ℵ0. But is there some number weird so that 2ℵ0 >
weird > ℵ0? Let us define ℵ1 as the smallest number that is bigger than ℵ0. Is
2ℵ0 > ℵ1? Or is 2ℵ0 = ℵ1?

No one knows.

Unless we change the foundations of mathematics, no one will ever know.

Seriously. The deal is that underlying the mathematics we study is a set of
axioms, collectively called the Zermelo-Fraenkel axioms. Most people use one
additional axiom (the axiom of choice) and together, our axiom system is referred
to as ZFC. It has been proven that under ZFC, if you assume that 2ℵ0 =ℵ1, no con-
tradiction arises. And also, if you assume that 2ℵ0 ̸= ℵ1, no contradiction arises!
(By the way, the statement that 2ℵ0 = ℵ1 is known as the continuum hypothesis
because it says that the cardinality of the real numbers, or continuum, is ℵ1.)

On the other hand, Hugh Woodin proposed (in 2001) adding an axiom to ZFC
that would make the continuum hypothesis false. In other words, with his axiom,
assuming that 2ℵ0 = ℵ1 would lead to a contradiction.

Cardinality is quite strange (see Figure 15.2).

Check Yourself

1. What is the cardinality of the sample drawers (in the Storage facility)?

2. What is the cardinality of the stools in the coffee area?

15.6 Where to Go from Here

The topic of cardinality is generally classified as part of set theory and part of the
foundations of mathematics. (To see where to go with these areas, consult Sec-
tion 2.8.) However, understanding cardinality at a basic level is necessary for most
of advanced mathematics and particularly for real analysis (which is the branch of
mathematics that contains calculus).
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If you enjoyed this chapter, you might like the story Surreal Numbers by Don-
ald Knuth. Its mathematical content is set-theoretic in nature. For one mathemati-
cian’s interpretation of what it would mean to be able to count to ℵ0 and how that
differs from being able to count toℵ1, see the excellent novelWhite Light by Rudy
Rucker.

Credit where credit is due: The story in Section 15.2 was based on the folklore known
as Hilbert’s Hotel, of which there are many, many versions available. The best one is
“Hilbert’s Hotel,” by Ian Stewart. It appeared in New Scientist, 19/26 December 1998–2
January 1999, pages 59–61. The style of Section 15.2 was inspired by Imre Lakatos’s
Proofs and Refutations, though, of course, this play does not measure up to his. Bonus
Check-Yourself Problem 10was suggested by TomHull. Problems 26–31 of Section 15.10
were donated by Heather Ames Lewis.

15.7 Chapter 15 Definitions

cardinality:The number of elements in a set.

same size: We consider two sets to be the
same size if we can put them in one-to-
one correspondence.

aleph-naught: ℵ0, also pronounced aleph-
null, the cardinality of the natural num-
bers.

countable: Any set with size ℵ0 (because
we can count the natural numbers).

uncountable: Any set with size larger
than ℵ0.

Zermelo-Fraenkel axioms: The set of ax-
ioms underlying ordinary mathematics.
Generally used with the additional axiom
of choice and then called ZFC.

continuum hypothesis: The statement that
2ℵ0 = ℵ1 is known as the continuum hy-
pothesis because it says that the cardi-
nality of the real numbers, or continuum,
is ℵ1.

15.8 Bonus: The Schröder–Bernstein Theorem

Back in the mists of time and pages that were Chapter 3, we presented Theo-
rem 3.2.9, which said that if f : A→ B is a function on finite sets A,B and |A|= |B|,
then f is one-to-one if and only if f is onto. We gave an informal proof and
promised that later we would reveal a similar theorem for infinite sets. That time
has come.

Theorem 15.8.1. Let A,B be infinite sets. Then if f : A → B and g : B → A are
both one-to-one functions, there exists a bijection h : A → B.
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This is known as the Schröder–Bernstein theorem because Schröder and Bern-
stein proved it independently in the 1890s. We will give a sketch of the proof of
Theorem 15.8.1 because a full proof is beyond the scope of this text.

Sketch of proof. First, if it turns out that f is onto, then we’re done because f is the
bijection we seek. So we only need to consider the case that f is not onto. That
means there is some element bα ∈ B such that there is no a ∈ A with f (a) = bα .
Check out g(bα) = aα . We can use this to construct part of h. For each such bα
that is not in the image of f , define h(aα) = bα .

Now consider the set Notonto = {aα ∈ A | h(aα) = bα ̸∈ Range( f )}. These
are the elements of A we have reserved for defining h. (We have defined h :
Notonto→ B so far.) And look at the set A\Notonto. That’s the rest of A, so for
aβ ∈ (A\Notonto), we will define h(aβ ) = f (aβ ).

At first, this looks like the h we want: for a ∈ A \Notonto, h(a) = f (a) and
for a ∈ Notonto, h(a) = b, where we got b by reversing a bit of g. This map
h is one-to-one; the f parts are one-to-one, the non- f parts are one-to-one, and
because these two parts are defined using disjoint subsets of B, the whole thing
is one-to-one. And it should be onto, because we made sure to start by filling in
the gaps in B left by f . However, there are some a ∈ A for which h(a) ̸= f (a).
For those a, there were some b ∈ B that were mapped to by f … and now, for
those b, there are no a ∈ A such that h(a) = b. This means that h is, unfortunately,
not onto.

What we want to do is look at the new set of not-mapped-to b ∈ B, use g to
find a ∈ A so that new-h(a) = b, and use new-h(a) = old-h(a) for the rest of the
a ∈ A. But this has the same problem as before!

It turns out the fix is as follows: Think about following each element a ∈ A
through a sequence of applications of the functions. So we start with aα and then
follow it across f to get f (aα) = bα , and follow this across g to get g(bα) = aβ ,
and follow this across f to get f (aβ ) = bβ and so forth. And if there is some bnice
such that g(bnice) = aα , stick that onto the front of the sequence for aα … and
continue this process as well. In the end, you’ll have some sequences that start in
A and some sequences that start in B and some sequences that have no start at all.
In this view, the elements of B to which f does not map elements of A (the elements
that got missed by f ) have become the elements of B that start these sequences of
applications of f and g.

Now define real-h as follows. If the sequence corresponding to a starts in A or
has no start, use real-h(a) = f (a). If the sequence corresponding to a starts in B,
then there is a bnice ∈ B such that g(bnice) = a, so use real-h(a) = bnice.
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As mentioned before, the full proof is beyond the scope of this text, so we will
not attempt to explain why real-h is a bijection. If you are familiar with compo-
sition of functions and inverses of functions, and if you are very persistent, you
may find it rewarding to research full proofs of the Schröder–Bernstein theorem.
A compact one can be found at http://www.artofproblemsolving.com/wiki/index.
php/Schroeder-Bernstein_Theorem.

15.9 Bonus Check-Yourself Problems
Solutions to these problems appear starting on page 634. Those solutions that model a
formal write-up (such as one might hand in for homework) are to Problems 4, 5, and 8.

1. Show that |Z|= |Z|+72.
2. Show that Z has the same cardinality
as 4N.

3. Show that Z has the same cardinality as
N×N.

4. Prove that |P(Q)|> |Q|.
5. Show that W has the same cardinality
as Z.

6. What is the cardinality of the set { p
q |

p ∈W,q ∈ Z}?

7. What is (ℵ0)
3? How about (ℵ0)

8? Or
(ℵ0)

ℵ0? Explain.
8. Consider the setF of all functions from

N toN. IsF countable or uncountable?
9. Is the total number of steps in an algo-
rithm that does not terminate countable
or uncountable?

10. Consider the set H of length- 1
2 intervals

that are contained in the interval [0,1].
What is |H|?

15.10 Infinitely Large Problems

1. Show that |N|= |N|+1.
2. Show that |N|= |N|+100,000,000.
3. Show that N has the same cardinality
as 3N.

4. Show that N has the same cardinality
asW.

5. Show that N has the same cardinality
as Z.

6. Show that Z has the same cardinality
as 2Z.

7. Show that N has the same cardinality as
Z×Z.

8. Suppose that the additional eight sam-
ples brought into Storage just after the
Protagonist leaves the sample are placed
into drawers with numbers higher than
59. What would happen to the Protago-
nist’s tag number later in the play?

9. Suppose two field biologists come in,
each with infinitely many samples. De-
vise a simple way to store them all. (Be
sure to use a clearly defined map.)

10. Is the map described in Problem 7 of
Section 15.4.3 a bijection?

http://www.artofproblemsolving.com/wiki/index.php/Schroeder-Bernstein_Theorem
http://www.artofproblemsolving.com/wiki/index.php/Schroeder-Bernstein_Theorem
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11. What if everyone wanted two cups of
coffee—what map would accomplish
this goal?

12. Prove that [1,2) is uncountable.
13. Prove that |P(Z)|> |Z|.
14. Explain why ℵ0 + 1 = ℵ0. In fact,

prove it.
15. Show that 2ℵ0 = ℵ0.
16. Show that ℵ0 ·ℵ0 = ℵ0.
17. What should ℵ2 mean?
18. What is the cardinality of the subset of

[0,1] consisting of infinite decimal ex-
pansions with only the digits 2 and 5?

19. What is the cardinality of the set { 1
k |

k ∈ N}?
20. What is the cardinality of the set { p

q |
p,q ∈ N}?

21. Consider the set W of all words in
the English alphabet (sensical or other-
wise). What is |W |?

22. Consider the set L of all lines in the
plane that pass through the origin. Is L
countable or uncountable, and why?

23. Is the set of all finite graphs countable
or uncountable?

24. In this problem we will count polyno-
mials.
(a) Consider polynomials of the form

ax, where a ∈ N. How many such
polynomials are there?

(b) Now consider polynomials of the
form ax+ b, where a,b ∈ N. How
many such polynomials are there?

(c) Continue considering, and this time
examine polynomials of the form
ax2+bx+c, where a,b,c ∈N. How
many such polynomials are there?

(d) Finally, consider polynomials of the
form anxn + an−1xn−1 + · · ·+ a1x+
a0. Howmany such polynomials are
there?

25. Challenge: Is the set of polynomials
with integer coefficients countable or
uncountable?

26. Prove that…
(a) … f : Z→ 5Z given by f (x) = 5x is

a bijection.
(b) … g:R→R given by g(x)=10x−7

is a bijection.
(c) … h :Z→Z given by h(x)= 10x−7

is not a bijection.
27. A temporary excursion to the land of

finity:
(a) If |A|= 4 and |B|= 3, does there ex-

ist a one-to-one map A → B? What
about an onto map? Why or why
not?

(b) If |A|= 4 and |B|= 3, does there ex-
ist an injection B → A? What about
a surjection? Why or why not?

(c) In general, if there exists an injective
function between finite sets S1,S2,
which set has larger cardinality?

(d) In general, if there exists a surjec-
tive map between finite sets S1,S2,
which set has larger cardinality?

28. In what drawer is the Protagonist’s sam-
ple after all samples that arrive during
Scene 1 are stored? Explain.

29. After the infinitely many field biolo-
gists arrive and their samples are stored,
what samples are in the first 20 drawers?

30. After the infinitely many field biolo-
gists arrive and their samples are stored,
in what drawer is the fifth sample of the
tenth field biologist? In what drawer is
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the tenth sample of the fifth field biolo-
gist?

31. In Scene 4, when the Liver Fluke Lab
specimens are brought across the hall-
way, for how many seconds is the dolly
full of boxes? For how many seconds is
it empty?

32. Prove that there are uncountably many
disjoint copies of Z in R.

33. Prove that |
∪10

i=1Ni|= |N×N|.
34. What is the cardinality of the set {p · q

| p,q ∈ Z}?
35. Give five examples of sets with cardi-

nality 2ℵ0 .

15.11 Instructor Notes
This chapter is designed to convey the basics of cardinality in a discovery-based way.
Working through Sections 15.2 and 15.4 will take at least most of a week! However, there
are a couple of different ways of approaching Sections 15.2 and 15.4, depending on your
particular class and your teaching style.

You may wish to have your class (or a subset of your class) read Section 15.2 aloud,
with pauses for discussion of the mathematics. To facilitate this presentation of the ma-
terial, there are periodically [⋆k] notations in the script to cue you and the students as to
where such pauses might most profitably fall. On the other hand, you may wish to have
the class read Section 15.2 aloud straight through and discuss the mathematics afterwards.
(A direct reading takes about 30 minutes.) In this case, Section 15.4 contains the questions
that correspond to the [⋆k] notations from Section 15.2.

Even though there are ten characters, no more than five are on stage at once. The
Narrator, Protagonist, and Lab Assistant are regularly used at the same time. Two of the
other three Lab Assistants (2, 3, 4) are on stage together; and, at no time do any two of the
Receptionist, Storage Coordinator, Taxonomist, and Cataloguer interact.

Of course it is possible, though far less fun, to simply assign students to read Sec-
tion 15.2.

No matter how you choose to treat Section 15.2, students can be assigned to read
Section 15.3 after the first day of class (and to read or reread Section 15.2), as it was
specifically designed to be independent of how far into the previous material students
have gotten.

Section 15.5 adds some very necessary terminology but also reviews ideas that arise
in Sections 15.2 and 15.4. It may be best to have students read Section 15.5 after the
second class day spent on this material, but whether this is effective timing depends on
what discussions your class has already had.



Chapter 16

Number Theory

16.1 Introduction and Summary

We have already encountered some very basic number theory in Chapter 5. There
we do some modular arithmetic and equivalence relations (as well as a bunch of
basic cryptography), and that material is prerequisite to the material in this here
number theory chapter.

This chapter is no substitute for a course in number theory! It only discusses
greatest common divisors, congruence equations, Euler’s phi function, and medi-
ants… and there is much, much more to the topic. Please look at Silverman’s A
Friendly Introduction to Number Theory [23] for a deeper look at this and related
material.

16.2 Try This! Divisors and Congruences

Before we start exploring, a quick…

Definition 16.2.1. Two numbers are relatively prime if they have no divisors (other
than 1) in common. For example, 15 and 8 are relatively prime because {1,3,5,15}
∩{1,2,4,8}= {1}.

16.2.1 Phi, Phi, Pho, Phum

For this exploration, we also want a second…

Definition 16.2.2. The Euler phi function, φ(n), counts the natural numbers that
are relatively prime to and less than n. For example, φ(15) = 8 because 1, 2, 4, 7,
8, 11, 13, and 14 are relatively prime to 15.

1. Compute φ(3), φ(5), φ(7), and φ(11). What do you suspect φ(p) is when
p is a prime number? Prove it.

511
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2. Compute φ(4), φ(9), φ(25), and φ(49). What do you suspect φ(p2) is
when p is a prime number? Prove it. Can you extend your reasoning to
determine φ(pk) for k ≥ 2?

3. Compute φ(10), φ(14), φ(15), φ(21), φ(33), φ(35), and φ(55). What
form do these numbers have, and what do you suspect φ(n) is when n is of
this form?

16.2.2 Getting More out of Prime Factorizations

Think all the way back to Chapter 1, where an example theorem was given in
Example 1.4.6: every natural number greater than 1 has a unique factorization
into prime numbers. (You can prove this later in Problem 1 of Section 16.12.) We
will write this factorization as n = pk1

1 · · · · · pkm
m , so that we are all using the same

language. Now, here is some terminology that helps us discuss numbers that are
not relatively prime:

Definition 16.2.3. The greatest common divisor of two numbers a and b, denoted
by GCD(a,b), is the largest natural number that divides a and divides b. For ex-
ample, GCD(6,9) = 3. By convention, we order the numbers so that a ≤ b. The
least common multiple of two numbers a and b, denoted by LCM(a,b), is the
smallest natural number that is divisible by a and divisible by b. For example,
LCM(6,9) = 18.

1. Compute GCD(5,7), GCD(6,12), GCD(3,10), and GCD(20,30).

2. Compute LCM(5,7), LCM(6,12), LCM(3,10), and LCM(20,30).

3. What is the relationship between GCD(a,b) and LCM(a,b)? Make and
prove a conjecture.

4. Prove that GCD(a,b) divides a− kb for any integer k.

5. Recall from Example 5.3.2 that b (mod a) is shorthand for “the smallest
nonnegative integer r such that b ≡ r (mod a).” Show that GCD(a,b) =
GCD(b (mod a),a).

6. Use this result to calculate GCD(20,30).

7. Use this result to calculate GCD(230,382).
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16.2.3 Back to φ: More Phi, Less Pho and Phum

Now that you’ve had a little bit of a GCD rest, let’s think about φ(n) again.

1. Compute φ(20). You’ve already computed φ(2), φ(4), φ(5), and φ(10).
Which of these, if any, might be used to compute φ(20)?

2. Compute φ(12), φ(18), φ(24), φ(30), and φ(36). Now examine the prime
factorizations of 12, 18, 24, 30, and 36. Do any of the factorizations suggest
other ways to calculate φ?

3. Consider any natural n. Conjecture a way to calculate φ(n) in terms of the
prime factorization of n.

4. What needs to be proved in order for this conjecture to be shown true? (What
parts or aspects of the conjecture have already been proved?)

5. Write a precise statement for each remaining-to-be-proved part of the con-
jecture. Can you use a common proof technique to reduce any of these state-
ments to simpler statements?

6. Your should have at least one simpler statement that is in the form of an
equation involving φ(n). Write each side of that equation for φ(20) in terms
of (sizes of) sets. What does this suggest as a possible proof technique?

7. The phrase “write each side of that equation in terms of sets” is a bit am-
biguous. It could mean “for each set involved, write out a list of elements”
or it could mean “for each set involved, write the definition as {m ∈ S |
condition(s)}.” Whichever meaning you chose before, rewrite the equation
using the other meaning here.

16.3 Computing the GCD

Hey! You! Don’t read this unless you have worked through the problems in Sec-
tion 16.2.2. I mean it!

The most straightforward way to compute GCD(a,b) is to look at the prime fac-
torizations of a and b and determine which prime factors they have in common.
We can also observe that GCD(a,b) = GCD(b (mod a),a): every divisor of both
a and b also divides ak+b, and every divisor of ak+b and a also divides b. There-
fore, the greatest divisor of a and b divides ak+ b and a, and vice-versa, so the
two GCDs must be equal.
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Indeed, this equation gives an algorithm (see Chapter 5), often called the Eu-
clidean algorithm, for computing GCD(a,b), where we assume that a ≤ b (that’s
okay, because no matter what order we write them in, a and b have the same set
of common divisors):

1. Does a divide b? If so, GCD(a,b) = a. If not, continue.
2. Compute b (mod a); replace a with b (mod a) and replace b with a.
3. Go to step 1.

We know this algorithm terminates because if a < b does not divide b, then
b (mod a) < a and we are dealing with smaller numbers on the next round; this
can only continue for a finite number of iterations (at most a of them).

The Euclidean algorithm can be used to prove a…

Theorem 16.3.1. There exist integers k, ℓ such that GCD(a,b) = ka+ ℓb. In
particular, if a and b are relatively prime, then there exist integers k, ℓ such
that ka+ ℓb = 1.

Proof: We will use induction on a. As a base case consider a = 1. Then 1 · 1+
0 · b = 1 and we have produced k = 1, ℓ = 0 with k · 1+ ℓb = 1. Our inductive
hypothesis is that if s < a, then there exist integers i, j such that GCD(s,b) =
ia+ jb.

We will use the relationship GCD(a,b) = GCD(b (mod a),a) for the induc-
tive step. We know that b (mod a) < a and so the inductive hypothesis applies.
Thus, there exist i, j such that GCD(b (mod a),a) = i(b (mod a))+ ja. It’s hard
to know what to do with this because of the awkward presence of b (mod a) in
the equation. So, consider the relationship between a and b: because b > a, we
can write b = qa+ r where r < a. Indeed, r = b−qa = b mod a. Aha! Therefore
GCD(a,b) = i(b−qa)+ ja = ( j− iq)a+ ib. Setting k = j− iq and ℓ= i, we have
GCD(a,b) = ka+ ℓb. (If a,b are relatively prime, then GCD(a,b) = 1 and we
have just produced integers k, ℓ such that ka+ ℓb = 1.) �

Actually, we can prove a stronger property:

Theorem 16.3.2. Given two positive integers a and b, there exist integers k, ℓ
such that ka+ ℓb = 1 if and only if a and b are relatively prime.

Proof: We know that if a and b are relatively prime, then there exist integers k, ℓ
such that ka+ ℓb = 1 by Theorem 16.3.1.

Now suppose that there exist integers k, ℓ such that ka+ ℓb = 1, and also sup-
pose that a and b are not relatively prime. Pick some common divisor of a and b
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(greater than 1) and name it d. Then we know that a = di and b = d j for some
positive integers i, j. Now we can write ka+ℓb = 1 as kdi+ℓd j = d(ki+ℓ j) = 1.
But both d and ki+ ℓ j are integers, and d > 1, and we know that no product of an
integer greater than 1 with another integer will produce 1. Contradiction! It must
be that a and b are relatively prime. �

Check Yourself

1. Use the Euclidean algorithm to compute GCD(8,12).

2. Use the Euclidean algorithm to compute GCD(1233,1234).

3. Find integers k, ℓ such that GCD(8,12) = k8+ ℓ12.

4. Find integers k, ℓ such that GCD(1233,1234) = k1233+ ℓ1234.

5. Challenge: Pick two natural numbers a,b where a does not divide b, and find their
GCD using the Euclidean algorithm. Then find integers k, ℓ such that GCD(a,b) =
ka+ ℓb.

16.4 Try This! Congruence Experiments

Recall the notation x ≡ s (mod a) from Section 5.3, and recall that this means
that x ∈ {. . . ,s − 2a,s − a,s,s + a,s + 2a,s + 3a, . . .}. We could also say that
this set is all solutions to the equation x = ka+ s. Note that there is exactly one
x ∈ Za = {0, . . . ,a− 1} that satisfies x ≡ s (mod a). (All of this meaning in a
simple equivalence statement!)

1. Which numbers x satisfy x+9 ≡ 2 (mod 4)?

2. Which numbers x satisfy x+ r ≡ s (mod a)?

3. Which numbers x satisfy 2x ≡ 1 (mod 4)?

4. Which numbers x satisfy 3x ≡ 0 (mod 6)?

5. Which numbers x satisfy 2x ≡ 1 (mod 3)?

6. It would be really convenient if when trying to solve kx ≡ s (mod a), we
could just cancel out the k somehow, to get x ≡ thing (mod a). In regular
arithmetic, we would divide, but we know from Example 5.3.5 that this does
not always work in modular arithmetic. The next best thing we can try is to
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get rid of the k using multiplication—that is, we hope for a w with wk ≡ 1
(mod a), so that kx ≡ s (mod a) becomes wkx ≡ ws (mod a) or x ≡ ws
(mod a). Let’s experiment. (A related exploration took place in Problem 19
of Section 5.11.)

(a) Consider the equivalence 2x ≡ 1 (mod 3). We would like to get rid of
that 2. What number w has the property that w ·2 ≡ 1 (mod 3)?

(b) Multiply 2x ≡ 1 (mod 3) through by the w you just found. What
equivalence relation do you get? What are its solutions?

(c) Consider the equivalence 3x ≡ 2 (mod 5). Is there a number w by
which we can multiply this equivalence in order to ditch the coefficient
3? Explain.

(d) What about 3x ≡ 0 (mod 6)? Does an appropriate w exist?

(e) How about 3x≡ 2 (mod 10)? … 5x≡ 4 (mod 6)? … 6x≡ 7 (mod 9)?

(f) Make a conjecture as to when the w we seek exists.

7. Which numbers x are both x ≡ 0 (mod 2) and x ≡ 0 (mod 3)?

8. Which numbers x are both x ≡ 1 (mod 2) and x ≡ 2 (mod 3)?

9. Which numbers x are both x ≡ 1 (mod 2) and x ≡ 3 (mod 4)?

10. What techniques did you use to solve the previous simultaneous equations?
Do any of them generalize to help solve equations x ≡ s (mod a) and
x ≡ t (mod b)?

16.5 Counting with Congruence Equations

Hey! You! Don’t read this unless you have worked through the problems in Sec-
tions 16.2.1 and 16.4. I mean it!

As you will have deduced from Section 16.2.3, we could compute φ(n) for any
n if we only could prove a certain conjecture. Our goal in this section will be to
prove that when a and b are relatively prime, then φ(ab) = φ(a)(b). Interestingly,
our proof will involve linear congruences.
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16.5.1 Just One

Suppose we have the congruence kx+r ≡ s (mod a). We can convert this to kx ≡
s− r (mod a) and reduce the number of variables running around by rewriting to
kx ≡ t (mod a). But now what? We know from our experiments in Section 16.4
that there is not always a solution to this equation. An additional example: consider
4x ≡ 3 (mod 6). Here 4 does not divide 6, but 4x is always even and any number
of the form 6m+3= 3(2m+1) is odd because it is the product of two odd numbers.
Therefore there are no solutions to 4x ≡ 3 (mod 6). You most likely conjectured
that as long as k and a are relatively prime, the congruence kx ≡ t (mod a) has
a solution. Let’s prove that this is true. Actually, let’s prove a slightly stronger
statement:

Theorem 16.5.1. The congruence kx ≡ t (mod a) has exactly one solution
0 ≤ x < a if k and a are relatively prime.

Proof: Consider the set Za = {0,1, . . . ,a − 1}. It has n elements. Now mul-
tiply all of these elements by k, so we have {0 (mod a),k (mod a), . . . ,
k(a− 1) (mod a)}. How many elements does this set have? At most there are
n elements. Could there be fewer? Maybe two (or more) of them have the same
value. Suppose two of them are equal, so that we have ku (mod a) = kv (mod a).
They are both equal to the same number 0 ≤ r < a, which means ku = q1a+ r and
kv = q2a+ r. Now r = ku−q1a = kv−q2a, or k(u− v) = a(q1 −q2). Therefore
a must divide k(u− v)… but if k and a are relatively prime, that means a must
divide u−v. However, u,v < a so u−v < a, which means that the only way for a
to divide u− v is for u− v = 0. Thus u = v, which is a contradiction.

What does all this have to do with our theorem? Well, the set {0 (mod a),
k (mod a), . . . ,k(a−1) (mod a)} has a different elements, all of which are non-
negative and less than a, so one of them must be 1. And that means that there
exists some w ∈ Za such that wk ≡ 1 (mod a). Therefore wkx ≡ x ≡ wt (mod a).
And while there are infinitely many x ≡ wt (mod a), there is exactly one with
0 ≤ x < a. �

How to use Theorem 16.5.1. So what does this tell us? If we want to solve
the congruence kx ≡ t (mod a), and k and a are relatively prime, then we
know there is some whole number w < a such that wk = 1. We can find this
by trial-and-error (there are at most a−1 different values to check). Then we
know that x ≡ wt (mod a) is a solution, and in fact all numbers x = wt +da,
where d is any integer, will satisfy the congruence equation.
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16.5.2 Two at Once

Suppose we have two congruences, x ≡ s (mod a) and x ≡ t (mod b). We know
that the first congruence is satisfied by all numbers x ∈ {. . . ,s − 2a,s − a,s,
s+ a,s+ 2a,s+ 3a, . . .}, which is also all solutions to x = ja+ s. Ah, but hav-
ing this equation means that we can use it to substitute: x = ja+ s ≡ t (mod b).
We know from Section 16.5.1 how to deal with this. First say ja ≡ t − s (mod b).
This is a congruence equation with variable j (remember that a, b, t, and s were
fixed in the original problem). If a and b are relatively prime, we are guaranteed
that there is a solution to the congruence equation. Indeed, we have wa j ≡ j ≡
w(t − s) (mod b) and 0 ≤ w(t − s) (mod b)< b.

Plugging back in, we have x = ja+ s = (w(t − s) (mod b))a+ s. Notice that
this gives us only one value for x, but of course there should be infinitely many.
We can write j ≡ w(t − s) (mod b) as j = w(t − s)+qb for some—really, any—
integer q, and then x = (w(t − s)+ qb)a+ s = aw(t − s)+ s+ qab. In turn, that
means x ≡ aw(t − s) (mod ab), and now we can see x ∈ {. . . ,aw(t − s)− 2ab,
aw(t − s)−ab,aw(t − s),aw(t − s)+ab, . . .}.

16.5.3 Computing φ(n)
Back in Section 16.2.1 we experimented with computing φ(n) for various spe-
cial n. For example, φ(p) = p − 1 because every natural number less than p
is relatively prime to p. Similarly, φ(pk) = pk − pk−1 for k ≥ 2 because the
multiples of p less than or equal to pk are {p,2p, . . . ,(p− 1)p, p2,(p+ 1)p, . . . ,
(pk−1 − 1)p, pk−1 p}; there are pk−1 of these, and all other natural numbers less
than pk are relatively prime to pk. Looking at some examples, we suspect that if
n= pq is the product of two primes, thenφ(n)=φ(p)φ(q). What if there are more
than two primes involved, or higher powers of these primes? Let n= pk1

1 · · · · · pkm
m .

Experiments are consistent with the conjecture that φ(n) = φ(pk1
1 ) · · · · ·φ(pkm

m ) =

(pk1
1 − pk1−1

1 ) · · · · · (pkm
m − pkm−1

m ).
How can we prove this conjecture? We know how to calculate φ(pk), so if

we could calculate φ(pk1
1 pk2

2 ), then we could extend to φ(n) by induction. And
more generally, what seems to be true is that φ(ab) = φ(a)φ(b) when a and b are
relatively prime. Let’s prove it.

Theorem 16.5.2. If a and b are relatively prime, then φ(ab) = φ(a)φ(b).

Proof: The Euler phi function φ(n) counts the natural numbers that are relatively
prime to and less than n. Literally, φ(n) is the size of a set. So let us look at
what the definition says: φ(ab) = |{r ∈ N | r < ab, r is relatively prime to ab}|;
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φ(a) = |{s ∈ N | s < a, s is relatively prime to a}|; and φ(b) = |{t ∈ N | t < b, t
is relatively prime to b}|. We will now name these sets: R = {r ∈ N | r < ab, r
is relatively prime to ab}, S = {s ∈ N | s < a, s is relatively prime to a}, and
T = {t ∈M | t < b, t is relatively prime to b}.

We would like to show that |R| = |S| · |T |, and we will do this by showing
|R|= |S×T |. This suggests we look for a bijection between the single set and the
Cartesian product of sets. It may seem a bit strange at first, but as we work through
the proof, it will start to make sense.

An element of R has the form r and an element of S×T has the form (s, t).
First, notice that R = {r ∈ N | r < ab is relatively prime to ab} is a subset of
Zab = {r ∈W | r < ab}, and likewise S ⊂ Za,T ⊂ Zb. So we will create a map
f : Zab → Za ×Zb and show that when restricted to R → S×T , it is a bijection.

We define f (r) = (r (mod a),r (mod b)).
First, we will show that this map is injective. (See Chapter 3 for a refresher

on injectivity proofs.) Suppose f (r1) = f (r2). Then (r1 (mod a),r1 (mod b)) =
(r2 (mod a),r2 (mod b)). This means that r1 (mod a) = r2 (mod a) and
r1 (mod b) = r2 (mod b). Reworded, that says that r1 ≡ r2 (mod a) and
r1 ≡ r2 (mod b). By definition, we have that r1 = ak + r2 and r1 = bℓ+ r2, or
r1 − r2 = ak = bℓ. That means r1 − r2 is divisible by a and also divisible by b,
and because a and b are relatively prime and so have no prime factors in common,
r1 − r2 must be divisible by ab. Therefore r1 − r2 = abw, or r1 = r2 (mod ab).
But r1 and r2 are both natural numbers less than ab, so r1 = r2. This completes the
proof of injectivity.

Now, what about surjectivity? Consider an element from S× T . It is (s, t),
where s is relatively prime to a and t is relatively prime to b. We seek an element
r relatively prime to ab such that r (mod a) = s and r (mod b) = t. Rewritten
slightly, those equations become r ≡ s (mod a) and r ≡ t (mod b).

And that’s exactly the situation we were considering in Section 16.5.2! We
know that the solution is a j + s, where j < b and a j + s ≡ t (mod b) (from our
original substitution).

But there’s one question left—is a j+ s relatively prime to ab? The answer is
yes, and here’s why. We know that a and b are relatively prime to each other, so
each is composed of distinct primes. That means that if ay+ s is relatively prime
to a, and also relatively prime to b, then it is relatively prime to ab. (Great. Now
we have two questions left.)

So, is a j + s relatively prime to a? If there were a common divisor d, then
a = k1d and a j+ s = k2d = k1d j+ s, so that d(k2 − k1 j) = s and therefore d is a
divisor of s as well. But we know that s is relatively prime to a, so we must have
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d = 1 and so a j+s is relatively prime to a. Similarly, if a j+s and b had a common
divisor v, then a j+ s = z1v and b = z2v. Remember that a j+ s ≡ t (mod b), so
a j+ s = qb+ t for some integer q. Now we have z1v = a j+ s = qb+ t = z2vq+ t,
so that v(z2 − z1q) = t. But we know that t is relatively prime to b, so we must
have v = 1 and so qb+ t = a j+ s is relatively prime to b.

We’re done! �

Check Yourself

Do at least one of the first two, one of the next four, and the seventh problem, to make sure
you’re comfortable with the computations this section enabled.

1. Compute φ(210).

2. Compute φ(3200).

3. Find w such that w · 2 ≡ 1 (mod 5) and use this to find all x that satisfy 2x ≡ 3
(mod 5).

4. Find w such that w · 3 ≡ 1 (mod 4) and use this to find all x that satisfy 3x ≡ 2
(mod 4).

5. Find w such that w · 3 ≡ 1 (mod 7) and use this to find all x that satisfy 3x ≡ 6
(mod 7).

6. Find w such that w · 5 ≡ 1 (mod 7) and use this to find all x that satisfy 5x ≡ 3
(mod 7).

7. Re-solve the first two congruence pairs from Section 16.4 using the techniques
given in Section 16.5.2:

(a) Which numbers x are both x ≡ 0 (mod 2) and x ≡ 0 (mod 3)?

(b) Which numbers x are both x ≡ 1 (mod 2) and x ≡ 2 (mod 3)?

8. Challenge: Invent your own congruence equation kx ≡ t (mod a) and find its so-
lutions.

9. Challenge: Invent your own pair of congruence equations x ≡ s (mod a) and
x ≡ t (mod b) (but make sure that a and b are relatively prime!) and find their
common solutions.



16.6. Try This! Investigate Freaky Fraction Lists 521

16.6 Try This! Investigate Freaky Fraction Lists

Here is the first fraction list:
0
1

1
1

We will add the numerators to make a new numerator, add the denominators
to make a new denominator, and slap the resulting fraction in the middle, to get a
second fraction list:

0
1

1
2

1
1

Nowwe’ll do the same thing for each pair of adjacent fractions to create a third
fraction list:

0
1

1
3

1
2

2
3

1
1

In general, to make the next fraction list we look at two fractions that are ad-
jacent, say a

b and
c
d , and stick the new fraction a+c

b+d between them.

1. Make the next three fraction lists.

2. What’s freaky about these fraction lists? Make and list some observations
and conjectures (both freaky and non-freaky).

3. Before trying to prove your conjectures, prove this: for any two adjacent
fractions a

b and
c
d , bc−ad = 1.

4. Show that when creating and placing new fractions, you never have to reduce—
a+c
b+d is already in lowest terms.

5. Show that new fractions have values that are between the old fractions that
lie on either side. That is, show that a

b < a+c
b+d < c

d .

6. Can a fraction appear more than once in a freaky fraction list? Explain.

7. Which rationals (between 0 and 1) appear in the freaky fraction lists? Con-
jecture a characterization for these fractions, and try to prove your conjec-
ture.
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16.7 Mysterious Mediants

Hey! You! Don’t read this unless you have worked through the problems in Sec-
tion 16.6. I mean it!

Given two fractions a
b and c

d , their mediant is
a+c
b+d . The freaky fraction lists (or

FFLs for short) are made from mediants—to create the next FFL, we insert all
possible mediants into the previous FFL. In order to refer to the FFLs more pre-
cisely, let us use FFLn to denote the nth FFL, where FFL1 is 0

1
1
1 .

It turns out that the crucial fact about mediants is…

Fact. For any two adjacent fractions a
b and

c
d in an FFL, bc−ad = 1.

Proof: We can prove this by induction. The base case is our first FFL: 1 ·1−0 ·1=
1. The inductive hypothesis is that for n < k, all adjacent pairs of fractions a

b and
c
d in FFLn have the property bc− ad = 1. For the inductive step, consider FFLk.
Adjacent fractions either have the form a

b and
a+c
b+d , or the form

a+c
b+d and c

d , where
a
b and c

d are from FFLk−1. For this reason, we know that bc− ad = 1. In order
to complete the proof, we need to show that b(a + c)− a(b + d) = 1 and that
(b+d)c− (a+ c)d = 1.

Now, b(a+ c)−a(b+d) = ab+bc−ab−ad = bc−ad = 1, and (b+d)c−
(a+ c)d = bc+ cd −ad − cd = bc−ad = 1. Done! �

Surely you noticed that for every mediant a+c
b+d , GCD(a+c,b+d) = 1. (That’s

a little bit freaky.) Check out this slickness: Our freshly proven fact bc−ad = 1
can be rewritten as ab+ bc− ab− ad = b(a+ c)+ (−a)(b+ d) = 1. Therefore,
we have found k = b and ℓ=−a such that k(a+ c)+ ℓ(b+d) = 1, which means
by Theorem 16.3.2 that GCD(a+ c,b+d) = 1.

Also, every FFL has the fractions automatically listed in increasing order. To
see this, it is enough to show that a

b < a+c
b+d < c

d . Again, we use that bc−ad = 1.
(See why it was useful to show that first?) It follows that bc = 1+ad, so bc > ad.
Now a little bit of algebra gives

bc+ab > ad +ab bc+ cd > ad + cd

b(a+ c)> a(b+d) c(b+d)> d(a+ c)

a+ c
b+d

>
a
b

;
c
d
>

a+ c
b+d

.
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Because each FFL is in increasing order, no fraction can appear more than once.
If a fraction did appear more than once, it would have to appear next to itself. This
is not possible because a

b < a+c
b+d , so no two adjacent fractions can be equal. (Or,

a
b = a+c

b+d implies that bc = ad, which is false.)
Now, here’s the really interesting thing about all the FFLs.

Theorem 16.7.1. Every rational number 0 ≤ m
n ≤ 1 appears in some freaky

fraction list.

Proof: Suppose the fraction m
n does not appear on any FFL. Pick some FFL (any

one will do, it turns out), say FFLk, and find the two nearest consecutive fractions,
so a

b < m
n < c

d . Now,
a
b < m

n ⇒ an < bm ⇒ bm− an > 0, and m
n < c

d ⇒ md <
cn ⇒ cn−md > 0. Because a,b,c,d,m,n are all integers, this actually means that
bm− an ≥ 1 and cn−md ≥ 1. Now, using these two inequalities, we have that
(a+ b)(cn−md) + (c+ d)(bm− an) ≥ a+ b+ c+ d. Check out the left-hand
side: it expands to acn−amd+bcn−bmd+bcm−acn+bdm−adn, which then
reduces to and factors as bc(m+ n)− ad(m+ n) = (bc− ad)(m+ n). Using our
old reliable relationship bc−ad = 1, the inequality becomesm+n≥ a+b+c+d.

Now, if we look at FFLk+1, we have a
b <

a+c
b+d < c

d , with either
a
b <

m
n < a+c

b+d < c
d

or a
b <

a+c
b+d < m

n < c
d . (One of these must be true or else

m
n is in FFLk+1.) Repeating

the argument from the previous paragraph gives us m + n ≥ a + b + (a + c) +
(b+ d) = 2a+ 2b+ c+ d or m+ n ≥ (a+ c)+ (b+ d)+ c+ d = a+ b+ 2c+
2d. That is, with every new FFL we examine, we increase the right-hand side of
the inequality. So after looking at (no more than) m+ n more FFLs, so at worst
FFLk+m+n, we get a contradiction as the right-hand side will now be larger than
the left-hand side!

Therefore m
n appears in some FFL. �

Check Yourself

Do all of these quick problems!

1. Pick three pairs of adjacent fractions inFFL5, and verify that for each pair, bc−ad =
1.

2. Show that not every mediant a+c
b+d must be in lowest terms by finding two fractions

a
b and

c
d that are not adjacent in an FFL and whose mediant is not in lowest terms.

3. In which FFL does 1
9 appear?

4. In which FFL does 2
11 appear?
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16.8 Where to Go from Here

Number theory is properly its own course (which has been stated at least k times
in this book already) and is a subfield of mathematics popular all the way to the
research level. The best textbook on this material, in my opinion, is A Friendly
Introduction to Number Theory by Joseph Silverman [23]. It is eminently readable
and contains many approachable explorations. You can find more about the Euler
phi function, about the GCD, about solving single congruence equations, about
solving sets of congruence equations, and about the RSA cryptosystem there. It’s
great. There are also connections to material from Chapters 6 and 8 from Part II
of the book you are reading now. If instead of a textbook you want a reference
book, try Elementary Number Theory and Its Applications by Kenneth Rosen or
Elementary Number Theory by David Burton.

As for those freaky fraction lists, they are lists of node-labels in the Stern-
Brocot tree. Stern was a math person, and Brocot was a clockmaker. To find
out how Brocot used these fractions in clock manufacture and to see a totally dif-
ferent take on the same mathematics we encountered in Section 16.7, check out
David Austin’s column at http://www.ams.org/publicoutreach/feature-column/
fcarc-stern-brocot.

Credit where credit is due: Thanks to Tamara Veenstra for consultation on Sections 16.2
and 16.4. Much of the exposition in this chapter was inspired by both [10] and [23]; the
latter also inspired some of the problems in Section 16.12. The exposition in Section 16.10
was inspired by anArt of ProblemSolving lesson. Several of the problems in Section 16.12
were adapted from problems or text in [20]. Thanks to Ollie Levy for telling me which
social networking website ducks use.

16.9 Chapter 16 Definitions

relatively prime: Two numbers that
have no divisors (other than 1) in
common.

Euler phi function: φ(n) counts the nat-
ural numbers that are relatively prime
to and less than n.

greatest common divisor: The largest
natural number that divides a and di-
vides b.

least common multiple: The smallest
natural number that is divisible by a
and is divisible by b.

Euclidean algorithm: A way of com-
puting GCD(a,b), where we assume
that a ≤ b:

1. Does a divide b? If so,
GCD(a,b) = a. If not, con-
tinue.

http://www.ams.org/publicoutreach/feature-column/fcarc-stern-brocot
http://www.ams.org/publicoutreach/feature-column/fcarc-stern-brocot
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2. Compute b (mod a); re-
place a with b (mod a) and
replace b with a.

3. Go to step 1.

mediant: Given two fractions a
b and c

d ,
their mediant is a+c

b+d .

16.10 Bonus: The RSA Cryptosystem

The RSA cryptosystem is named after Ron Rivest, Adi Shamir, and Leonard Adel-
man, who collaborated to invent it in the late 1970s. RSA is used widely to encrypt
internet transactions and is based on the idea that it is difficult to factor large num-
bers. In particular, this encryption method uses a publicly-published product P
of two many-digit primes (approximately-300-digit primes). Even knowing that
P = p1 p2, it’s impracticably difficult to factor. As an example, consider the pub-
lisher’s webpage fromwhich you can buy this very book. The security information
shows that it uses RSA Encryption (1.2.840.113549.1.1.11, to be precise) and that
its public key P is 256 bytes long: A3 89 57 45 7B C6 AF 98 92 CD 73 C3 4C
1B D9 66 46 3F E6 9C 7F 93 1B E4 8B 60 98 5D 36 8F 2D 99 C9 4E 83 FA B4
9B 7F E6 78 E8 8F D6 D1 11 59 7E 1D B1 E3 46 15 03 69 5F BD 3F 3C CD 84
1C 30 97 55 BC 50 E1 1C 00 20 66 FA 58 0F 8F D6 2E 20 00 49 09 4A 06 A5
EE 61 E1 DC A4 AB A4 9C 50 32 47 0E 8A F0 27 47 01 EE 33 E6 41 2B F7 FF
BD BB 6A FE 90 95 A5 23 FA 67 85 5F 1A 47 ED 21 67 3B 76 02 22 B6 D6
FC 93 D2 07 BD 25 7E 86 B4 C0 7E 67 FF E8 DD B9 F5 EE 9F E1 47 2E 9C
0F EA FE 76 74 E4 0C 5E 33 B8 D5 01 BE 6A 3C F3 79 5F D3 88 2A 1A D1
2C 68 F4 67 D2 22 4A 06 A2 89 40 3D 46 1D 7D 63 35 89 29 D6 3E 8A 4B 43
8D 9F BB 3A 09 96 30 4C 08 9F 2C D4 FA E9 9B 9C C4 4D 14 6E 66 9A 83
A6 97 F6 A4 C6 83 C6 AB 4E 9F 6F 9F E7 C5 26 32 0B C4 5F 64 4D 6B 37 FA
0D D4 0E 68 79 02 6F (and that’s valid through April 2019). We’re also told that
the Exponent is 65537. What is this all about? Why are there letters all over the
place? That first question will take a bit to answer. But the second is easy: P is
written in hexadecimal (base 16).

Okay, let’s look at the big picture of RSA. It’s a type of public key cryptogra-
phy. Back in Chapter 5, we dealt with cryptographic systems that were based on
the communicating parties both knowing the encryption method and decryption
key in advance. For a shift cipher, the recipient of the message needs to know the
shift length. For a Vigenère cipher, the recipient of the message needs to know
a key word. But with public key cryptography, there is no communication in ad-
vance and thus no way to hand over a shift length or any kind of key. So how does
this work?
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We’ll use the case of Grey Duck andWhite Duck to illustrate the process. Grey
Duck has flown to Oklahoma for the winter in order to be warm, while White
Duck went to Toronto to spend a few months at a luxury spa. In order to plan
their summer duck espionage, they must communicate securely, and like sensible
modern ducks they decide to use RSA.

Grey Duck posts hir public keyG (on hirWebFoot page) andWhite Duck posts
hir public key W . Grey Duck starts a conversation by first using W to encrypt a
message and then sending the encrypted text. White Duck knows that W = w1w2
and uses w1,w2 to decrypt the message. Then White Duck composes a response,
uses G to encrypt it, and sends the encrypted response on to Grey Duck, who uses
g1,g2 to see what it says.

The mathematical details of RSA depend on modular arithmetic. The ducks
use a common exponent e—humans usually use e = 65537, but ducks prefer e =
5. Basically, Grey Duck computes (message)5 (mod W ) to encrypt and produce
encrypted, andWhite Duck solves 5 ·d ≡ 1 (mod (w1−1)(w2−1)) for d and then
computes (encrypted)d (mod W ) to decrypt and get message back.

To start their communication, the ducks choose their public keys and post them
on WebFoot as W = 95,G = 39. (You probably already figured out that 95 =
5 · 19,39 = 3 · 13, . . . but each duck only needs to keep the factorization secret
from other ducks, who really don’t know how to factor at all, so it’s okay that you,
the reader, can determine their primes.)

Of course, Grey Duck wants to start with the message hi, or 78 in the standard
conversion of Section 5.4. Grey duck usesW to encrypt and finds 785 (mod 95) =
13, and sends this to White Duck over their shared Quack channel. White Duck
knows that bd is probably not what Grey Duck wanted to convey and so decides to
decrypt the message. A while ago, after selecting W = 5 ·19, White Duck solved
the equivalence 5 ·d ≡ 1 (mod (5−1)(19−1))≡ 1 (mod 4 ·18)≡ 1 (mod 72).
After some trial and error, we notice that 5 ·29 = 145 = 2 ·72+1, so d = 29works.
Finally, White Duck computes 1329 (mod 95) = 78 and knows that Grey Duck
was just saying “Hi.” (Of course, if things are working properly, after encrypting
and then decrypting, we should always get back the message we started with.)

White Duck decides to respond with the message ah, or 07. White duck uses
G to encrypt and finds 075 (mod 39) = 37 and sends this to Grey Duck. Grey
Duck is certain that White Duck wouldn’t say di and therefore decrypts. Long ago,
Grey Duck solved the equivalence 5 ·d ≡ 1 (mod (3−1)(13−1))≡ 1 (mod 2 ·
12) ≡ 1 (mod 24). Remembering that 5 · 5 = 25 = 24 + 1, we see that d = 5.
Grey Duck computes 375 (mod 39) = 07 and receives White Duck’s ambivalent
message “Ah.”
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Let’s look at the process more generally: Someone who wants to receive se-
cret messages publicizes P and e, generally with e = 65537. A sender computes
(message)e (mod P) to encrypt and produce encrypted and sends encrypted to the
recipient. The recipient knows that P = p1 p2 and solves e ·d ≡ 1 (mod (p1 −1)
(p2 − 1)) for d. Then the recipient computes (encrypted)d (mod P) = message.
How do we know this process works?

How do we know that (encrypted)d (mod P) = message instead of =
wacktext?

First, we break up our messages into blocks so that each block
messageblocki <P. In practice amessage is broken into blocks that are
about the same length as the public key P, so that after taking powers
and computing the result modulo P, the length of encryptedblocki will
be the same as the length of messageblocki. This is how the recipient
computer knows how to break up the encrypted message correctly into
blocks.

Then if (encrypted)d (mod P) = message (mod P), or equivalently
(encrypted)d ≡ message (mod P), that’s good enough because
message < P. Using some advanced number theory (that we won’t
discuss here), it can be shown that (encrypted)d ≡ message (mod p1)
and (encrypted)d ≡ message (mod p2). Knowing that P = p1 p2, we
can use the ideas from Section 16.5.2 to conclude that (encrypted)d ≡
message (mod P): because (encrypted)d ≡ message (mod p1), we
know (encrypted)d = jp1+message. Substituting into (encrypted)d ≡
message (mod p2), we have that jp1+message≡message (mod p2)
or jp1 ≡ 0 (mod p2) or jp1 = kp2. Therefore, because p1 and p2 are
relatively prime, j = qp2 for some integer q. We can then rewrite
(encrypted)d = jp1 + message as (encrypted)d = qp2 p1 + message
and conclude (encrypted)d ≡ message (mod p1 p2).

How do we know that the equivalence e ·d ≡ 1 (mod (p1−1)(p2−1)) can
be solved for d? As we know from Theorem 16.5.1, as long as e is relatively
prime to (p1 −1)(p2 −1), there is always a solution to the equivalence. So
we pick e to be a prime number. But notice that because p1 and p2 are prime,
p1 −1 and p2 −1 are even and therefore very much not prime. It could be
that e divides p1 −1 or p2 −1. For example, if e = 3, p1 = 5, p2 = 13, then
because 12 = 3 ·4 we have that e divides p2 −1.
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Therefore, in practice we need to check to make sure that e is relatively
prime to p1 − 1, p2 − 1. We do this using what? The Euclidean algorithm.
We compute GCD(e,(p1−1)(p2−1)) and make sure it’s 1. (If not, we need
to pick at least one different prime!)

Why does this process keep messages secret? It’s because in order to com-
pute p1 − 1 and p2 − 1 we need to know what p1 and p2 are. Only P is
published, so in order for someone to figure out p1 and p2, ze would have
to factor P. But P is huge, and it’s very hard to factor large numbers… both
in theory and in practice. Computers can’t do it quickly enough to decrypt
messages for unintended recipients.

By the way, you too can use public key cryptography! There is a protocol
called Pretty Good Privacy that is widely used—if you want to find a plugin for
software, go to https://www.openpgp.org/, or if you want your own public key
to publish, there are lots of websites that will give you a public/private key pair
(google “generate a pgp key”) to find them.

RSA exercises: For the purpose of sending messages, we will use the same
text-to-numbers conversion as in Section 5.4, where a → 0 and b → 1, except
that we will assume that each letter uses 2 digits so that we can mash the
letter-equivalents in a message together into one massive number (instead of
encrypting one letter at a time). Thus, a → 00,b → 01, and so forth.

Also, to do modular arithmetic calculations with large numbers, use your
favorite computer algebra system (orWolfram|Alpha, if you don’t have one—
it understands if you type in (4343654)^(34) mod 45313).

1. You prepare your public key with p1 = 557, p2 = 1453. If you use
e = 5, will that work? What about e = 11?

2. Your fiend Molls, who is allergic to cats, posts P = 3314221,e = 13.
Encode the message peacock feathers make great cat toys to send hir.
What is a good block size to use when breaking up the numerical ver-
sion of the message?

3. An encrypted message arrives for you. You’ve previously chosen p1 =
1867, p2 = 2017,e = 23. Here’s what you receive:
1248178 2903440 3185267 549167 3006642 17453 3620483
3234036 1284537 730584 487841 3135256 1134082
Decode it!

https://www.openpgp.org/
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4. Here’s another message to decode:
861322 770240 24514 1625142 916196 1465653 1609436
311552 318157 1275548 1688431 97178 311552 263089
139683 1202933 1260030 743663 1625990 1231643 936225
Oh, wait, that was for a different triple of primes: p1 = 919, p2 =
1907,e = 62989.

16.11 Bonus Check-Yourself Problems
Solutions to these problems appear starting on page 636. Those solutions that model a
formal write-up (such as one might hand in for homework) are to Problems 1, 3, and 8.

1. Given any n integers k1,k2, . . . ,kn, show
that there exist ki,k j such that ki ≡ k j
(mod n−1).

2. Find a set of 13 natural numbers, each
of which has a different value modulo
13 and all of which are multiples of 5.

3. Consider the equation 5x + 2y = 3.
Why can it not have any solutions with
both x and y whole numbers? For
which k does the equation 5x+ 2y = k
have solutions with both x and y whole
numbers?

4. Compute φ(5k4), for any positive k.

5. For which n is φ(n) = 4?

6. Prove that the number of natural num-
bers relatively prime to n and ≤ mn is
mφ(n).

7. Use the Euclidean algorithm to compute
GCD(1234,12345). Now find inte-
gers k, ℓ such that GCD(1234,12345) =
k1234+ ℓ12345.

8. Prove that if GCD(a,b) = 1, then for
any integer c, there is always a solution
to ax+ by = c, where x and y are inte-
gers. Use this fact to find a solution to
the equation 2x+3y = 4.

9. Find all x that satisfy 2x ≡ 2 (mod 7).
10. Which x satisfy both x≡ 1 (mod 3) and

x ≡ 3 (mod 4)?

16.12 Problems on Number Theory Topics

1. Prove that every natural number n > 1
has a unique factorization into prime
numbers. Specifically:

(a) Prove that every natural number
n > 1 can be factored into prime
numbers.

(b) Prove that this factorization is
unique, perhaps by assuming that

there are two different factorizations
and deriving a contradiction.

2. Find a condition on n that determines
whether or not n is squarefree, in terms
of n’s prime factorization. (A square-
free number is not divisible by k2 for any
natural k ≥ 2.)
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3. In a ball pit (literally, a space the size
of a room filled knee-deep with plas-
tic balls), all the balls are numbered
with natural numbers. You grab eight
of them to take home. Show that there
must be two of them that have numbers
that differ by some multiple of seven.

4. Prove that if n is odd, then the n natural
numbers 2,4, . . . ,2(n− 1),2n have dis-
tinct values mod n.

5. A friend of yours comes by with a really
large bag that ze says contains 175 balls
from the ball pit in Problem 3. You ex-
claim, “Ha! I bet I can choose 18 of the
balls such that all of them have the same
tens digit!” Why should your friend be-
lieve you? (What does this have to do
with number theory?)

6. For which k does the equation 9x+6y=
k have solutions with both x and ywhole
numbers? Why?

7. For which k does the equation 3x+7y=
k have solutions with both x and ywhole
numbers? Why?

8. A followup to the previous two prob-
lems: Make a conjecture about what
conditions on a,b produce what results
for which k the equation ax+by = k has
solutions with both x and y whole num-
bers. Explain why this makes sense.

9. An n-digit number with digits an−1,
. . . ,a0 can be written as 10n−1an−1 +
· · · + 10a1 + a0. Use this fact along
with some modular arithmetic to show
that a number m is divisible by 3 if and
only if the sum of its digits is divisible
by 3.

10. Compute φ(10k), for any positive k.
11. Compute φ(2k3), for any positive k.
12. For which n is φ(n) even? Why?

13. For which n is φ(n) divisible by 4?
Why?

14. Suppose φ(n) = 20. Which primes
might divide n? Find two different num-
bers n with φ(n) = 20. Could there be
more n with φ(n) = 20?

15. Suppose φ(n) = 125. Which primes
might divide n? How many possible n
could there be with φ(n) = 125?

16. List as many different n as you can that
have φ(n) = 24. Are you certain that
you have listed all possible n?

17. Under what conditions on n and m is
φ(n) = φ(mn)?

18. Challenge:
(a) For each of the numbers 5,6,8,

9,11,12, consider the set of divisors
{di}, and compute∑i φ(di). (We say
that φ(1) = 1.)

(b) Make a conjecture: for any natural
number n, what is ∑i φ(di)?

(c) Prove your conjecture using the
prime factorization of n and the for-
mula for φ(n).

(d) Prove your conjecture using a
combinatorial proof involving the
sets Sdi = {k | GCD(k,n) = di}
and φ( n

di
).

19. Use the Euclidean algorithm to com-
pute GCD(4620,7644). Now find inte-
gers k, ℓ such that GCD(4620,7644) =
k4620+ ℓ7644.

20. Prove that
GCD(km,kn) = kGCD(m,n).

21. Find all x that satisfy 3x ≡ 4 (mod 5).
22. Find all x that satisfy

4x ≡ 2 (mod 11).
23. Find all x that satisfy

13x ≡ 4 (mod 16).
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24. Find all x that satisfy
9x ≡ 8 (mod 22).

25. You saw in Section 16.4 that the so-
lutions to 2x ≡ 1 (mod 3) are x ≡ 2
(mod 3). Which numbers x satisfy
2x ≡ 4 (mod 6)? What is the relation-
ship between these solution sets, and
why?

26. Find the solution set for x ≡ 3 (mod 5)
and x ≡ 6 (mod 7).

27. Which x satisfy both x≡ 2 (mod 3) and
x ≡ 4 (mod 5)?

28. Which x satisfy both x≡ 2 (mod 5) and
x ≡ 4 (mod 6)?

29. Which x satisfy both x ≡ 3 (mod 11)
and x ≡ 12 (mod 13)?

30. Challenge: Find all x that satisfy all of
x ≡ 1 (mod 3) and x ≡ 3 (mod 5) and
x ≡ 5 (mod 7).

31. Challenge: Prove that if x ≡ s (mod a)
and x ≡ s (mod b) and GCD(a,b) =
1, the common solutions are x ≡ s
(mod ab). Use this to show that there
are no solutions to the pair of equations
x ≡ 5 (mod 12) and x ≡ 38 (mod 86).

32. The Farey sequence Fn is the increas-
ing list of all rational numbers a

b with
a ≤ b ≤ n. Write out F2 through F5.
(You will notice thatFn is much shorter
than FFLn.) Howmany fractions do you
add toFn−1 to getFn? Howmany frac-
tions are in Fn?

33. What is the sum of the fractions in Fn?
34. (Knowledge of Chapter 8 may be useful

here.) Howmany fractions are in FFLk?
35. (Knowledge of Chapter 8 may be useful

here.) What is the sum of the numera-
tors in FFLk? How about the sum of the
denominators?

16.13 Instructor Notes

The intent of this chapter is to give a sampler of ideas that are both accessible and not
the standard beginning of a number theory course. It is outside the main text because
not only is number theory its own course, but as a mathematical research subfield it is
not considered part of discrete mathematics. As with other supplemental chapters, the
prerequisites for this chapter are Chapters 1 through 5 (the last of which introduces very
basic modular arithmetic).

The material is structured to allow instructors to use the chapter flexibly: the chapter
can be done in its entirety in a week (see below for suggested lesson plans), or some
sections can be used interstitially between other chapters, or just the start of the chapter
can be used to supplement Chapter 5. Note that Sections 16.4, 16.5, and 16.6 depend on
Sections 16.2.2 and 16.3.

An instructor might want to place this chapter right after Chapter 5, or after Chapter 8,
or at the end of the course. If you are using the whole chapter, begin the week by diving
right into the Try This! Section 16.2 on investigating φ(n) and GCD calculations, which
will take an entire class period. Make sure to leave time for students to share their (prelim-
inary) results. Ask students to read Section 16.3 on the Euclidian algorithm as preparation
for the second day, when you might discuss the Euclidean algorithm; then work in groups
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to do congruence equation explorations via Section 16.4; and then summarize strategies
for solving congruence equations. Then Section 16.5 can be assigned as reading to prove
that φ(ab) is multiplicative for a,b relatively prime. Finally, do and discuss Section 16.6
on the third day. Time can be carved out for discussion of Section 16.5.



Chapter 17

Computational Complexity

17.1 Introduction and Summary

In this chapter our goal will be to measure and compare the relative efficiency
of algorithms. The same algorithm, when implemented on different computers or
using different programming languages, will take different amounts of time to run.
However, if we say that one algorithm runs much faster than another algorithm,
then what we mean is that for most similar implementations (similar computers,
similar programming languages) the first algorithm will take less time to execute
than the second algorithm. Because these measurements take into account how
involved the procedures of an algorithm are, we say that we are measuring the
complexity of the algorithm.

This topic is very important in practice: paying attention to the computational
complexity of an algorithm as it’s being designed can make the difference between
a program that won’t finish before the universe ends and a program that finishes
in an hour or two.

17.2 Try This! Count the Operations

As we saw in several earlier chapters, there are often multiple algorithms that will
produce the same output or result. These often vary widely in efficiency and com-
plexity. Our task here will be quantifying the complexity of an algorithm by count-
ing the number of operations it takes to execute.

How do we know how to count these operations? We want to count the actions
taken. So for example, storing a value, loading a value from memory, adding two
numbers, comparing two numbers, or taking the ceiling of a number each take
one operation to accomplish. We can’t simply count the number of lines of code,
because some lines may contain a lot more action than others.

533
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Example 5.2.13 on page 135 gives two different algorithms that produce the
same result. We know that one algorithm does more work than the other, but not
how much more work. Let’s try to measure that now.

1. Howmany operations does the first algorithm take with input 4? The second
algorithm?

2. Howmany operations does the first algorithm take with input 7? The second
algorithm?

3. Now generalize—How many operations does the first algorithm take with
input n? The second algorithm?

Here are two (of the many that exist!) sorting algorithms; we will analyze them
shortly.

Insertion sort. This algorithm takes a list of length n as input. We will call
that input list.

1. Let i = 2.
2. Let x = the ith entry of list.
3. Let j = i−1.

(a) If x is less than the jth entry of list, put the jth entry of list in
the ( j+ 1)st slot of list. Otherwise, put x in the ( j+ 1)st slot
of list and go to step 4.

(b) If j = 1, put x in the first slot of list and go to step 4. Otherwise,
replace j with j−1 and go to step (a).

4. If i < n, replace i with i+1 and go to step 2; otherwise, continue.
5. Output list.

Selection sort. This algorithm also takes a list as input, which we will also
call list.

1. Let i = 1, let j = 2, let k = 1, and let x be the first entry of list.
2. If the jth entry of list is less than x, then replace x with the jth entry
of list, set k = j, and continue; otherwise, continue.
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3. If j < n, replace j with j+1 and go to the previous step; otherwise,
continue.

4. Put the ith entry of list into the kth spot of list.
5. Put x into the ith spot of list.
6. If i< n−1, replace jwith i+2, replace kwith i+1, replace xwith the

(i+1)st entry of list, replace i with i+1, and go to step 2; otherwise,
continue.

7. Output list.

If you would like to see examples of these algorithms in action, check out
https://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html (and choose
the relevant options from the menu).

Let us compare these algorithms.

1. Run each of the sorting algorithms on the input {6,3,7,2,5,4,1}.

2. Now run them on {1,2,3,4,5,6,7}. How many operations does each take?
As you count, keep track of how many operations are used for each specific
value of i.

3. Now run them on {7,6,5,4,3,2,1}. How many operations does each take?
As you count, keep track of how many operations are used for each specific
value of i.

4. The list {1,2,3,4,5,6,7} is a best-case input because it’s already sorted. The
list {7,6,5,4,3,2,1} is a worst-case input because it’s anti-sorted. How do
insertion sort and selection sort compare in terms of how many operations
they take on these two inputs?

5. Use your notes from Problem 2 to determine how many operations it takes
to run each of the two algorithms on {1,2, . . . ,n}.

6. Use your notes from Problem 3 to determine how many operations it takes
to run insertion sort on {n,n−1, . . . ,1}, and estimate how many operations
it takes to run selection sort on {n,n−1, . . . ,1}.

7. Now, make a general comparison between the number of operations inser-
tion sort and selection sort each need for sorted input and anti-sorted input.

https://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html
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17.3 Computation of Runtime Functions

In Section 17.2, you started by counting the number of operations an algorithm
takes to execute given a specific input and moved on to counting the number of
operations an algorithm takes to execute given more general inputs. In each case,
the expression you obtained was a function of the size of the input. Such functions
let us compare how quickly (or slowly) different algorithms run and are thus called
runtime functions; we will define this term carefully in Section 17.3.3.

17.3.1 Challenges in Measuring Complexity of Algorithms

In trying to measure the complexity of algorithms in Section 17.2, you probably
came up against a bunch of issues.

The number of operations it takes to execute an algorithm depends on the
size of the input. But how do we measure that? Different algorithms have
different kinds of inputs—numbers or sets or lists, for example—and so how
the input is measured depends on what kind of input we have. For the algo-
rithms fromExample 5.2.13 that added integers, the input size was a number.
For the sorting algorithms, the input size was a list length.

The number of operations it takes to execute an algorithm also depends on
qualities of the particular input. As you saw (and as you would expect any-
way), it takes fewer operations to sort an already sorted list than it does to
sort an unsorted list!

It’s not at all obvious how to count the number of operations it takes to
execute an algorithm. Which commands “take time,” so to speak, and which
don’t?

Counting the number of operations an algorithm takes is really tedious and
can be quite confusing.

And there’s more—what we really want to know (in practice) is how long it
takes for an algorithm to run, but not all operations take exactly the same amount
of time to execute (even multiplication and addition don’t take exactly the same
amount of time). Worse yet, the same operation is likely to take different amounts
of time on different computers, or when implemented in different programming
languages. To account for this variation, we pretend that the amount of time every
operation takes is the same, and say that this amount of time is large (within the
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range of times) so that algorithms might execute more quickly than we expect, but
are unlikely to execute more slowly than we expect.

Another issue is that two different programmers might implement the same al-
gorithm in the same programming language but do it subtly differently, so that their
two programs need slightly different numbers of operations. It seems hopeless to
count the number of operations an algorithm takes in any precise way! So, we
will not even try to be precise—we will approximate. (Are you noticing a theme
yet?) As long as we are consistent in our guidelines for approximating, then we
can compare the overall complexity of one algorithm to that of another.

We will choose to always compare performance on worst-case inputs. This is
not a flawless choice! It’s entirely possible that Algorithm A performs really badly
in the worst case but really well on average cases, whereas Algorithm B performs
poorly both on average cases and in the worst case. This would mean that our
analysis says that Algorithm B is better, but in practice Algorithm A is better.
(This actually happens—the famous classical simplex algorithm, used in solving
linear programming problems, is The Worst for worst case scenarios and Really
Fast for almost all scenarios. It turns out that the worst case just doesn’t happen
in practice.) However, examining worst-case inputs makes the task of estimating
algorithm complexity simpler. What would it really mean to examine average-
case inputs? We could calculate the runtime for all possible inputs of a given size
and take the average. (That seems like a lot of computation.) Or we could take
a random sample of inputs and average their runtimes. Or we could calculate the
runtimes for the kinds of inputs that arise most often in actual use—but how would
we know what those are? In comparison, determining the runtime for the worst
case is straightforward.

Example 17.3.1. Consider an algorithm that seeks a yellow marble from a line of
marbles.

1. Pick up a marble.
2. If the marble is yellow, go to step 5; otherwise, toss the marble aside and
continue.

3. If marbles remain, pick up the next marble in the line, and go to the pre-
vious step; otherwise, continue.

4. State dejectedly, “There are no yellow marbles,” and take a nap.
5. Announce, “I have a yellow marble!” and take a nap.

The number of operations this algorithm takes to execute depends on the num-
ber of marbles in the line as well as where (if anywhere) in the line the first yellow
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marble is placed. A worst-case scenario is that there are no yellow marbles in the
line. We now count the number of operations used in this instance: step 1 takes
one operation, step 2 takes two operations for each marble, step 3 takes two op-
erations for each marble except the last one, step 4 takes one operation, and step
5 is never reached so takes zero operations. Therefore, for a line of n non-yellow
marbles, we use 1+2n+2(n−1)+1 = 4n operations.

17.3.2 Why This Matters

Before we really get going on analyzing algorithm complexity… what is the point
of doing so?

Suppose you want to know how many lists of a certain length n that have
integer entries in the range k to ℓ also have entries that add up to s. Here is a naïve
pseudo-algorithm for doing so: In an orderly fashion, make every list of length n
with integer elements in the range k to ℓ. As each list is made, compute the sum
of the entries. If the sum is s, then add 1 to a variable total.

Now, we know how to vaguely estimate how long this will take to run. There
are ℓ− k + 1 choices for each list entry, so there are (ℓ− k + 1)n possible lists.
For each of those lists, we have to write it down (that takes n operations to put
in the entries) and compute its sum (this takes another n−1 operations for all the
additions) and check its sum against s (there’s another operation). This all means
there are at least (2n)(ℓ− k + 1)n operations involved. (We will return to this
estimate in Example 17.5.1.)

Imagine that you’ve coded this algorithm on your computer. In this imaginary
world, you casually run some small examples on your computer: using entries
ranging from 1 to 10, and lists of length up to 10, it takes about a second to run—
you barely notice this. (Estimates are that as of 2017, a decent home computer
will do 108 to 1014 instructions per second.) It occurs to you that maybe you’ll
get sums of s more often if you use negative values, so you change your range to
−10 to 10, and then—why not?—to −50 to 50. As you’re waiting for the com-
puter to finish the calculation, you surf the web and run across an article saying
that the universe is more than 10 billion years old and has at least ≈ 1080 atoms
in it. The clickbait on the page has articles on “How do you know if you’re at
risk for becoming a mummy?” and “12 weird signs that you’re getting old.” Sigh-
ing, you decide to figure out how long this calculation might take. It has about
1021 operations involved, so might take about 107 seconds, which is… about four
months. Oops.

Good thing that imaginary you didn’t change the length of the lists (with range
of −10 to 10) to length 50—that would have taken 1046 years to finish! And if
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you’d used a range of −50 to 50 with those length-50 lists, it would have been
more like 1080 years… about as many years as there are atoms in the universe.

For a problem like this, it’s not just that we need an algorithm that is better than
using brute force—we need an algorithm that is a lot better than using brute force.
Even a new generation of computers won’t be sufficiently faster—consider that
over the last decade, standard computer chips have only gotten a few times faster
(maybe 10 times, or one order of magnitude). Even a hundredfold speed increase
(two orders of magnitude) only gets us to 1044 years. And it saves a lot of both
human and computer time if one thinks through the speed of an algorithm and how
long it will take to execute, instead of naïvely coding the first thing that comes to
mind and discovering mid-calculation that one must start over. (If only the author
could heed her own words instead of repeatedly wasting time in this fashion….)

If we are going to have faster algorithms that are sufficiently fast to run on large
inputs in small amounts of time, we need to know how to determine the speed of
an algorithm and how to compare those speeds. This is where we’re going: in the
following sections we will compute runtime functions, and in Section 17.5 we will
discuss the necessary comparisons.

17.3.3 What Is a Runtime Function?

A function, as we know from Section 3.2, outputs a unique output for each input.
A runtime function for an algorithm has as input the size n of whatever data we
feed into the algorithm and outputs the worst-case number of operations it takes to
execute the algorithm on an input of size n. If we useR≥0 to denote the nonnegative
real numbers, then formally a runtime function is denoted r : N→R≥0. The name
runtime comes from the idea that this function roughly measures the amount of
time it will take for this algorithm to run.

Themost common runtime function types are linear (of the form an), quadratic
(of the form bn2 +an), polynomial (of the form cnk+ terms of lower degree), log-
arithmic (of the form d log(n)), and exponential (of the form d2n or dkn). For
example, an algorithm investigated earlier in this chapter has runtime function
r(n) = 3n+2.

Two different people who attempt to count the number of operations it takes for
a given algorithm to execute may get slightly different results. Because of all the
issues raised in Section 17.3.1, this is to be expected—and in particular, because
different implementations of an algorithm give different runtimes, there is no point
in trying to produce very precise runtime functions. (This is fortunate because
trying to count operations precisely is frustratingly tedious.) A small tweak to the
code on a particular algorithm implementation could make it run twice as fast!
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Therefore, when we compute runtime functions, we don’t worry too much about
the coefficients.

In fact, how much detail we worry about in computing runtime functions de-
pends on the purpose for which we’re creating those functions. We might start
with two algorithms and determine the types of their runtime functions. If they’re
of the same function type, we might then try to be more precise to understand the
difference in their runtimes. There is, of course, a significant difference between
the runtime functions 0.003n2 and 426n2, so we do try to keep track of each coef-
ficient to within an order of magnitude (closest power of 10).

Example 17.3.2. Section 6.12, starting on page 194, approximates the runtime func-
tion for the bubble sort algorithm.

What does this all mean about how we compute runtime functions in practice?
We give some general guidelines, followed by one algorithm (ha!) for computing
runtime functions.

First, we have to be cautious as to how we look at steps: A step that includes
several sub-steps is not really just one operation. For example, a step with a while
statement includes an entire loop so it definitely cannot be counted as a single
operation. And in general, a step that commands us to evaluate a function or do
several mathematical operations is hiding many smaller operations.

We also need to decide which actions count as single operations. Most of the
time we consider addition, subtraction, multiplication, division, calculation of x
(mod n), executing and/or/not, comparison (implementing the condition of an if
statement), and assignment of variables to values to be single operations. (The
reason to say “most of the time” is that sometimes in the course of execution an
algorithm will internally generate numbers disproportionately large compared to
the input, in which case basic arithmetic takes longer because of the intermediate
calculations.) In contrast, we cannot consider taking exponents or factorials to be
single operations because they are repeated application of multiplication (which is
a single operation).

How to compute a runtime function for an algorithm:

1. Familiarize yourself with the algorithm under consideration. Run it
by hand on a couple of random inputs to see how it works.

2. Using this experience, determine what constitutes a worst-case input
for this algorithm. Create a sample generic worst-case input sagewci
(possibly pronounced “so juicy”).
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3. How should the input size of sagewci be measured? That is, what
would make the most sense as an input size, given your understand-
ing of the algorithm?

4. For each step of the algorithm, determine how many operations are
used on sagewci.

5. Also determine how many times each step is executed for sagewci.
Try to write this amount as a function of the input size you deter-
mined earlier.

6. Add it all up, as in ∑steps
i=1 (number of operations in stepi)(number of

times stepi is executed).

There are of course sensible variations on this procedure—sometimes it’s bet-
ter to group steps together that are always executed in sequence; sometimes it
makes sense to try to write the number of operations as a function of the iteration
number. This is just one possible way to proceed.

Check Yourself

Try counting the numbers of operations for these simple algorithms.

1. Consider the counting algorithm with input a natural number n.

1. Let k = 1.
2. Output k.
3. Replace k with k+1.
4. If k = n, output k, and stop; otherwise, return to step 2.

How many operations does this algorithm take to execute?

2. Consider the laundry sorting algorithm that works on a pile of n pieces of clothing:

1. Pick up a piece of clothing.
2. If the item is a dark color, toss it to the right. If the item is a pale color,

toss it to the left. If the item is a bright color, toss it behind you.
3. If there is more clothing in the pile, go to step 1; otherwise, be done.

What are best- and worst-case inputs for this algorithm? How many operations
does it take to execute?

3. Write a runtime function for the algorithm given in Example 5.2.7.

4. Write a runtime function for the algorithm given in Problem 10 of Section 5.11.
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17.4 Try This! Compute Runtime Functions

1. Review your work on the sorting algorithm comparison problems in Sec-
tion 17.2 (or do the problems for the first time!) and use this to produce run-
time functions for insertion sort and selection sort. What type of function
is the insertion sort runtime function? How about the selection sort runtime
function?

2. List length: Depending on the programming language, a list may be ended
with an end-of-list character such as ′\0′ or may have its length specified as
part of the list object itself.

(a) Suppose list length is specified as part of the list object. What is the
runtime function type of a command that has input list and outputs the
length of the list?

(b) Suppose list length is determined by counting entries until an end-of-
list character is encountered. What is the runtime function type of a
command that has input list and outputs the length of the list?

(c) Suppose again that list length is specified as part of the list object.
Consider the following algorithm for inserting a 4 between the second
and third list entries of list with length n. What is its runtime function?
What function type is that?

1. Let i = 1 and let newlist = {} with length(newlist) = 0.
2. If i = 3, append 4 to newlist and replace length(newlist) with
length(newlist)+1; otherwise, continue.

3. Append listi to newlist and replace length(newlist) with
length(newlist)+1.

4. If i = n, output newlist; otherwise, replace i with i+1 and go
to step 2.

(d) Suppose again that list length is determined via an end-of-list character.
Consider the following algorithm for inserting a 4 between the second
and third list entries of list with length n. What is its runtime function?
What function type is that?

1. Let i = 1 and let newlist = {}.
2. If i = 3, append 4 to newlist; otherwise, continue.
3. Append listi to newlist.
4. If listi =

′\0′, output newlist; otherwise, replace i with
i+1 and go to step 2.
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3. Consider the following vaguely described algorithm, which counts the num-
ber of nonempty subsets of a set of integers that sum to zero. The input is a
length-n list of integers ints.

1. Let num = 0.
2. Construct a new subset subs of ints.
3. If ∑k subsk = 0, replace num with num+1; otherwise, continue.
4. If there are any subsets left to construct, go to step 2; otherwise,
output num.

(a) What is a worst-case input here?
(b) Approximate the runtime function.
(c) Is your approximation (aside from the constants involved) more likely

an underestimate or more likely an overestimate of the actual runtime
function?

4. Our Dictionary of 1000 Duck-Related Words consists of a length-1000 list
named duckdict, where each entry is a pair {word,definition}. The words
are in alphabetical order. Here is an algorithm for finding the definition of
drwid, an arbitrary duck-related word in the dictionary.

1. Let i = 500 and let last= temp= 0.
2. If drwid = duckdicti,1, output duckdicti,2; otherwise, continue.
3. Replace temp with i.
4. If drwid is earlier in the alphabet than duckdicti,1, then replace i
with i−⌈ |i−last|2 ⌉; otherwise, replace i with i+ ⌈ |i−last|2 ⌉.

5. Replace last with temp.
6. Go to step 2.

Approximate the runtime of this algorithm. What is the input size? How
does the algorithm generalize? Approximate the runtime for the generalized
algorithm.

17.5 Comparing Runtime Functions

By nowwe’re so deep into the ideas of runtime functions and how to compute them
that it’s easy to lose sight of our overall goal: we need to compare the complex-
ity of algorithms, and we especially need to compare the complexity of different
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Figure 17.1. Runtime functions r1(n) = 5n+4 (teal), r2(n) = n2−3n+2 (pale grey), and
r3(n) = 2n

10 (dark grey) shown for small input sizes.

algorithms that accomplish the same task. We will do this by comparing runtime
functions, and in particular by comparing the growth types of runtime functions.

To be clear, for this purpose we are completely abandoning any sense of mea-
suring what an algorithm will do in practice, meaning that in addition to ignoring
the specifics of a way an algorithm is implemented, we are not looking at how long
it takes an algorithm to run (despite basing our analysis on runtime functions). In-
stead we will examine how the number of operations scales as the input size gets
larger, so that we can see which algorithms are better (or worse) for large inputs.
For this purpose, we look at the runtime function type of the algorithm. This is
called the complexity of an algorithm.

One caveat is that we can only compare runtime functions that have the same
type of input size—it doesn’t make sense to compare a runtime function r1(n)
where n is the length of a list with r2(n) where n is the magnitude of a number. In
the case where two algorithms that we wish to compare have different natural ways
to measure the input size, we must find a way to convert (or at least approximate)
one input size in terms of the other. Of course, how that conversion could be done
depends entirely on the details of the inputs themselves.

So, what does it mean to compare the growth types of runtime functions? And
why do growth types matter? Let us consider three sample runtime functions,
r1(n) = 5n+ 4, r2(n) = n2 − 3n+ 2, and r3(n) = 2n

10 . We plot these functions for
input sizes up through 8 in Figure 17.1. Notice that because we have only natural-
number inputs, the plots only show values at natural-number x-values. The x-axis
shows the input size and the y-axis shows the runtime for that input size. From this
figure, it appears that r1(n) is the slowest, using the largest number of operations
for a given input, with r2 a bit faster and r3(n) faster yet. What happens when we
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Figure 17.2. Runtime functions r1(n) = 5n+ 4 (teal), r2(n) = n2 − 3n+ 2 (pale grey),
and r3(n) = 2n

10 (dark grey) shown for moderate input sizes with discrete and continuous
inputs.

consider larger input size, say, up through input size 30? The results are shown in
Figure 17.2, along with the same graph with continuous input in case the spacing
between the dots makes it too hard to see what’s happening. Gosh! The situation
changes dramatically when we examine larger input sizes! Now r1(n) seems like
the most efficient, using far fewer operations for a given input, with r2(n) slower
and r3(n) using awhole honking pile of operations. In this view, the three functions
seem to be very similar for small input sizes but to differ substantially as the input
size grows.

These three functions are representatives of different growth types of func-
tions: r1(n) is a linear function, r2(n) is a quadratic function, and r3(n) is an ex-
ponential function. Let us also look at two more quadratic functions, r4(n) = 2n2

and r5(n) = 1
2 n2. In Figure 17.3 we plot these functions together with r2(n) for

two ranges of input sizes. Despite the fact that r2(n) is not of the simple form

Figure 17.3. Runtime functions r4(n) = 2n2 (teal), r2(n) = n2 − 3n+ 2 (pale grey), and
r5(n) = 1

2 n2 (dark grey) shown for small and moderate input sizes.
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Figure 17.4. Runtime functions r1(n) = 5n+ 4 (teal), r2(n) = n2 − 3n+ 2, r4(n) = 2n2,
r5(n) = 1

2 n2 (all pale grey), and r3(n) = 2n

10 (dark grey) shown for moderate input sizes.

bn2, the linear term −3n does not change its behavior; it is still solidly between
the quadratic functions with higher and lower coefficients. And as we see in Fig-
ure 17.4, the three quadratic functions have behavior that is similar to each other
and different from linear and exponential functions. Notice that when we’re look-
ing at the behavior of these functions, we are looking at what happens as the inputs
get larger—this is what is meant by comparing the growth types of the functions.

In fact, as long as n is large enough (in this case, larger than 10), we have
r1(n) < r5(n) < r2(n) < r4(n) < r3(n). If we also ignore leading coefficients,
we can say that as long as n is large enough, then linear(n) < quadratic(n) <
exponential(n). We give common technical refinements on this idea in Sec-
tion 17.5.1. Linear, quadratic, and exponential are common complexity classes
for runtime functions. Given a new algorithm, determining or estimating the com-
plexity class is more important than determining the runtime function—after all,
if the complexity class indicates that the new algorithm will be on the whole less
efficient than older algorithms, perhaps no one will bother to implement it!

Example 17.5.1. In Section 17.3.2, we counted the number of lists of length n that
have integer entries in a given range (k to ℓ) that add up to s. Our vaguely described
algorithm created every list that met our criteria, computed the sum of its entries,
and compared the sum to s.

We noted that because there are ℓ− k+1 choices for each list entry, there are
(ℓ−k+1)n possible lists. For each of the possible lists, we said there are approxi-
mately 2n operations—n operations to determine the n entries, n−1 operations to
add them up, and one operation to check whether the sum is s.

Depending on how exactly we write that algorithm, there are likely to be a few
more operations per list. That’s probably a small constant, or maybe somehow a
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constant multiple of n. However, there won’t be n2 more operations per list as that
would require additional algorithmic structure (such as an extra loop executed for
each list). So we can feel confident that for some constant d, our runtime function
is r(n) = (dn)(ℓ− k+1)n.

What kind of runtime function is this, though? It looks like there are three
different variables, k, ℓ, and n! Notice that what matters is not the values of ℓ or
k, but the value of ℓ− k, so we can let m = ℓ− k+ 1 and rewrite the function in
two variables as r(n,m) = dn ·mn. If we had a fixed list length, this would be a
polynomial function of the value range m. If instead we had a fixed value range,
this would be an exponential function of the list length n.

As a multivariable function, this is discouragingly large. Furthermore, the
troublesome exponential factor is present because we are checking the sum for
each and every one of our exponentially many lists. Before throwing up our hands
and deciding we might as well not even try to answer our original question, mathe-
matics comes in: is there a way to determine whether some lists have sum swithout
actually calculating their sums? Noting that two lists that differ only in one entry
have similar sums, we see that if we find a list with sum s, we know that neighbor-
ing lists will not have sum s…and we suspect that backtracking (see Section 10.8)
could be used to reduce the infeasibility of solving the problem. (Unfortunately,
there’s no simple way of estimating the complexity of a backtracking algorithm,
but certainly using backtracking must improve the runtime!)

Complexity analysis has its limits, though—if all known algorithms to solve
Problem Type X are exponential runtime, and if we still need to solve Problem Y
(which is of Problem Type X) within the next two weeks, then we have to look
at details of implementation. What input sizes do we have for Problem Y? What
are the runtime coefficients for various algorithms that solve Problem Type X? Is
there an available algorithm that we can code so it will run in under two weeks to
solve Problem Y, or do we need to seek tweaks (fast!)?

Conversely, the famous classical simplex problem has exponential runtime,
but in practice it runs in polynomial time. This is because the worst-case input
does not happen in practice.

17.5.1 Big-O (and Ω and Θ) Notation

We have already grouped runtime functions by type—linear, quadratic, logarith-
mic, exponential—and nowwewill combine worst-case scenarios with these types
to make new groupings of runtime functions. First we formalize the process we
have already been using to classify runtime functions:
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Definition 17.5.2. Suppose type refers to an example of a function type, so that n2

would be an example of the quadratic function type, or 3n would be an example
of the exponential function type. We use Θ(type) to denote the set of all runtime
functions r(n) such that

there are positive real constants c1 and c2 and

there is a natural number k

so that whenever n ≥ k, c1 · type ≤ r(n)≤ c2 · type.

This is a technically complicated definition, but not as difficult to use as it
seems at first. It says that aside from small inputs (that’s the n ≥ k part), we
group together runtime functions that can be sandwiched between constant mul-
tiples of the function type we’re interested in. In conversation, the statement
“ f (n) ∈ Θ(type)” is pronounced “ f (n) is in big theta of type.”

Example 17.5.3. When we noted that generally r5(n) < r2(n) < r4(n), we were
also saying that r2(n) ∈ Θ(n2). If we let c1 =

1
2 , c2 = 2, and k = 6, then whenever

n ≥ 6, 1
2 n2 ≤ r2(n)≤ 2n2.

Our next grouping is perhaps the most common one used by computer scien-
tists.

Definition 17.5.4. We use O(type) to denote the set of all runtime functions r(n)
such that

there is a positive real constant c and

there is a natural number k

so that whenever n ≥ k, r(n)≤ c · type.

The set O(type) collects runtime functions that are less than some constant
multiple (maybe a big one) of the function type we’re talking about. Why would
big O (yes, that’s how it’s pronounced) be preferable to Θ? It’s an upper bound on
how slowly an algorithm might run—sort of a worst case among worst cases. We
might not be able to determine a runtime function r(n) precisely enough to show
r(n) ∈ Θ(type), but we might be able to show that r(n) ∈ O(type). The process of
proving that a given runtime function is, or is not, in O(type) is similar to using
integral convergence comparison tests in calculus.
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Be careful in using big-O notation in conversation, and be cautious in inter-
preting other people’s claims involving O(type). People frequently misuse r(n) ∈
O(type) to mean “I think this is the worst-case runtime” rather than the actual “this
is possibly much worse than the worst-case runtime.” Sometimes people misuse
O(type) as a single function rather than a set of functions. It’s tricky to use O(type)
correctly!

Notice that Θ(type) ⊂ O(type), but O(type) ̸⊂ Θ(type). For example, 3n+
2 ∈ O(n2), but 3n+ 2 ̸∈ Θ(n2). Given any c1 > 0, we note that 3n+ 2 < c1n2 if
n > 3+

√
9−8c1
2 . Thus there is no k that will satisfy the definition of Θ(n2).

Finally, we have a lower-bound grouping:

Definition 17.5.5. We use Ω(type) to denote the set of all runtime functions r(n)
such that

there is a positive real constant c and

there is a natural number k

so that whenever n ≥ k, r(n)≥ c · type.

Again, a bit of caution is needed in using Ω(type). If r(n) ∈ Ω(type), that
doesn’t mean that the algorithm always runs slower than type—it means that in
worst cases, the algorithm runs slower than type.

It follows directly from these definitions that Θ(type) = Ω(type)∩O(type).

Example 17.5.6. We reinterpret earlier examples from this chapter in terms of big-
O/Θ/Ω notation.

Example 17.3.1 computes the runtime function y(n) = 4n. This is an exact
runtime function, essentially independent of implementation, so y(n) ∈ Θ(n). Ad-
ditionally, y(n) ∈ O(n53), though it’s useless to say so, and y(n) ∈ Ω(1)… which
is true of every algorithm, so it’s even more useless as a measure.

Problems 1–4 of the Check Yourself in Section 17.3 have runtime functions
cy1(n), cy2(n), cy3(n), and cy4(n). We can say cy1(n),cy2(n) ∈ Θ(n) and cy3(n),
cy4(n) ∈ Θ(1).

Example 17.5.1 discussed the runtime function r(n,m) = dn ·mn. The original
algorithm was vague and perhaps oversimplified, so our estimate of the runtime is
likely to be an underestimate. Thus we know r(n,m) ∈ Ω(mn).

If you find it difficult to remember the definitions of and differences between
Θ(type), O(type), and Ω(type), just don’t use that notation! Say what you mean
explicitly: r(n)≤ c · type is clear.
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Check Yourself

Try these problems for practice in the details of runtime function comparison.

1. We claimed that as long as n is larger than 10, we have r1(n) < r5(n) < r2(n) <
r4(n)< r3(n). Verify that this is not true if n = 10.

2. How small can n be and still have r5(n)< r2(n)< r4(n)< r3(n) be true?

3. True or false (and explain): n3 ∈ O(n2).

4. True or false (and explain): 3n ∈ O(3n−1).

5. True or false (and explain): r(n) ∈ O(r(n)).

17.6 Try This! Determine Complexity Classes

1. For each problem you did in Sections 17.2 and 17.4, rewrite your conclu-
sions using big-O, Θ, or Ω notation. Can you use more than one type of
notation for any of these conclusions? Does it make sense to compare any
of these runtime functions to each other?

2. Example 5.2.2 on page 128 describes an algorithm for multiplyingmultidigit
integers.

(a) Suppose A has m digits. (We are given that B has n digits.) How might
we measure the size of the input?

(b) For each step of the algorithm, compute the number of operations.
(c) Write a runtime function for this algorithm.
(d) What is the complexity of the algorithm?
(e) When doing multiplication by hand, we make an assumption about the

relationship between m and n. What is it?
(f) How is the runtime function affected if we swap the roles of A and B in

the algorithm? What is the effect on the complexity of the algorithm?

3. The following algorithm computes the nth Fibonacci number. What is its
complexity?

1. Let fib(n) = 0, let k = n, let fib(1) = 1, and let fib(2) = 1.
2. If k = 1, go to step 6; otherwise, continue.
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3. If k = 2, go to step 6; otherwise, continue.
4. Replace fib(k) with fib(k−1)+fib(k−2).
5. Replace k with k−1 and go to step 2.
6. Output fib(n).

(You may wish to compare this to other algorithms for computing the Fi-
bonacci numbers; see Problems 13 and 14 in Section 17.10. Note also that
it would be difficult to analyze the complexity of an algorithm that uses the
Binet formula—either we use a computer algebra system, which has varying
complexity associated with each of its commands, or we need to understand
how the computer stores irrational numbers.)

17.7 Where to Go from Here

There are whole courses on computational complexity, often titled Analysis of Al-
gorithms, in computer science departments. In this chapter, we only examined al-
gorithms with simple runtime functions. More complicated algorithms have much
harder-to-determine runtime functions—and one of the reasons we use big O is be-
cause that might be easier to figure out than Θ. An excellent source to learn more
about efficiency and complexity of algorithms is [5], particularly Chapters 1, 2,
and 10. Anything you want to know is in there somewhere, though be warned: it’s
written clearly but is still challenging to read.

For a more computer-science-y perspective on some of the same material in
this chapter, see Prof.MaryK.Vernon’s page at http://pages.cs.wisc.edu/~vernon/
cs367/notes/3.COMPLEXITY.html. Some technical notes on how to prove func-
tions are (or are not) inO(type)may be found at http://www.math.uvic.ca/faculty/
gmacgill/guide/big-O.pdf.

Study of the growth rates of functions in general is part of calculus, so if you
are interested in learning more about that topic, go take (or take more) calculus!

Credit where credit is due: Much of my understanding of computational complexity stems
from [5], which also inspired chunks of the material in this chapter.

Gary Lewandowski pointed out to me why we need to think beyond the complexity
of algorithms—after all, we still need to accomplish the most computationally difficult
tasks, so there is value in finding smaller-coefficient algorithms; just because a problem is
computationally complex doesn’t mean we don’t need to solve it.

Mirella Damian (Villanova University), Robin Flatland (Siena College), Kyle Burke
(University of New Hampshire), and Thomas Hull (Western New England University)

http://pages.cs.wisc.edu/~vernon/cs367/notes/3.COMPLEXITY.html
http://www.math.uvic.ca/faculty/gmacgill/guide/big-O.pdf
http://pages.cs.wisc.edu/~vernon/cs367/notes/3.COMPLEXITY.html
http://www.math.uvic.ca/faculty/gmacgill/guide/big-O.pdf
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shared suggestions of some algorithm and problem types while at a conference in Barbados
(at which I was not present).

The algorithms for computing the Fibonacci numbers given in Problem 3 of Sec-
tion 17.6 and in Problems 13 and 14 of Section 17.10 were generated in Hannah Alpert’s
2017 MathILy Branch class.

Problem 23 in Section 17.10 has exhortations by Blaartholomew and Tod, respec-
tively, from the Heavenly Nostrils universe.

The author determined that…

… the number of atoms in the universe is≈ 1080 and definitely not more than 1085

from Universe Today, at https://www.universetoday.com/36302/atoms-in-the
-universe/.

… the age of the universe is 14×109 ≈ 1010 years old from NASA, at https://map.
gsfc.nasa.gov/universe/uni_age.html.

… a desktop computer does 100 million (which is 108) instructions per second
from http://computer.howstuffworks.com/question54.htm, and calculations from
claimsmade in thewikipedia page https://en.wikipedia.org/wiki/Instructions_per_
second and related links produce a range of 1011 to 1014 instructions per second.

17.8 Chapter 17 Definitions

runtime function: A function that has as in-
put the size n of whatever data we feed
into the algorithm and outputs the worst-
case number of operations it takes to ex-
ecute the algorithm on an input of size n;
formally, r : N→ R≥0.

linear function: A function of the form an.

quadratic function: A function of the form
bn2 +an.

polynomial function: A function of the
form cnk+ terms of lower degree.

logarithmic function: A function of the
form d log(n).

exponential function: A function of the
form d2n or dkn.

complexity: The runtime function type of
an algorithm.

17.9 Bonus Check-Yourself Problems
Solutions to these problems appear starting on page 637. Those solutions that model a
formal write-up (such as one might hand in for homework) are to Problems 3 and 4.

1. Write a runtime function for the marble-
sorting algorithm given in Exam-
ple 5.2.8.

2. Consider the following algorithm that
has input list with length n. What does
the algorithm do? What is a worst-case

https://www.universetoday.com/36302/atoms-in-the-universe/
https://map.gsfc.nasa.gov/universe/uni_age.html
http://computer.howstuffworks.com/question54.htm
https://en.wikipedia.org/wiki/Instructions_per_second
https://www.universetoday.com/36302/atoms-in-the-universe/
https://map.gsfc.nasa.gov/universe/uni_age.html
https://en.wikipedia.org/wiki/Instructions_per_second
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input? What is its runtime function?
What function type or complexity class
is that function?

1. Let i = 1.
2. If listi ≥ listi+1, say “nope”

and exit; otherwise, continue.
3. If i = n−1, say “yup!”; other-

wise, replace i with i+ 1 and
go to step 2.

3. Prove that r(n) = n2 −16 is in O(n3).

4. Estimate the complexity of the follow-
ing pointless algorithm that takes as in-
put a natural number n.

1. Let i = 1.
2. If it’s Tuesday, then continue;

otherwise, go to step 5.
3. Let j = 2n+1 and let m =

i(2− j).
4. If i = n, output “Ha ha ha!”;

otherwise, replace i with i+1
and go to step 2.

5. Let j = 2i.
6. If i = n, output “Ha ha ha!”;

otherwise, replace i with i+1
and go to step 2.

5. Consider the following algorithm with
input list of length n with integer ele-
ments. What does it do? What is its
complexity?

1. Let i = 1 and let newlist = {}.
2. Append 2 · listi to newlist.
3. If i < n, replace i with i + 1

and go to the previous step;
otherwise, output newlist.

6. Determine the complexity class of
the bubble sort algorithm, whose run-
time function is approximated in Sec-
tion 6.12.

7. True or false: 1
2 n2 + n log(n) ∈

O(n log(n)). Explain, and if the state-
ment is false, make a corrected state-
ment.

8. Write an algorithm that inputs a num-
ber n and outputs whether the number
is even, odd, or neither (not an integer).
What is its complexity?

9. Consider the following algorithm.
What does it do? Estimate its com-
plexity.

1. Input n.
2. Let i = 0 and let j = n.
3. If ⌊ j

2⌋ = 0, output i; other-
wise, continue.

4. Replace j with ⌊ j
2⌋, replace i

with i+1, and go to the previ-
ous step.

10. True or false:
√

n+n ∈ Ω(n). Explain,
and if the statement is false, make a cor-
rected statement.

17.10 Computation Problems

1. Example 5.2.5 gives four algorithms,
three of which terminate. Write runtime
functions for these three algorithms.

2. Consider the following algorithm for re-
moving all instances of the entry 61 in
list with length n. What is a worst-case
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input? What is its runtime function?
What function type or complexity class
is that function?

1. Let i = 1 and let newlist = {}
with length(newlist) = 0.

2. If listi ̸= 61, append
listi to newlist and re-
place length(newlist) with
length(newlist) + 1; other-
wise, continue.

3. If i = n, output newlist; other-
wise, replace i with i+ 1 and
go to step 2.

3. Consider the following algorithm that
has input list with length n. What does
the algorithm do? What is a worst-case
input? What is its runtime function?
What function type or complexity class
is that function?

1. Let i = 1.
2. If listi = banana, say “yes”

and exit; otherwise, continue.
3. If i = n, say “no”; otherwise,

replace i with i+ 1 and go to
step 2.

4. In Section 10.8, we examined a prob-
lem of placing coins on a square grid
so that no two are in the same row or
column or diagonal, and we proposed
three non-backtracking procedures for
finding solutions. Give a lower bound
for the complexity of each of these pro-
cedures for an n×n grid.

5. Plot the functions you derived in Prob-
lem 4 on the same axes, and adjust the
x-axis range so that you can see how
they compare. How do each of the func-
tions compare to 2n? … to x2? Based

on your observations, make a statement
about the complexity class of each pro-
cedure.

6. What does the following algorithm do
with input list of length n? Describe the
complexity of its runtime function.

1. Let i = 1 and let j = 2.
2. If listi = list j, output “Yup.”

Otherwise, continue.
3. If j < n, replace j with j + 1

and go to step 2; otherwise,
continue.

4. If i < n − 1, replace i with
i+1, replace j with i+1, and
go to step 2; otherwise, con-
tinue.

5. Output “Nope.”

7. Challenge: Example 5.2.11 gives a
Russian-style algorithm for multiplying
multidigit integers. Write a runtime
function for this algorithm. (It will be
useful to first do Problem 24 in Sec-
tion 5.11.)

8. Challenge: Compare the runtime func-
tions for US-style and Russian-style
multiplication.

9. Write a runtime function for the algo-
rithm in Example 5.2.14.

10. Write a runtime function for the al-
gorithm given in Problem 12 in Sec-
tion 5.11. What’s the complexity class?

11. Section 5.8 describes a depth-first algo-
rithm for searching a graph (by visiting
each node in the graph). Consider the
case of a rooted tree. How does depth-
first search proceed? What should the
input size of the algorithm be? What
is the complexity class of depth-first
search for a tree?
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12. Section 5.8 also describes a breadth-
first algorithm for searching a graph.
Consider the case of a rooted tree.
How does breadth-first search proceed?
What should the input size of the algo-
rithm be? What is the complexity class
of breadth-first search for a tree?

13. The following algorithm computes the
nth Fibonacci number. What is its com-
plexity?

1. Let place = 1, let fib = 1, and
let i = 1.

2. Replace fib with place+fib.
3. Replace place with fib −

place.
4. If i < n, replace i with i + 1

and go to step 2; otherwise,
output fib.

14. Here is yet another algorithm that com-
putes the nth Fibonacci number. What
is its complexity?

1. Let fiblist = {1,1} and let
i = 2.

2. If i = n, output fiblistn−1;
otherwise, append fiblisti +
fiblisti−1 to fiblist.

3. Replace i with i+1 and go to
step 2.

15. Challenge: In Problems 13 and 14 the
algorithms compute Fibonacci numbers
by adding previous Fibonacci numbers
together. Fibonacci numbers get large
very quickly (the 25th Fibonacci num-
ber is 75,025, for example) and so
addition gets slower as the algorithm
progresses—-it takes more time to add
two 30-digit numbers than it does to add
two 2-digit numbers. Suppose that it

takes approximately n operations to add
two n-digit numbers. Also suppose that
the number of digits in the nth Fibonacci
number is at most kn, some constant
multiple of n. How does taking this into
account affect the complexity of these
two Fibonacci-number-computing algo-
rithms?

16. Compare the complexity classes of the
algorithms given in Problems 13 and 14
above and Problem 3 of Section 17.6.

17. Prove that r(n) = n2 is not in O(n).
18. Prove that r(n) = 45n5 − 89n4 +

40,789n3 − 67n2 + 57,840,578n − 2 is
in O(n5).

19. Prove that if r1(n) ∈ O(r2(n)) and
r2(n) ∈ O(r3(n)), then r1(n) ∈
O(r3(n)).

20. Prove that r(n) = 4,782,947,384log(n)
∈ Θ(log(n)).

21. Write an algorithm that detects whether
an input list is anti-sorted, and give a
runtime function for this algorithm.

22. Consider the following algorithm.
What does it do? Estimate its com-
plexity.

1. Input string.
2. Let i = 1.
3. If stringi =

′m′, continue; oth-
erwise, go to step 10.

4. If stringi+1 = ′a′, continue;
otherwise, go to step 10.

5. If stringi+2 = ′t ′, continue;
otherwise, go to step 10.

6. If stringi+3 = ′c′, continue;
otherwise, go to step 10.

7. If stringi+4 = ′h′, continue;
otherwise, go to step 10.
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8. If stringi+5 = ′a′, continue;
otherwise, go to step 10.

9. Output “Let’s drink some
tea!”

10. If i < n − 6, replace i with
i+ 1 and to go step 3; other-
wise, output “This is not the
tea you’re looking for.”

23. Estimate the complexity of the follow-
ing pointless algorithm that takes as in-
put a natural number n.

1. Let i = 1.
2. If it’s before noon, then

continue; otherwise, go to
step 10.

3. Let j = 1.
4. If j = i then eat a cookie; oth-

erwise, replace j with j+5.
5. Let list = {i, j, i−1, j+1}.
6. Append ′m′ to list.
7. Append ′cookie′ to list.
8. If list5 = 3, then append j to

list; otherwise, continue.
9. If i = n, output “Blaaaart!”;

otherwise, replace i with i+1
and go to step 2.

10. Let j=2 and replace j with 3.
11. If i = n, output “Rar!”; other-

wise, replace i with i+ 1 and
go to step 2.

24. Estimate the complexity of the follow-
ing pointless algorithm that takes as in-
put a natural number n.

1. Let i = 1, let j = i+1, and let
k = 1.

2. If i = n, output “Pointless!
Totally pointless. No points

made. Worth no points. Not
even a dot.” Otherwise, con-
tinue.

3. If j = n+1, then go to step 8;
otherwise, continue.

4. If k = j+1, then go to step 7;
otherwise, continue.

5. Output 3+4.
6. Replace k with k+1 and go to

step 2.
7. Replace j with j+1 and go to

step 2.
8. Replace i with i+1 and go to

step 2.

25. Consider the following algorithm with
input list of length n with integer ele-
ments. What does it do? What is its
complexity?

1. Let i = 1, let j = 1, let sum
= 0, and let lesser = {}.

2. Replace sum with sum+ listi.
3. If i < n, replace i with i + 1

and go to the previous step;
otherwise, continue.

4. Let ave = sum
n .

5. If list j < ave, append list j to
lesser; otherwise, continue.

6. If j < n, replace j with j + 1
and go to the previous step;
otherwise, output lesser.

26. Consider the following algorithm with
input list of length n with integer ele-
ments. What does it do? What is its
complexity?

1. Let i= 1, let j = 2, let diff= 0,
let imax = 0, and let jmax = 0.
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2. If |listi − list j| > diff, replace
imax with i, replace jmax with
j, replace diff with |listi −
list j|, and continue; other-
wise, continue.

3. If j < n, replace j with j + 1
and go to the previous step.

4. If i < n, replace i with i + 1
and go to step 2; otherwise,
output {listimax, listjmax, diff}.

27. Consider the functions r(n) = 236n +
5log(n) and t(n) = n+(log(n))2. Plot
r(n) and appropriate multiples of t(n)
on the same axes, and adjust the x-axis
range so that you can see how they com-
pare. Is r(n) ∈ O(t(n))? Is r(n) ∈
Ω(t(n))? Is r(n) ∈ Θ(t(n))? Explain.

28. Consider the functions r(n) = 99n2n

and t(n) = 3n. Plot r(n) and t(n) on the
same axes, and adjust the x-axis range
so that you can see how they compare.
Is r(n)∈ O(t(n))? Is r(n)∈ Ω(t(n))? Is
r(n) ∈ Θ(t(n))? Explain.

29. Suppose that we wish to compute k(2
m).

We could use Algorithm A:

1. Let i = 1, let p = 2m, and let
pow = k.

2. If i < p, replace pow with
pow · k and continue; other-
wise, output pow.

3. Replace i with i+1 and go to
the previous step.

Or, we could use Algorithm B:

1. Let i = 1 and let pow = k.
2. If i < m+1, replace pow with

pow ·pow and continue; other-
wise, output pow.

3. Replace i with i+1 and go to
the previous step.

Compare the complexity of these two
algorithms.

30. True or false: n logn ∈ Θ(n). Explain,
and if the statement is false, make a cor-
rected statement.

31. True or false:
√

n+ log(n) ∈ O(n). Ex-
plain, and if the statement is false, make
a corrected statement.

32. Consider the problem of deleting a di-
rectory structure—a folder cannot be
deleted until all files it contains have
been deleted. (And a folder may con-
tain other folders!) Write an algorithm
that deletes a directory structure. What
should the input size be? Estimate the
complexity of the algorithm.

33. Consider the problem of copying a
directory structure—files cannot be
copied until the folder that should con-
tain them exists. Write an algorithm that
copies a directory structure from loca-
tion A to location B. What should the
input size be? Estimate the complexity
of the algorithm.

34. Write an algorithm that inputs a list of n
integers and outputs the list element of
greatest value. What is its complexity?

35. Challenge: Consider a list catprice of
pairs {cost, item} of m items in a cat-
alog, no two of which have the same
price, ordered by increasing cost. You
have a $50 gift certificate and know that
you want to buy the special duck-head-
capped fountain pen (in teal, of course),
which costs $d. Write an algorithm that
will determinewhich sets of distinct cat-
alog items you can buy to exactly cash
in your gift certificate. What is its com-
plexity?
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17.11 Instructor Notes
This chapter is intended to develop the idea of complexity classes from scratch, so that
students will understand how the abstraction involved arises and the importance of the
nuances in the definitions. It is placed outside the main text because the topic is more
part of the computer science curriculum than the mathematics curriculum, and because
further study leads into continuous mathematics rather than discrete mathematics. The
prerequisites for this chapter are Chapters 5 and 8. An instructor might choose to place
this chapter after Chapter 10 in order to continue the algorithmic theme introduced there,
or choose to place it at the end of the course.

Before introducing the chapter, have students reread Section 5.2.2 as preparation for
the first class. Some students may also benefit from reviewing Chapter 8, as some exer-
cises require students to find closed forms for simple summations. You may want to start
class with students working in groups on Section 17.2. It’s easy for people to get things
wrong in the initial problems of the Try This!, particularly because students will slightly
miscount the number of increment operations that are taken, or count an if-then as only one
operation instead of two (one for compare and one for the then/else). And not everyone
agrees on the definition of “action”! So check in with students to make sure that everyone
is in the same place after this problem—or at least close enough to the same place for
the purposes of this chapter. It will help to leave 10 minutes at the end of class to give a
summarizing wrap-up that sets their work in context and prefaces the reading.

Students should read Section 17.3 in preparation for the second class day, which can
be devoted to the topic of computing runtime functions. After a short review of the reading,
much of the time can be spent on Section 17.4. These questions are designed to transi-
tion students from counting operations individually through counting them systematically
to approximating Θ. Instructors may want to encourage students in this direction. Prob-
lem 3(c) is especially likely to reveal student confusion over what runtime functions are
measuring—they may be likely to say that their approximation is an overestimate of the
runtime function on the grounds that they are considering worst-case inputs, when that is
in fact part of an accurate runtime function. Instead, the approximation is a Ω.

In preparation for the third class day, students should read Section 17.5. The defini-
tions of big O,Θ, andΩ are often seen as confusing, so a lecture on asymptotic behavior of
runtime functions that includes attention to these definitions is recommended. Section 17.6
is intended for students to practice implementing the ideas of measuring the growth type
of runtime functions and using the asymptotic notations, and it can be used in the class
time remaining after the lecture.



Appendix A

Solutions to Check Yourself Problems

Please do not look at these solutions until after you have sincerely tried to do the problems!

Section 1.3 page 9

1. Gelly Roll pens come in 6 colors of fine point and 11 ofmedium point, 10moonlight
colors, 10 shadow colors, 12 stardust colors, and 14 metallic colors. (Not kidding.)
How many different Gelly Roll pens are there?
By the sum principle, 6+11+10+10+12+14 = 63.

2. When redeeming a prize coupon, you may choose one of six charms and either one
of three carabiners or one of two bracelets. Howmany different prize choices could
you make?
By the product and sum principles, 6 ·3+6 ·2 = 18+12 = 30.

3. Challenge: Invent your own problem that uses both the sum principle and the prod-
uct principle.
Answers will vary.

Section 1.4 page 14

1. Prove that if n is even, then n2 is even.
Because n is even, we may write n = 2k, and n = 2k ⇒ n2 = 4k2 = 2(2k2).

2. Prove that if n is odd, then n2 +5n−3 is also odd.
Because n is odd, we may write n = 2k + 1, and n = 2k + 1 ⇒ n2 + 5n − 3 =
(2k+1)2+5(2k+1)−3 = 4k2+4k+1+10k+5−3 = 2(2k2+2k+5k+3)−3 =
2(2k2 +2k+5k+1)+1 = (odd).

3. Challenge: Invent your own false proposition and accompany it with a counterex-
ample.
Answers will vary.
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Section 1.5 page 19

1. List all the subsets of {egg,duck,goose}. How many are there? Howmany of them
contain egg? … duck? … goose?
There are eight subsets: /0, {egg}, {duck}, {goose}, {egg,goose}, {egg,duck},
{duck,goose}, and {egg,duck,goose}, four of which each contain egg, duck, and
goose, respectively.

2. Consider a standard deck of cards with suits hearts (♡), spades (♠), clubs (♣), and
diamonds (♢), and values 2–10, jack, queen, king, and ace. How many cards must
you deal out before being assured that two will have the same suit? How many
must you deal out before being assured that two will have the same value?
There are four suits, so we need an additional card there, and 5 = 4+1. There are
13 different card values, so we need an additional card there, and 14 = 13+1.

3. Challenge: Invent your own counting question that can be answered using the pi-
geonhole principle.
Answers will vary.

Section 2.2 page 36

1. List the elements of {z ∈ Z | −10 ≤ z < 10}.
{−10,−9,−8,−7,−6,−5,−4,−3,−2,−1,0,1,2,3,4,5,6,7,8,9}.

2. Write the set {2,4,6,8,10} as a set of elements subject to a condition.
{z ∈ 2Z | 2 ≤ z ≤ 10}.

3. What is the cardinality of the set {duck, /0,{duck,egg},{duck,{duck,egg, /0}}}?
It has cardinality 4.

4. Is {3,6,13,67} ⊂ {67,4,53,5,13,6}? No, because 3 ̸∈ {67,4,53,5,13,6}.

5. List the elements of P({−1,5,20}).
{ /0,{−1},{5},{20},{−1,5},{−1,20},{5,20},{−1,5,20}}.

6. Let A = {5,6,7,8,9,23}, B = {6,7,9,456,3.142}, andC = {7,4,8,2.3,π,6}. List
the elements of…

(a) … A∪B. {5,6,7,8,9,23,456,3.142}.
(b) … B∩C. {6,7}.
(c) … A\C. {5,9,23}.

7. Let D = {6.53,42,1,hat} and F = {0,−2}. List the elements of…

(a) … D×F .
{(6.53,0),(42,0),(1,0),(hat,0),(6.53,−2),(42,−2),(1,−2),(hat,−2)}.
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Figure A.1. A visual representation of the
set {1,2,3}×{4,5}.

Figure A.2. A Venn diagram that repre-
sents {1,2,3,4,5,6}∩{4,5,6,7,8,9}.

(b) … F ×D.
{(0,6.53),(−2,6.53),(0,42),(−2,42),(0,1),(−2,1),(0,hat),(−2,hat)}.

(c) … D×D.
{(6.53,6.53),(6.53,42),(6.53,1),(6.53,hat),(42,6.53),(42,42),(42,1),
(42,hat),(1,6.53),(1,42),(1,1),(1,hat),(hat,6.53),(hat,42),(hat,1),
(hat,hat)}.

(d) … /0×F . /0.

8. Draw a visual representation of the set {1,2,3}×{4,5}. See Figure A.1.

9. Make a Venn diagram that represents {1,2,3,4,5,6}∩{4,5,6,7,8,9}.
See Figure A.2.

10. Challenge:

(a) Invent three sets of your own.
(b) Find a different way to write each of the sets (for example, list the elements,

or describe what the elements have in common using set notation).
(c) Make a Venn diagram showing the relationships between your three sets.

Answers will vary.

Section 2.3 page 46

1. Let P represent the statement Ximena is pretty, Q represent Ximena is quizzical, and
R represent Ximena is a rugby player. Write (P∨Q)∧R as an English sentence.
Ximena is pretty or quizzical, and Ximena is a rugby player.
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2. WriteMiyuki does not like kumquats, but ze likes pickles or daikon in logic notation.
¬K ∧ (P∨D).

3. Rewrite every cat drinks beer as an implication.
If there is a cat, then the cat drinks beer.

4. Challenge: Come up with two examples of mathematical statements and two ex-
amples of mathematical non-statements.
Answers will vary, but here is an example of a mathematical statement (7 = 5−14,
which is false) and a mathematical non-statement (12).

5. Using truth tables, verify that the converse of a statement is not logically equivalent
to the original statement. (Suggestion: make the columns P, Q, P ⇒ Q, andQ ⇒ P,
and compare the last two columns.)

P Q P ⇒ Q Q ⇒ P
T T T T
T F F T
F T T F
F F T T

The last two columns are different, so the converse of a statement and the original
statement are not logically equivalent.

6. Write the contrapositive of the statement if the maple tree is orange, then the scis-
sors are closed.
If the scissors are open, then the maple tree is not orange.

7. Using truth tables, verify that the statement if I am at the combination Pizza Hut
and Taco Bell, then I am at the Pizza Hut is always true.

P T P∧T P∧T ⇒ T
T T T T
T F F T
F T F T
F F F T

The last column has all true values, so the statement P is always true.

8. Negate the statement there exists an even number n such that n < 10.
¬(∃ even n such that n < 10) becomes ∀ even n, n ≥ 10.
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Section 2.5 page 49

1. Prove that if n2 is odd, then n is odd. (Suggestion: try proving the contrapositive.)
Use the contrapositive; suppose n is even. Then n = 2k, and n2 = (2k)2 = 2(2k2),
which is even.

2. Prove that if there are ten ducks paddling in four ponds, then some pond must con-
tain at least three paddling ducks. (Suggestion: try contradiction.)
Suppose not. Then no pond contains more than two ducks. The total number of
ducks in four ponds is no more than eight.

3. Challenge: Develop your own statement that can be proved by contradiction.
Answers will vary.

Section 3.2 page 71

1. Here are some gipos that have domain N. For each gipo, determine whether it is a
function, whether the target space is also N, and whether it is one-to-one.

(a) f (n) = n
3 +1.

It is a function; note that a = b ⇒ a
3 = b

3 ⇒ a
3 + 1 = b

3 + 1 ⇒ f (a) = f (b).
The target is not N because 1 7→ 4

3 ; it is one-to-one.
(b) f (n) = n. It is trivially a one-to-one function with target N.
(c) f (n) = n−1.

It is a one-to-one function with targetW. Note that a = b ⇔ a−1 = b−1 ⇔
f (a) = f (b).

(d) f (n) = n2 −1.
It is a one-to-one function (because there are no negative inputs) with target
W. Note that a = b ⇔ a2 = b2 ⇔ a2 −1 = b2 −1 ⇔ f (a) = f (b).

2. Here are some functions that have domainZ and target spaceW. For each function,
determine whether it is one-to-one or onto.

(a) f (k) = 0.
It is not onto, as 1 ∈ W has nothing mapping to it. It is not one-to-one as
1,−6 both map to 0. The range is 0.

(b) f (k) = | ⌊ k
2⌋ |. (The notation ⌊x⌋ is known as the floor function, as it returns

the integer equal to or just less than the input. Thus, ⌊ k
2⌋ returns

k
2 if k is even

and k−1
2 if k is odd.) (Oh, and there is a matching ceiling function, which

returns the integer equal to or just greater than the input.)
It is not one-to-one, as 1 and 0 both map to 0.
Here is a proof that it is onto: given w ∈W, consider 2w ∈Z. Then, f (2w) =
| ⌊ 2w

2 ⌋ |= | ⌊w⌋ |= | w |= w.
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(c) f (k) = k2 +2.
This function is not one-to-one as −4,4 both map to 18. It is not onto as
nothing maps to 0 ∈W.

For those functions that are not onto, what is the range? Are any of the functions
bijections?
The range of f (k) = 0 is 0.
The range of f (k) = k2 +2 is {2,3,6,11,27, . . .}= {w ∈W | w = k2 +2,k ∈W}.
None is a bijection.

3. Challenge: Write out proofs for Problems 1 and 2: that is, prove that the relevant
gipos are well defined, one-to-one, and onto, and for those that are not, give coun-
terexamples.
Proofs are given in the solutions to the previous problems.

Section 3.5 page 79

1. Find the degree sequences of the graphs in Figure 3.5.
They are (3,3,3,3,3,3,3,3) and (0,1,1,1,2,3,4).

2. Look through the graphs pictured so far; identify one that is simple and one that is
not simple.
All are simple except for the left-hand graph in Figure 3.3 and the right-hand graph
in Figure 3.5.

3. For each graph in Figures 3.3 and 3.5, decide whether or not the graph is connected.
Is any of the graphs a tree? A forest?
Connected? Yes, yes, yes, yes, no. Yes, the middle graph of Figure 3.3 is a tree and
therefore also a forest.

4. Find the longest possible path in the middle graph of Figure 3.3 and in the left-hand
graph of Figure 3.5.
Length 4; length 7.

5. What is the largest cycle in any graph shown in Figures 3.3 and 3.5? How about
the smallest?
The longest are a cycle of length 7 in the left graph of Figure 3.3 and a cycle of
length 8 in the left graph of Figure 3.5. The smallest cycle is of length 1, as there’s
a loop.

6. There is at least one bipartite graph pictured in Section 3.3. Identify one; is it
complete?
It is the left-hand graph in Figure 3.5; no, it is not complete.
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Figure A.3. Graphs K7,C8, and P10.

7. Draw K7,C8, and P10. See Figure A.3.

8. Draw two 2-regular graphs on ten vertices, one of which is connected and one of
which has two components.
Multiple answers are possible; one is given in Figure A.4.

9. What is the length of a smallest cycle in the Petersen graph? 5.

10. Draw a bipartite graph with nine vertices. See Figure A.5.

Section 3.6 page 82

1. Pick a graph from Figures 3.3 and 3.5 and draw it so that it looks different but is,
in fact, the same graph.
Answers will vary.

2. List all nonisomorphic subgraphs ofC4.
Here they are: one vertex, two vertices, three vertices, four vertices, one edge, one
edge and a vertex, one edge and two vertices, two edges, P3, P3 and a vertex, P4.

Figure A.4. Two 2-regular graphs on ten vertices, one of
which is connected (right) and one of which has two compo-
nents (left).

Figure A.5. A bipartite
graph with nine vertices.
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Figure A.6. P2 ∪C3. Figure A.7. K5 \e.

3. Label the vertices of the graphs in Figure 3.8 and define a function between them
that shows the graphs are isomorphic.
Number the vertices across the top of the left-hand graph as 1,2,3,4 and across the
bottom of the left-hand graph as 5,6,7,8; similarly, letter the vertices clockwise
around the right-hand graph (starting at the top teal vertex) as a,b,c,d,e, f and
across the middle of the right-hand graph as g,h. Then the map 1 7→ f ,2 7→ h,3 7→
d,4 7→ b,5 7→ e,6 7→ c,7 7→ g,8 7→ a is a one-to-one and onto function. You can
check edge by edge that edges of the left-hand graph correspond to those of the
right-hand graph; for example, {1,5} is mapped to the edge {e, f}.

Section 3.7 page 86

1. Draw P2 ∪C3. See Figure A.6.

2. What are K5 \v, K5 \e, and K5? (Note that the symmetry of K5 means that it doesn’t
matter which vertex is chosen to be v or which edge is chosen to be e.)
K5 \ v is K4, K5 \ e is shown in Figure A.7, and K5 is five vertices with no edges.

3. Choose one of the graphs pictured in this chapter (other than the one in Figure 3.19)
and encode it using vertex/edge lists, as an adjacency matrix, and using vertex/ad-
jacency lists.
Answers will vary.

Section 3.9 page 89

1. What is R(2,2)?
It’s 2 because starting with two vertices, there will be aK2 in whichever color moves
first.

2. Given three particular numbers k,m,N, what are the two ways you could show that
R(k,m) ̸= N?
We could exhibit a KN with no monochromatic Kk and no monochromatic Km; this
would show R(k,m) > N. Or we could show that R(k,m) < N by proving that for
some M < N, either a monochromatic Kk or a monochromatic Km is forced.
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Section 4.2 page 111

1. If the statement you want to prove is made in terms of n, should your inductive step
be done using n or using k (or some other variable)?
It should use k; if n is used, nothing is proven because the inductive hypothesis
restricts n to be less than or equal to k.

2. Prove by induction that the path graph Pn has n−1 edges.
For a base case, note that P2 has one edge. Suppose that for n ≤ k, Pn has n− 1
edges, and consider Pk+1. Remove one of the leaves to get Pk, which has k − 1
edges. Replacing the leaf, we get one more edge, so Pk+1 has k edges. That’s it!

3. Write 2!+4!+6!+8!+10! in summation notation. (Knowing what 2!, 4!, 6!, etc.
means is not necessary for completing this problem.)

2!+4!+6!+8!+10! =
5

∑
j=1

(2 j)!.

4. Write
6

∑
j=0

3 j−1
2

out in full.
6

∑
j=0

3 j−1
2

=
−1
2

+1+
5
2
+4+

11
2

+7+
17
2
.

5. How is ∑5
j=1 j2 − j related to ∑4

j=1 j2 − j? Try writing ∑5
j=1 j2 − j in terms of

∑4
j=1 j2 − j.

5

∑
j=1

j2 − j =
4

∑
j=1

j2 − j+(52 −5).

More generally, how is ∑5
j=1 q( j) related to ∑4

j=1 q( j)?
5

∑
j=1

q( j) =
4

∑
j=1

q( j)+q(5).

And even more generally, how is ∑k+1
j=1 q( j) related to ∑k

j=1 q( j)?
k+1

∑
j=1

q( j) =
k

∑
j=1

q( j)+q(k+1).

Section 4.4 page 114

1. Use direct proof to show that 2n ≤ 2n+2 +5.
Because 1 < 4, we multiply both sides by 2n and get 2n ≤ 2n+2; then, 0 < 5, so we
can add 5 to the right-hand side of the previous inequality to obtain 2n ≤ 2n+2 +5.

2. Show, by induction, that a polygon formed by n arbitrarily chosen points on a circle
has exactly n edges.
Three points form a triangle, which has exactly three edges. Assume that for n ≤ k,
a polygon formed by n arbitrarily chosen points on a circle has exactly n edges.
Consider k+1 points on a circle chosen arbitrarily; cover one of them and consider
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the polygon formed by the remaining k points. It has k edges by the inductive
hypothesis. The remaining point forms a triangle with the two points on either
side of it on the circle. One edge of that triangle coincides with a side of the k-
sided polygon, and the other two coincide with uncounted sides of the (k + 1)-
sided polygon. So the number of edges of the (k+1)-sided polygon is k+2−1 or
k+3−2 (depending on how you count the coincided edge) = k+1.

Section 4.5 page 116

1. Go through the inducktive step of the proof for the case n = 5 ducks to see how the
subsets of ducks interact.
Take five ducks and set one in the pond, leaving four ducks. By the inducktive
hypothesis, these four ducks are grey. Now set one grey duck in the pond, leaving
three grey ducks, and take the wetter uncolored duck and set it with those three grey
ducks. Now there are four ducks, which are all grey by the inducktive hypothesis.
Return the slightly wet grey duck to the yard to obtain five grey ducks.

2. Rewrite this proof for the statement all owls are teal, noting that whereas ducks
swim about, owls fly and perch in trees.
We just rewrite the induction step. Consider a set of k+1 owls. Choose one arbi-
trarily and perch it in a tree behind the barn. The remaining k owls must all be teal.
Perch one of these k teal owls in a different tree, leaving k−1 teal owls, and hoot
for the uncolored owl perched in a tree behind the barn. When it returns, you see it
is teal because it is part of a set of k− 1+ 1 = k owls that are therefore teal (after
all, k− 1 of them are teal and all are the same color). Now call back the lone teal
owl to have k teal owls. Thus, all owls are teal.

3. Do you believe that all ducks are grey? Many students claim that they have seen
white ducks, but Section 4.5 proves that all ducks are grey. (A “white” duck is
very pale grey.) Remember, a correct proof compels assent—so either you believe
a correct proof or you believe that the given proof is problematic. Try to find an
error in the proof, or justify completely that all ducks are grey.
Do not try looking this up (e.g., on the internet). That would spoil your fun! In-
stead, think through the details of the proof. Does the base case make sense? Is
the inducktive hypothesis correctly stated? How does the inducktive step hold up
under scrutiny?
See the text of Section 4.7.

Section 4.7 page 117

1. Prove that 3 j2 < 2 j3. Be sure to use a base case of j = 1.
Ha! Setting j = 1 creates a false statement. But j = 2 is a lovely base case
that produces 12 < 16. So assume that for 2 ≤ j ≤ k, 3 j2 < 2 j3. Now consider
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3(k+1)2 = 3k2 +6k+3; by the inductive hypothesis, this is< 2k3 +6k+3. Now,
because 1< 2k2, we have 3< 6k2 < 6k2+2 and so 3(k+1)2 < 2k3+6k+6k2+2=
2(k+1)3. Thus, we have proven the revised statement that when j ≥ 2,3 j2 < 2 j3.

Section 5.2 page 136

1. Try performing the 3n+1 algorithm given in Example 5.2.12 for n= 3, n= 4, n= 7,
n= 8, and n= 13. Howmany iterations are required for each of these numbers? Do
any of the sequences generated appear within any of the others (and if so, which)?
3: 10,5,16,8,4,2,1 (7 iterations).
4: 2,1 (2 iterations).
7: 22,11,34,17,52,26,13,40,20,10,5,16,8,4,2,1 (16 iterations).
8: 4,2,1 (3 iterations).
13: 40,20,10,5,16,8,4,2,1 (9 iterations).
The sequence for 4 appears within the sequence for 8, which appears within the
sequence for 3, which appears within the sequence for 13, which appears within
the sequence for 7.

2. Translate the instruction replace t with t/2 while t is even into plain English.
Start with t and keep dividing by two until you obtain an odd number.

3. What does this list of instructions do? Comment on whether it forms an algorithm,
and if so, whether it terminates and/or is correct.

1. Let n = 2.
2. Replace n with n+4.
3. If n is even, go to step 2; otherwise, continue.
4. Output n.

The instructions are an algorithm that does not terminate; it counts indefinitely by
4s, starting with 2.

Section 5.3 page 142

1. True or false:

(a) 2 ≡ 10 (mod 12).
False. The remainder when 2 is divided by 12 is 2; the remainder when 10 is
divided by 12 is 10.

(b) 2 ≡−10 (mod 12). True. −10+12 = 2.

(c) 22 ≡ 10 (mod 12). True. 10+12 = 22.
(d) −2 ≡ 10 (mod 12). True. −2+12 = 10.

2. What is the set [2] if we are working modulo 3? It is {. . . ,−4,−1,2,5,8,11, . . .}.
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3. Show that = is an equivalence relation.
We check: a = a so we have reflexivity; if a = b then b = a as well, so we have
symmetry; and a = b and b = c implies a = c, so we have transitivity.

4. Is {1,2},{2,3},{3,4},{4,5,6} a partition of {1,2,3,4,5,6}?
No, because {1,2}∩{2,3}= {2} ̸= /0.

5. Create a partition of {1,4,2,7,9,14,89,246}.
Answers will vary, but one is {1,246},{4,2,7,9},{14,89}.

6. Challenge: We know that = has the property that if a = b, then ac = bc; Theo-
rem 5.3.3 says that this property also holds for≡ (mod n). Think of another prop-
erty that holds for = in ordinary arithmetic, and test to see whether that property
holds for ≡ (mod n).
Answers will vary; some properties are represented in the exercises; others may be
quite unprovable at this level.

Section 5.4 page 148

1. Encrypt the message lemon drops using a Caesar cipher. mfnpo espqt.

2. Decrypt the message pvaanzba ohaf using ROT13. cinnamon buns.

3. Encrypt the message quilt blocks using a shift cipher with shift 7. xbpsa isvjrz.

4. Decrypt the message bdpja lxxtrnb, which was encrypted using a shift of 9.
sugar cookies.

5. Encrypt the message lions tigers and bears oh my using a Vigenère cipher and key
word zoo.
kwcmg hhusqg omr pdofr cv lm.

6. Decrypt the message wwrfw aiw wowl, which was encrypted with a standard Vi-
genère cipher using key word ears.
swans are soft.

Section 6.2 page 178

1. Write the solutions to the questions that begin this section in choice notation.(5
1

)
+ 2
(5

2

)
+
(5

3

)
= 5+ 20+ 10 = 35, then just

(5
3

)
= 10, then

(4
1

)
+ 2
(4

2

)
+
(4

3

)
=

4+12+4 = 20 and
(4

3

)
= 4.

2. Compute
(4

2

)
using the basic choice notation identity (and a little bit of exhaustive

listing).(4
2

)
=
(3

1

)
+
(3

2

)
;
(3

1

)
= 3 because the possibilities are 1,2,3, and

(3
2

)
= 3 because

the possibilities are (1,2),(1,3),(2,3).
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3. Compute
(5

2

)
using the basic choice notation identity and the previous problem.(5

2

)
=
(4

1

)
+
(4

2

)
;
(4

1

)
= 4 because the possibilities are 1,2,3,4, and

(4
2

)
= 6 by the

previous problem.

Section 6.4 page 181

1. Quickly compute
(8

3

)
. By Pascal’s triangle, 56.

2. Quickly compute
(7

5

)
. By Pascal’s triangle, 21.

3. How many ways are there to choose two ducks out of a raft of nine ducks?

There are
(9

2

)
or 36 ways.

4. How many ways are there for two of the author’s three cats to sit on her bed?

There are
(3

2

)
or three ways.

5. Invent a question to which the answer is
(13

4

)
.

Answers will vary. One could be, “How many ways are there to choose 4 pillows
from a pile of 13 pillows?”

Section 6.5 page 186

1. You receive a shipment of 36 legs for stools to go with the stock of mass-manu-
factured stool seats you already have. How many stools can you complete?

Twelve three-legged stools, or nine four-legged stools.

2. Suppose wewanted to place all nine different numbers onto a Sudoku board without
reusing rows or columns—how many ways would there be to do it?

There are (9!)2 = 131,681,894,400 ways.

3. On the other hand, what if we wanted to place nine 4s onto a Sudoku board without
reusing rows or columns? (Again, we will ignore the fact that on a Sudoku board,
a player also cannot have two of the same number appear in the same 3×3 block.)
How many different ways would there be to make that placement?

There are (9!)2

9! = 9! = 362,880 different ways.

4. How many orderings are there of a,b,c,d,e, f ,g,h, i, j,k, l,m,n,o, p?

There are 16 letters, so 16! = 20,922,789,888,000.



572 A. Solutions to Check Yourself Problems

Section 6.7 page 189

1. Find the coefficient of x5y5 in (x+ y)10.
(10

5

)
= 252.

2. Find the coefficient of the monomial containing c3 in (5b2 −4c)4.(4
3

)
· (−4)3 ·5 =−44 ·5 =−256 ·5 =−1,280.

3. Compute, by hand, a numerical value for
(36

32

)
.

36!
32!(36−32)!

=
36 ·35 ·34 ·33

4!
= 3 ·35 ·17 ·33 = 58,905.

4. Challenge: Create a binomial (x+ y)n (with n greater than one) with neither x nor
y a constant, such that when expanded it will have a constant term.
Answers will vary; (x+ 1

x )
2 is one possibility.

Section 6.8 page 191

1. Let m ≤ n. What might
(n

3

)( n
m−3

)
be counting?

Answers will vary, but here’s one: the number of ways to choose three items from
a pile of n items and then choose m−3 items from a different pile of n items.

2. What might
(n

6

)(6
k

)
be counting?

Answers will vary, but here’s one: the number of ways to first choose six items
from n items and then pick k of those six items.

3. What might
(n

k

)
2k be counting?

Answers will vary, but here’s one: the number of ways to first choose k items from
n items and then color each of those items teal or purple.

4. Challenge: Create a situation similar to the lemon-and-chrysanthemum-drops sit-
uation, and use this to write down a new binomial identity.
Answers will vary. One possibility is to have n lemon drops and 2n chrysanthemum
drops and to grab m drops total:

n

∑
k=0

(
2n
k

)(
n

m− k

)
=

(
3n
m

)
for m ≤ n.

Section 7.2 page 213

1. Howmany ways are there to give four snacks to six puppies, with no more than one
snack going to each puppy?
How many ways are there to place four unlabeled balls into six labeled boxes, with
at most one ball per box?
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2. How many ways are there to give four snacks to six puppies, with gluttony and
cruelty allowed?
How many ways are there to place four unlabeled balls into six labeled boxes?

3. How many ways are there to deal five ace cards and four queen cards to nine card
players?
This is like asking how many ways there are to line up five aces and four queens, so
it is the same as asking how many ways there are to distribute four unlabeled balls
into six labeled boxes, or five unlabeled balls into five boxes.

4. How many ways are there to feed 12 spinach stems (of different lengths) to four
ducks such that the grey duck gets five spinach stems, the white duck gets five
spinach stems, and the pale-grey and black ducks get one spinach stem each?
How many ways are there to put 12 labeled balls into 4 labeled boxes, with the
boxes getting 5, 5, 1, and 1 balls, respectively?

5. How many ways are there to arrange 5 monster figurines and 12 angel figurines in
a line on a shelf?
This is either …
How many ways are there to distribute 5 unlabeled balls into 13 labeled boxes? or
How many ways are there to distribute 12 unlabeled balls into 6 labeled boxes?

6. How many ways are there to distribute three chocolates (one white, one milk, and
one dark) to four classmates, at most one chocolate per classmate?
The chocolates are distinct, so this is the same as asking how many ways there are
to place three labeled balls in four labeled boxes, at most one ball per box.

7. How many ways are there to put a star sticker (they come in gold, silver, red, green,
and blue) on every student’s paper in your class?
This will depend on how many students are in the class (let’s say n). The students
are the boxes, and each could get any of the five different star stickers, so this is the
same as asking how many ways there are to place one ball with five possible labels
into each of n boxes.

8. How many ways are there to give two different catnip toys to five cats, such that
no cat gets more than one toy?
The catnip toys are distinct, so this is the same as asking how many ways there are
to place two labeled balls in five labeled boxes, at most one ball per box.

Section 7.4 page 225

1. Howmany ways are there to give four snacks to six puppies, with no more than one
snack going to each puppy?
Choose which four of the six puppies will get snacks:

(6
4

)
ways.
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2. How many ways are there to give four snacks to six puppies, with gluttony and
cruelty allowed?

Oh, no, gluttony and cruelty are allowed! Aside from being unhealthy and unfair,
this means we have four star snacks and five bars that divide the snacks into puppy
piles: there are

(4+5
4

)
=
(4+5

5

)
ways to do it.

3. How many ways are there to deal five aces and four queens to nine card players?

We just need to know which players get aces (or which players get queens), so(9
5

)
=
(9

4

)
.

4. How many ways are there to feed 12 spinach stems (of different lengths) to four
ducks such that the grey duck gets five spinach stems, the white duck gets five
spinach stems, and the pale-grey and black ducks get one spinach stem each?

We can do
(12

5

)(12−5
5

)(7−5
1

)
= 33,264.

5. How many ways are there to arrange 5 monster figurines and 12 angel figurines in
a line on a shelf?

This is
(5+12

5

)
= 6,188.

6. How many ways are there to distribute three chocolates (one white, one milk, and
one dark) to four classmates, at most one chocolate per classmate?

The chocolates are distinct, so this is the same as asking how many ways there are
to place three labeled balls in four labeled boxes, at most one ball per box. By the
formula, that gives us 4!

1! = 24.

We could also say, an empty box is a fourth (invisible) kind of chocolate, so one
ball per box and 4!. Or, we choose the three boxes and then take all possibilities for
which balls go in which of those three boxes, so

(4
3

)
3! = 24.

7. How many ways are there to put a star sticker (they come in gold, silver, red, green,
and blue) on every student’s paper in your class?

This will depend on how many students are in the class (let’s say n). The students
are the boxes, and each could get any of the five different star stickers, so this is the
same as asking how many ways there are to place one ball with five possible labels
into each of n boxes. That’s 5n.

8. How many ways are there to give two different catnip toys to five cats, such that
no cat gets more than one toy?

The catnip toys are distinct, so this is the same as asking how many ways there
are to place two labeled balls in five labeled boxes, at most one ball per box. So

5!
(5−2)! = 20.
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Section 7.5 page 229

1. Write out Theorem 7.5.4 for four sets A1,A2,A3,A4.
|A1 ∪A2 ∪A3 ∪A4|= |A1|+ |A2|+ |A3|+ |A4|− |A1 ∩A2|− |A1 ∩A3|− |A1 ∩A4|−
|A2∩A3|−|A2∩A4|−|A3∩A4|+ |A1∩A2∩A3|+ |A1∩A2∩A4|+ |A1∩A3∩A4|+
|A2 ∩A3 ∩A4|− |A1 ∩A2 ∩A3 ∩A4|. Whew!

2. How many permutations of the numbers 0,1,2,3,4 have substrings 03 or 21?
Permutations containing 03: 4!. Permutations containing 21: 4!. Overlap: size 6,
because we can consider arrangements of the three “digits” 03, 21, 4. So, 2 · 4!−
3! = 42 permutations of 0,1,2,3,4 have substrings 03 or 21.

3. How many permutations of the numbers 5,6,7,8,9 have the substrings 59 or 85?
Permutations containing 59: 4!. Permutations containing 85: 4!. Overlap: permu-
tations containing 859, of which there are 3!. So, 2 · 4!− 3! = 42 permutations of
5,6,7,8,9 have the substrings 59 or 85.

4. Challenge: Write and solve your own three-set PIE problem (but not involving
pies).
Answers will vary.

Section 8.2 page 248

1. List the third, sixth, and seventh Fibonacci numbers. 2, 8, 13.

2. Write out the ten Fibonacci numbers after 55.
89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765.

3. Find a formula for the sum of the first n odd-index Fibonacci numbers (F1,F3, etc.).
F2n.

4. Find a formula for the sum of the first n even-index Fibonacci numbers (F2,F4,
etc.).
F2n+1 −1.

Section 8.3 page 252

1. Find a closed form for each of these sequences:

(a) 1,2,3,4,5, . . . . an = n.
(b) 1,2,4,8,16, . . . . an = 2n.
(c) 1,2,6,24,120, . . . . an = n!.
(d) 1,4,9,16,25, . . . . an = n2.
(e) 1,−4,16,−64, . . . . an = (−4)n−1.
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2. Write out the first five terms of each of the sequences defined by these closed-form
formulas:

(a) an = n2 −3n+4. 2,2,4,8,14.
(b) an = n−n2 +5. 5,3,−1,−7,−15.
(c) an = 3Fn −1. 2,2,5,8,14.
(d) an = 3

(n
2

)
. 0,3,9,18,30.

(e) an = 2n −2. 0,2,6,14,30.
(f) an =

(n+2
3

)
. 1,4,10,20,35.

(g) an = (n−2)2. 1,0,1,4,9.

3. Give an example of a sequence that is not an integer sequence.
Answers will vary, but here is one example: 0.5,0.75,1,1.25,1.5, . . . .

4. Find a sequence different from an = 2n that satisfies the recurrence an = 2an−1.
Answers will vary, but one example is 3,6,12,24, . . . defined by an = 3 ·2n.

5. Find the recurrence that defines the sequence 1,3,6,10,15, . . . . an = an−1 +n.

6. Find a description for the sequence 2,3,5,7,11,13, . . . . Can you find a closed form
or a recurrence that defines this sequence?
an is the nth prime. There is neither a closed form nor a recurrence that defines this
sequence.

Section 8.5 page 255

Figure out closed forms for some of these recurrences and check (briefly) by induction
that they’re correct.

1. a0 = 1,an = 3an−1.
Sequence is 1,3,9,27,81, . . . . Closed form is an = 3n.
We will proceed, abbreviatedly, by induction. The base case is covered by prior
calculations. Consider ak+1. By the recurrence, this equals 3ak+1−1 = 3ak. This
falls under the inductive hypothesis, so = 3 ·3k = 3k+1 as desired.

2. a1 = 1,an =−2an−1.
Sequence is 1,−2,4,−8,16,−32, . . . . Closed form is an = (−2)n−1.
We will proceed, abbreviatedly, by induction. The base case is covered by prior
calculations. Consider ak+1. By the recurrence, this equals −2ak+1−1 = −2ak.
This falls under the inductive hypothesis, so = (−2) · (−2)k−1 = (−2)k as desired.
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3. a0 = 1,an = 2an−1 −1.
Sequence is 1,1,1,1, . . . . Closed form is an = 1.
We will proceed, abbreviatedly, by induction. The base case is covered by prior
calculations. Consider ak+1. By the recurrence, this equals 2ak+1−1 −1 = 2ak −1.
This falls under the inductive hypothesis, so = 2 ·1−1 = 1 as desired.

4. a1 = 0,a2 = 1,an = an−1an−2.
Sequence is 0,1,0,0,0,0, . . . . Closed form is an = 0 for n > 2.
We will proceed, abbreviatedly, by induction. The base case is covered by prior
calculations. Consider ak+1. By the recurrence, this equals ak+1−1ak+1−2 = akak−1.
This falls under the inductive hypothesis, so = 0 ·0 = 0 as desired.

5. a1 = a2 = 1,an = an−1an−2.
Sequence is 1,1,1,1,1, . . . . Closed form is an = 1.
We will proceed, abbreviatedly, by induction. The base case is covered by prior
calculations. Consider ak+1. By the recurrence, this equals ak+1−1ak+1−2 = akak−1.
This falls under the inductive hypothesis, so = 1 ·1 = 1 as desired.

Section 8.6 page 258

1. Can a closed form for the recurrence a0 = 2,an = 3an−1 − 7 be found using the
techniques of this section? Why or why not?
No, because the coefficient of an−1 is not 1.

2. Can a closed form for the recurrence a0 = 22,an = an−1+9n9−12n7+n6−43n−7
be found using the techniques of this section? Why or why not?
Yes, because the recurrence has the form an = an−1 + p9(n).

3. Can a closed form for the recurrence a0 = 2,an = an−1 +3n−7 be found using the
techniques of this section? Why or why not?
No, because the added function is exponential, not polynomial.

4. Can a closed form for the recurrence a0 = 2,a1 = 22,an = an−1 + an−2 − 22 be
found using the techniques of this section? Why or why not?
No, because there are lower recursive terms in addition to an−1.

5. Try to use kth differences to find a closed form for the recurrence a0 = 1,an = 2an−1.
What happens?
All first, second, …, kth differences produce the original sequence.

6. Try to use kth differences to find a closed form for the recurrence a0 = 0,an =
an−1 +(n+1)(−1)n+1. What happens?
Sequence is 0,2,−1,3,−2,4,−3, . . . . First differences are 2,−3,4,−5,6,−7, . . . .
Second differences are −5,7,−9,11,−13, . . . .
Third differences are 12,−16,20,−24, . . . . They get larger and larger!
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7. Find a closed form for a0 = 8,an = an−1−4 and check that your formula is correct.
Sequence is 8,4,0,−4,−8, . . . . First differences are −4,−4,−4,−4, . . . .
Therefore, the closed form is an = 8−4n.
Abbreviated inductive proof: The first five terms of the sequence form base cases.
We consider ak+1 = ak −4 = 8−4k−4 = 8−4(k+1) as desired.

8. Find a closed form for a0 = 3,an = an−1+2 and check that your formula is correct.
Sequence is 3,5,7,9,11, . . . . First differences are 2,2,2,2, . . . .
Therefore, the closed form is an = 3+2n.
Abbreviated inductive proof: The first five terms of the sequence form base cases.
We consider ak+1 = ak +2 = 3+2k+2 = 3+2(k+1) as desired.

9. Challenge: Create your own recurrence for which a closed form can be found using
kth differences, and find that closed form.
Answers will vary.

Section 8.8 page 265

1. Which parts of the definition of a linear homogeneous recurrence relation with con-
stant coefficients do each of these recurrences violate?

(a) an = nan−3 +6. This has a nonconstant coefficient and is not homogeneous.
(b) an = an−1an−43 +23n. This is not linear and is not homogeneous.
(c) an = 5n2an−3 − (−1)nan−6. This has variable coefficients.

2. Find the characteristic equation for…

(a) … an = 4an−1. x = 4.
(b) … an = an−1 −3an−2. x2 = x−3.
(c) … an = 2an−2. x2 = 2.

3. Determine a0 for each of these recurrences.

(a) a1 = 3,an = 4an−1. 3 = a1 = 4a0, so a0 =
3
4 .

(b) a1 = a2 = 1,an = an−1 −3an−2. a2 = a1 −3a0 or 1 = 1−3a0, so a0 = 0.
(c) a1 = 1,a2 = 2,an = 2an−2. 2 = a2 = 2a0, so a0 = 1.

4. Determine the characteristic equation for an = 2an−1. x = 2.
What are its roots? It has one root, r1 = 2.
Using this information and the initial condition a1 = 42, determine a closed-form
formula.
an = q12n. So 42 = q1 ·2 or q1 = 21, so an = 21(2n).
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5. For each of the following recurrences, decide whether one could use (i) kth differ-
ences, (ii) the characteristic equation, or (iii) neither in order to find a closed form
for the recurrence.

(a) an = 2an−1 +2.
Neither, because this isn’t homogeneous and doesn’t have a coefficient of 1
on the an−1 term.

(b) an = an−1 +2an−2 +3an−3 +4an−4. The characteristic equation.
(c) an = 3an−3 +3n.

Neither, because this isn’t homogeneous and doesn’t fit the kth differences
form.

(d) an = an−1 −2n2. kth differences.

Section 9.3 page 282

1. Prove by induction that pn = pn−1 +n, p0 = 1, p1 = 2 has closed form n2

2 + n
2 +1.

Base cases have been done empirically. Consider pn+1 = pn + n+ 1 and use the
inductive hypothesis to see this = n2

2 + n
2 +1+n+1 = n2+n+2+2n+2

2 = n2+3n+4
2 =

n2+2n+1+n+1+2
2 = (n+1)2

2 + n+1
2 +1 as desired.

2. Howmany regions of the plane result from four lines passing through a point? What
if n lines pass through the point?
Eight, and 2n.

3. How many regions of the plane result from three lines passing through a point and
a fourth line intersecting the others pairwise?
Six from the first three lines plus four from the additional pairwise intersections,
for a total of ten.

4. Draw two parallel lines and then two additional lines that intersect one of the parallel
lines at a point. Make two nudges to place these four lines in general position.
See Figure A.8.

Figure A.8. Nudging lines to place them in general position.



580 A. Solutions to Check Yourself Problems

Section 9.5 page 289

1. Show that
(n

2

)
+n+1 = n2

2 + n
2 +1 =

(n+1
2

)
+1.(n

2

)
= n!

2!(n−2)! =
n(n−1)

2 . Thus,
(n

2

)
+n+1 = n(n−1)

2 + 2n
2 + 2

2 = n2−n+2n+2
2 = n2

2 +

n
2 +1 = n(n+1)

2 +1 =
(n+1

2

)
+1.

2. For what sequence is yn the sequence of first differences? List the first five terms
of that sequence.
yn is also hn,3. It should be the sequence of first differences of hn,4. And the first
five terms should be 1,2,4,8,16,31.

3. What are the first seven terms of hn,6?
1,2,4,8,16,32,64 because six mutually perpendicular cuts can be inserted into a
six-dimensional hyperbeet.

Section 10.2 page 311

1. Draw all trees on five vertices. See Figure A.9.

2. What must be true about the degree sequence of a tree?
It must begin with at least two 1s.

3. Suppose a graph G has 364 vertices and 365 edges. Can it be a tree?
No. It has two more edges than a tree should have.

4. Suppose a graph G has 28 vertices and 27 edges. Must it be a tree?
Not necessarily. It might be nonconnected and have cycles.

5. Suppose a connected graph G with 432,894,789 vertices has no cycles. How many
edges might it have?
It must have 432,894,788 edges because it is a tree.

6. Draw a tree that has exactly two leaves. Consider a path graph.

7. Draw a tree that has exactly three leaves. See Figure A.10.

Figure A.9. All trees on five vertices.
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Figure A.10. A tree that has exactly three leaves.

Section 10.4 page 324

1. An unweighted graph could be considered an edge-weighted graph with all edges
of the same weight (perhaps 1). What happens if you run Prim’s algorithm on it?
You get the exact same result as the start-small algorithm on unweighted graphs.

2. What happens if you run one of the spanning tree algorithms for unweighted graphs
on an edge-weighted graph?
You get a spanning tree, but generally not a minimum-weight one.

3. If an edge-weighted graph has several edges of the same weight, there will be more
than one way to order the edges while still having them in increasing order of
weight. What difference do these orderings make to Kruskal’s algorithm?
You just get a different minimum-weight spanning tree from a different ordering.
Sometimes. (Sometimes you get the same minimum-weight spanning tree.)

4. Prim’s algorithm does not specify an edge of G with which to start. What would
happen if you ran Prim’s algorithm twice, but starting with different edges?
You’d probably get different minimum-weight spanning trees.

5. In Example 10.4.3, would the same spanning tree have resulted if the labels were
switched on edges e4 and e6?
Nope. We would have picked e5 instead of the edge to its left.

6. In Example 10.4.4, at what stage could one have made a choice of edge that would
have resulted in a different spanning graph?
Any time after the first three edges were chosen, one could have picked the leftmost
weight-2 edge.

Section 10.5 page 330

1. Suppose that a binary decision tree for set membership is labeled consistently (i.e.,
“left” indicates an element is in the set and “right” indicates an element is not in the
set). What subset will be assigned to the leftmost leaf? … the rightmost leaf?
The entire set; the empty set.
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baa

babaaaa

ab

baa

babaab

aaa

Figure A.11. Two binary search trees for the micro-dictionary aaa,ab,baa,baba.

2. Consider a language with only two letters (a and b), and a binary decision tree that
encodes dictionary ordering for short words (no more than five letters long) in this
language. What is the practical meaning indicated by the tree being incomplete?
Not all sequences of letters are words in the language.

3. In Example 10.5.3, what principle allows us to conclude that two nodes must rep-
resent the same person?
The pigeonhole principle!

4. Placing baa at the root, draw a binary search tree for the micro-dictionary aaa,ab,
baa,baba.

Figure A.11 shows two possibilities.

Section 10.7 page 333

1. What is the relationship between the number of edges in a matching and the number
of vertices in that matching?
There are twice as many vertices as edges.

2. Is it possible for a graph with an odd number of vertices to have a matching? Yes.

3. Is it possible for a graph with an odd number of vertices to have a perfect matching?
No. Not all vertices can be included.

Section 10.8 page 335

1. We claimed that the column-position list (3,2,5,6,2,7,1,8) had two coins on the
same diagonal. Which two and why?
There are coins in column 1, row 3 and in column 2, row 2; the slope is 1 and so they
are on the same diagonal. There are also coins in column 3, row 5 and in column
4, row 6; the slope is −1 and so they also are on the same diagonal.

2. Why is this approach called backtracking?
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Because we trace a path through the tree of possible solutions, and when we find an
invalid configuration, we backtrack along that path until we have a different choice
to make.

Section 11.3 page 350

1. Go to http://planarity.net; enjoy. Answers will vary. ⌣̈

Section 11.5 page 354

1. Verify Euler’s formula for K4. (Be sure to draw K4 without edges crossing.)
4−6+4 = 2.

2. Draw K3. Count the number of vertices, edges, and faces. How many edges must
you remove to obtain a spanning tree? Do so. Count the number of vertices, edges,
and faces of the spanning tree. Verify Euler’s formula for K3 and for the spanning
tree you obtained.
See Figure A.12 and note that we have three vertices, three edges and two faces;
then, three vertices, two edges, and one face; 3−3+2 = 2 and 3−2+1 = 2.

3. Verify Euler’s formula forW6, the wheel with five spokes. 6−10+6 = 2.

4. Explain why every planar drawing of a graph has the same number of faces.
The number of vertices is constant across drawings, as is the number of edges. And,
|F(G)|= 2−|V (G)|+ |E(G)|, so it is constant.

Section 11.6 page 357

1. Why is the constraint |V (G)| ≥ 3 necessary in Theorem 11.6.1?
If there are only two vertices, then 3|V (G)|−6 = 0, but we do have a planar graph
with one edge and two vertices. Similarly, the null graph has more than −3 edges.

2. Draw a nonsimple graph that violates Theorem 11.6.6.
Answers will vary, but see Figure A.13 for one example.

Figure A.12. K3 and a spanning tree of K3. Figure A.13. A nonsimple graph that
violates Theorem 11.6.6.

http://planarity.net
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Figure A.14. A graph with a non-facial 3-cycle highlighted.

3. Theorem 11.6.3 requires that G have no 3-cycles. This requirement could be re-
placed with the constraint that G be drawn with no faces of size 3. Why is this a
weaker constraint?
All faces of size 3 are 3-cycles, but there can be 3-cycles that are not faces. See
Figure A.14 for an example.

Section 12.3 page 377

1. Does the graph in Figure 12.3 have an Euler traversal? … an Euler circuit?
Yes; no. It has exactly two odd vertices (of degree 3).

2. Does K5 have an Euler traversal? … an Euler circuit?
Yes; yes. It has five vertices, each of degree 4.

3. Does K6 have an Euler traversal? … an Euler circuit?
No; no. It has six vertices, each of degree 5.

4. Which cycle graphs have Euler traversals? … Euler circuits?
All of them have Euler circuits!

5. Challenge: Draw three graphs with the same number of vertices, that differ from
each other by at most two edges, and where one graph has an Euler circuit, one has
only an Euler traversal, and one has no Euler traversal.
Answers will vary, but one way to construct this triple is to make a graph with all
even degrees, then delete an edge to get a second graph, and delete another edge to
get a third graph.

Section 12.4 page 381

1. In the third subdiagram of Figure 12.5, why are there two labels (4,d)?
There are two edges of length 2 emanating from d, and d is tagged with weight-
from-s 2 as well.
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2. In the first list of distances computed by Dijkstra’s algorithm, how many tags are
present?
As many as there are edges emanating from s—in other words, the degree of s.

3. In the third subdiagram of Figure 12.5, there are two labels (5, f ). Neither is placed
on the graph in the following step… so why is only one of them left in the list in
the fourth subdiagram?
One of the (5, f )s pointed to b, which got tagged with (3,d) and was no longer
eligible to receive the (5, f ) tag.

Section 13.3 page 415

1. What is χ(Kn)? It is n, as every vertex is adjacent to every other.

2. Find a graph with χ(G) = 1. A single vertex—with no edges!

3. Find the chromatic number and index of a path of length 5.
The chromatic number (index) is 2; color the first vertex (edge) red, the second
vertex (edge) blue, and continue along the path alternating colors.

4. Find the chromatic number and index of a cycle of length 423.
The chromatic number (index) is 3 by Example 13.3.4.

5. Challenge: Create a graph G for which χ(G)> χ ′(G). K4 will do it.

Section 13.5 page 422

1. What is χ ′(K578349)? 578,349.

2. What is the shortest length a cycle can be in a bipartite graph?
4. (A 2-cycle is a double edge, which is not generally permitted in a bipartite graph.)

3. What is χ ′(K42,87)? 87.

4. What proof method(s) is/are used in the proof of Theorem 13.5.2?
Direct proof, twice (once for each conditional).

5. Let G be planar. When is the upper bound on χ(G) better from planarity than from
∆(G)+1?
When ∆(G)≥ 6.

6. Use Theorem 13.5.4 to determine χ ′(Km,n). It gives m or n, whichever is larger.

7. Challenge: Create a graph (other than the one in Example 13.5.6) onwhich a greedy
algorithm produces a truly awful vertex coloring.
Answers will vary, but one such graph is Kn,n with all the vertical edges (of a stan-
dard drawing) removed and with the vertices addressed in a zig-zag order.
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Section 14.2 page 448

1. What is the probability of rolling a 12 using a fair 20-sided die? 1
20 .

2. List the elements of the state space for flipping three fair coins at once.
{head1/head2/head3,head1/tail2/head3, tail1/head2/head3, tail1/tail2/head3,
head1/head2/tail3,head1/tail2/tail3, tail1/head2/tail3, tail1/tail2/tail3}.

3. List the elements of the state space for rolling an eight-sided die.
SD8 = {roll 1,roll 2,roll 3,roll 4,roll 5,roll 6,roll 7,roll 8}.

4. Determine the probability for each state in Example 14.2.5. What is the probability
of getting one head and one tail? To what subset of the state space does this event
correspond?
Each state has probability 1

4 . Because any two states are exclusive, P(head1/tail2 or
tail1/head2) = P(head1/tail2)+P(tail1/head2) =

1
2 . The subset is {head1/tail2,

tail1/head2}.

5. Challenge: Invent your own situation and list the elements of the corresponding
state space.
Answers will vary.

Section 14.3 page 454

1. Compute the expected value for each of the random variables defined in Exam-
ple 14.3.4, assuming that you always see all four ducks when you go visiting. Com-
pute the probability distribution, use the definition of expected value, and then use
Lemma 14.3.10.
Becausewe always see all four ducks, P(W=4)=1 andP(W ̸=4)=0. The probabil-
ity distribution forW is (values,probabilities) = {(0,0),(1,0),(2,0),(3,0),(4,1)}.
Then E[W ] = 0 ·0+1 ·0+2 ·0+3 ·0+4 ·1 = 4 white ducks.
Using the lemma, we note that for a subset A of the ducks,W (A) = |A|, and we have
only one state: we see all four of the ducks. This state occurs with probability 1.
Thus, E[W ] = 4 ·1 = 4 white ducks.
P(WH= 1) = 1 and P(WH ̸= 1) = 0, producing the probability distribution (values,
probabilities) = {(0,0),(1,1)}, so E[WH] = 0 ·0+1 ·1 = 1 all-white duck.
Using the Lemma, we note thatWH(A) = 1 because we see all of the ducks; seeing
all four ducks is our only possible state, with probability 1, so E[WH] = 1 · 1 =
1 all-white duck.

2. Define a random variable B describing the number of black ducks you see when
you visit the ducks from Example 14.3.4.
B(d) = 1 if d is black and 0 otherwise.
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(a) What is N? N = {0,1} because only one duck has any black on it.
(b) Give P(B = n) for each n ∈ N (the probability distribution of B).

There are 16 different subsets of ducks. The black duck appears in 8 of these
subsets. So P(B = 1) = 8

16 and P(B = 0) = 8
16 .

(c) Compute E[B]. E[B] = 0 · 8
16

+1 · 8
16

=
1
2
.

3. Define a random variable G, the number of grey ducks you see when you visit the
ducks from Example 14.3.4, and compute its expected value.
Let G : S → {0,1,2} be defined by G(d) = 1 if the duck is grey and G(d) = 0 if
the duck is not grey. (G(E) = 2 if we have an event in which we see two grey
ducks.) We find that four subsets of ducks contain no grey ducks, eight subsets
contain a single grey duck, and four subsets contain two grey ducks. Thus, the
probability distribution of G is (values,probabilities) = {(0, 1

4 ),(1,
1
2 ),(2,

1
4 )} and

E[G] = 0 · 1
4 +1 · 1

2 +2 · 1
4 = 1 grey duck.

4. Challenge: For the state space you created in the Check Yourself Challenge in
Section 14.2, define at least one random variable.
Answers will vary.

Section 14.5 page 462

1. In Example 14.5.4, what if only 1
10 of the friends own cats?

Indeed, just replace 2
3 with

1
10 to get

3
4 ·

1
10 +

1
5 ·

9
10 = 51

200 and
3
4 ·

1
10

51
200

= 5
17 .

2. Are the eventsW = 0 and Z = 0 (as defined above) independent?
No, because their probabilities don’t equal their conditional probabilities.

3. Consider the random variable Y as defined at the start of the section and a new
random variable

V (roll k) =
{

1 k ≤ 3,
0 k > 3.

Are the events Y = 1 and V = 1 independent?
Compute P(Y = 1)P(V = 1) = 1

2 ·
1
2 = 1

4 . Compare this to P(Y = 1 and V = 1); note
that the only stateY = 1 and V = 1 have in common is k = 2, so P(Y = 1 and V = 1)
= 1

6 ̸= 1
4 and so these events are not independent.

4. Examine Problem 3 of Section 14.4, and redo the problem using your new knowl-
edge of independence and PIE.
The relevant questions are, “What is P((flipping heads) or (rolling an even num-
ber))?” and “What is P((flipping heads) and (rolling an even number))?”
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By PIE, P((flipping heads) or (rolling an even number)) = P(flipping heads) +
P(rolling an even number)− P((flipping heads) and (rolling an even number)).
And, we know that flipping a coin is independent of rolling a die. Therefore,
P((flipping heads) and (rolling an even number)) = P(flipping heads)·P(rolling an
even number) = 1

2 ·
1
2 = 1

4 . This in turn tells us that P((flipping heads) or (rolling
an even number)) = 1

2 +
1
2 −

1
4 = 3

4 as we computed before.

5. State a version of PIE for the probabilities of three events.
Let’s call the events A, B, and C. Then P(A or B or C) = P(A)+P(B)+P(C)−
P(A and B)−P(A and C)−P(B and C)+P(A and B and C).

Section 14.7 page 468

1. Suppose five fair coins are flipped and consider the random variable H, the number
of heads revealed. Rewrite H as a sum of simpler random variables.
H = H1 +H2 +H3 +H4 +H5, where H j = 1 if the jth coin lands head-side-up and
H j = 0 otherwise.

2. For the situation of rolling an eight-sided die, consider the random variables E = 1
when the result is even and E = 0 otherwise, and G = 1 if the result is greater than
or equal to 5 and G = 0 if the result is four or less. Compute (E +G)(roll 2),
(E +G)(roll 3), (E +G)(roll 5), and (E +G)(roll 6).
(E +G)(roll 2) = E(roll 2)+G(roll 2) = 1+0 = 1,(E +G)(roll 3) = E(roll 3)+
G(roll 3) = 0+ 0 = 0, (E +G)(roll 5) = E(roll 5)+G(roll 5) = 0+ 1 = 1, and
(E +G)(roll 6) = E(roll 6)+G(roll 6) = 1+1 = 2.

3. Consider a deck of four cards, labeled 1△, 1⃝, 2△, and 2⃝. Draw a card, put
it back, shuffle the deck, and draw a second card. Compute the expected value of
Z = X +Y , where X is the numerical value of the first card and Y is the numerical
value of the second card.
ByTheorem 14.7.1, we just need to computeE[Z] =E[X ]+E[Y ]. E[X ] = 1P(X = 1)
+ 2P(X = 2) = 1 · 1

2 + 2 · 1
2 = 3

2 . Likewise, E[Y ] = 1P(Y = 1) + 2P(Y = 2) =
1 · 1

2 +2 · 1
2 = 3

2 . Thus, E[Z] = 3.

Section 15.5 page 505

1. What is the cardinality of the sample drawers (in the Storage facility)?
The drawers are numbered as N, so the cardinality is ℵ0.

2. What is the cardinality of the stools in the coffee area?
The stools are lined up and could be numbered as Z, so the cardinality is ℵ0.
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Section 16.3 page 515

1. Use the Euclidean algorithm to compute GCD(8,12).
12 (mod 8) is 4, so we have GCD(8,12) = GCD(4,8) = 4.

2. Use the Euclidean algorithm to compute GCD(1233,1234).
1234 (mod 1233) is 1, so we have GCD(1233,1234) = GCD(1,1233) = 1.

3. Find integers k, ℓ such that GCD(8,12) = k8+ ℓ12.
4 = 1 ·4+0 ·8 so using the inductive thing in the proof we have k = 0−1 ·1 and
ℓ= 1. Oh, wait, 4 = (−1) ·8+1 ·12 by inspection anyway.

4. Find integers k, ℓ such that GCD(1233,1234) = k1233+ ℓ1234.
Let’s do k =−1 and ℓ= 1 again. Yup.

5. Challenge: Pick two natural numbers a,b where a does not divide b, and find their
GCD using the Euclidean algorithm. Then find integers k, ℓ such that GCD(a,b) =
ka+ ℓb.
Answers will vary.

Section 16.5 page 520

1. Compute φ(210).
210 = 2 ·3 ·5 ·7 so φ(210) = φ(2)φ(3)φ(5)φ(7) = 1 ·2 ·4 ·6 = 48.

2. Compute φ(3200).
3200 = 27 ·52, so φ(3200) = φ(27)φ(52) = (27 −26)(52 −51) = 64 ·20 = 1280.

3. Find w such that w · 2 ≡ 1 (mod 5) and use this to find all x that satisfy 2x ≡ 3
(mod 5).
3 · 2 = 6 ≡ 1 (mod 5); the equivalence becomes x ≡ 3 · 3 ≡ 4 (mod 5), so the
desired set is all x ≡ 4 (mod 5).

4. Find w such that w · 3 ≡ 1 (mod 4) and use this to find all x that satisfy 3x ≡ 2
(mod 4).
3 ·3 = 9 = 8+1 ≡ 1 (mod 4); the equivalence becomes x ≡ 3 ·2 ≡ 2 (mod 4), so
the desired set is all x ≡ 2 (mod 4).

5. Find w such that w · 3 ≡ 1 (mod 7) and use this to find all x that satisfy 3x ≡ 6
(mod 7).
5 · 3 = 15 ≡ 1 (mod 7); the equivalence becomes x ≡ 5 · 6 ≡ 2 (mod 7), so the
desired set is all x ≡ 2 (mod 7).
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6. Find w such that w · 5 ≡ 1 (mod 7) and use this to find all x that satisfy 5x ≡ 3
(mod 7).

3 · 5 = 15 ≡ 1 (mod 7); the equivalence becomes x ≡ 3 · 3 ≡ 2 (mod 7), so the
desired set is all x ≡ 2 (mod 7).

7. Re-solve the first two congruence pairs from Section 16.4 using the techniques
given in Section 16.5.2:

(a) Which numbers x are both x ≡ 0 (mod 2) and x ≡ 0 (mod 3)?
x = 2 j ≡ 0 (mod 3), and 2 ·2 ≡ 1 (mod 3), so j ≡ 0 (mod 3). Then j = 3q
and x = 6q. Therefore x ≡ 0 (mod 6).

(b) Which numbers x are both x ≡ 1 (mod 2) and x ≡ 2 (mod 3)?
We have that x = 2 j+1 and plugging in gives 2 j+1 ≡ 2 (mod 3) or 2 j ≡ 1
(mod 3), which we solved earlier to give us j ≡ 2 (mod 3). Now j = 3q+2
so x = 2(3q+2)+1 = 5+6q and x ≡ 5 (mod 6).

8. Challenge: Invent your own congruence equation kx ≡ t (mod a) and find its so-
lutions.

Answers will vary.

9. Challenge: Invent your own pair of congruence equations x ≡ s (mod a) and x ≡ t
(mod b) (but make sure that a and b are relatively prime!) and find their common
solutions.

Answers will vary.

Section 16.7 page 523

1. Pick three pairs of adjacent fractions inFFL5, and verify that for each pair, bc−ad =
1.

Answerswill vary, but here are four: for 1
4 ,

2
7 , 4 ·2−1 ·7= 1; for 4

7 ,
3
5 , 7 ·3−4 ·5= 1;

for 5
8 ,

2
3 , 8 ·2−5 ·3 = 1; for 3

4 ,
4
5 , 4 ·4−3 ·5 = 1.

2. Show that not every mediant a+c
b+d must be in lowest terms by finding two fractions

a
b and

c
d that are not adjacent in an FFL and whose mediant is not in lowest terms.

Consider 2
3 and

2
5 , whose mediant is

4
8 .

3. In which FFL does 1
9 appear? FFL9, as it’s the second fraction there.

4. In which FFL does 2
11 appear? FFL7, where it’s the fourth fraction.
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Section 17.3 page 541

1. Consider the counting algorithm with input a natural number n.

1. Let k = 1.
2. Output k.
3. Replace k with k+1.
4. If k = n, output k, and stop; otherwise, return to step 2.

How many operations does this algorithm take to execute?
Each of the first three steps involves a single operation. The fourth step also in-
volves a single operation if k < n and two operations when k = n (we don’t count
“stop” or “return” as operations). Step 1 happens once, for 1 operation; steps 2 and
3 happen once for each value of k ∈ {1, . . . ,n−1}, for 2(n−1) operations; step 4
happens once for each value of k ∈ {2, . . . ,n} for (n− 2)+ 2 operations. In total,
there are 1+2n−2+n−2+2 = 3n−1 operations.

2. Consider the laundry sorting algorithm that works on a pile of n pieces of clothing:

1. Pick up a piece of clothing.
2. If the item is a dark color, toss it to the right. If the item is a pale color,

toss it to the left. If the item is a bright color, toss it behind you.
3. If there is more clothing in the pile, go to step 1; otherwise, be done.

What are best- and worst-case inputs for this algorithm? How many operations
does it take to execute?
All inputs are the same (in the best/worst sense) for this algorithm because it treats
them identically. The algorithm takes 3 operations per piece of clothing (the three
listed above!) so the runtime is 3n.

3. Write a runtime function for the algorithm given in Example 5.2.7.
There are only two steps, the second of which contains at most four operations in
the worst case (the marble is neither red nor green), so the function is… 4.

4. Write a runtime function for the algorithm given in Problem 10 of Section 5.11.
There are only 3 operations before it terminates! r(n) = 3.

Section 17.5 page 550

1. We claimed that as long as n is larger than 10, we have r1(n) < r5(n) < r2(n) <
r4(n)< r3(n). Verify that this is not true if n = 10.

r1(10) = 54, r5(10) = 50, r2(10) = 72, r4(10) = 200, r3(10) = 102.4.
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2. How small can n be and still have r5(n)< r2(n)< r4(n)< r3(n) be true?
n ≥ 12. However, for n = 11 we have r5(n)< r2(n)< r3(n)≤ r4(n)!

3. True or false (and explain): n3 ∈ O(n2).
False, because for any c > 0, when n > c we have n3 > cn2.

4. True or false (and explain): 3n ∈ O(3n−1).
True, because 3n = 3 ·3n−1, so we may choose c = 4 and have 3n < 4 ·3n−1 for all
natural n.

5. True or false (and explain): r(n) ∈ O(r(n)).
True, because for c = 1 and n > 1, r(n)≤ r(n).



Appendix B

Solutions to Bonus Check-Yourself
Problems

Chapter 1, Section 1.8 page 21

1. A Timbuk2 custom messenger bag comes in four sizes, has 46 options for the left-
panel and center-panel and right-panel fabrics, 18 different binding options, 27 logo
colors, 11 liner colors, three options for pocket style, two handednesses, and 47
different options for the strap pad. (Really, not kidding—these numbers came from
the Timbuk2 website in October 2014.) How many different custom messenger
bags could one order?
This is a total mix-and-match situation, so the product principle applies and we
multiply together all the numbers of options. There are 4 ·46 ·46 ·46 ·18 ·27 ·11 ·
3 ·2 ·47 = 586,964,112,768 ways to order a Timbuk2 custom messenger bag.

2. Prove that the product of any three odd numbers is also odd.
We first name the three odd numbers n1,n2,n3. Because they are odd, each can be
written in the form 2k+1—but the k is likely different for each, so we have n1 =
2k1 + 1, n2 = 2k2 + 1, and n3 = 2k3 + 1. The product of the numbers is n1n2n3 =
(2k1 +1)(2k2 +1)(2k3 +1). Expanding this expression, we get 8n1n2n3 +4n1n2 +
4n1n3+4n2n3+2n1+2n2+2n3+1, which can be rewritten as 2(n1n2n3+2n1n2+
2n1n3 + 2n2n3 + n1 + n2 + n3) + 1 = 2q + 1 for some integer q. Therefore, the
product of any three odd numbers is also odd.

3. Takeo, a paper store in Tokyo, has walls lined with coded drawers. Each code
designates a type of paper. One such drawer is 2Q08. If the first entry has to be 1,
2, or 3 (there are only three walls with drawers), the second is a letter, and the last
two are numbers, then how many drawers could Takeo have?
We think of filling slots: the first slot has 3 possibilities, the second 26, and the
third and fourth slots have 10 possibilities each. The product principle says there
are 3 · 26 · 10 · 10 = 7,800 paper drawers. (It turns out that at Takeo there are no
drawers that end in 00, so this is certainly an overestimate.)

593
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4. You want to buy an electric car. The Chevy Volt comes in eight colors (red, brown,
grey, pale blue, two blacks, two whites), offers three kinds of wheels, and has five
kinds of interiors (two cloth, three leather). The Tesla comes in nine colors (black,
two whites, two greys, brown, red, green, blue), and gives a choice of three roof
styles (one is glass), four wheel styles, four seat colors, four dashboard prints, and
three door-trim colors. There are three versions of the Nissan Leaf (S, SV, SL),
each of which comes in seven colors (two whites, two greys, red, blue, black).
How many different choices of car do you have?
For the Chevy Volt, there are 8 ·3 ·5 = 120 ways to specify the car because we can
have any combination of exterior, interior, and wheels. The Tesla has a ridiculous
number of options: 9 · 3 · 4 · 4 · 4 · 3 = 5,184. In contrast, the 3 · 7 = 21 types of
Nissan Leaf seem understated. Still, we add these three numbers together because
we’re only buying one car: 120+5,184+21 = 5,325 choices of electric car.

5. Prove, or find a counterexample: the sum of two consecutive perfect cubes is odd.
Here are two proofs:
(1) First, observe that a number and its cube have the same parity. We do two cases:
An even number may be written as 2k, and (2k)3 = 8k3 = 2(4k3) = 2q, which is
even. An odd number may be written as 2k+1, and (2k+1)3=8k3+12k2+6k+1
= 2(4k3 +6k2 +3k)+1 = 2r+1, which is odd.
Thus, consecutive perfect cubes have the property that one is odd and the other
even. The sum of an odd number and an even number is odd, so the sum of two
consecutive perfect cubes is odd.
(2) Either the consecutive perfect cubes are (2k)3 and (2k+ 1)3, or (2k− 1)3 and
(2k)3, depending onwhich of the numbers is even. In the first case, we have (2k)3+
(2k + 1)3 = 8k3 + 8k3 + 12k2 + 6k + 1 = 2(4k3 + 4k3 + 6k2 + 3k) + 1, which is
odd. In the second case, we have (2k−1)3 +(2k)3 = 8k3 −12k2 +6k−1+8k3 =
2(4k3 + 4k3 − 6k2 + 3k − 1)+ 2− 1 = 2(4k3 + 4k3 − 6k2 + 3k − 1)+ 1, which is
odd.

6. How many four-digit phone extensions have no 0s and begin with 3?
There is only one choice for the first digit (3) and 9 choices for each of the other
three digits, so there are 1 ·9 ·9 ·9 = 729 such extensions.

7. In 2016, there were 3,945,875 live births in the US. (Source: http://www.cdc.gov/
nchs/fastats/births.htm.) Did there have to be two of these births within the same
second?
2016 was a leap year, so it had 366 days. Each of those days had 24 hours, each
of which had 60 minutes, each of which had 60 seconds. Thus there were 366 ·24 ·
60 ·60 = 31,622,400 seconds in 2016. There are more seconds than live births, so
each birth could happen in a different second.

http://www.cdc.gov/nchs/fastats/births.htm
http://www.cdc.gov/nchs/fastats/births.htm
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8. How many length-8 binary strings have no 0s in the fourth place?
27, because the fourth place must be a 1 and there are two choices for each of the
other 7 places.

9. You receive a choose-your-own-adventure certificate for a jewelry store! The deal
is that you get to pick one of eight precious gems, and either a ring or a bracelet to
put it in. There are three possible ring styles and six possible bracelet styles.

(a) How many possible prizes are there? 72.
(b) How did you answer the previous question? If you used the product principle

first, re-answer the question using the sum principle first. (And if you used the
sum principle first, re-answer the problem using the product principle first.)
Product principle then sum principle: 8 ·3+8 ·6.
Sum principle then product principle: 8 · (3+6).

(c) On closer look, you realize that neither the ruby nor the emerald would look
good on the bracelet. How many prizes are still possible?
Here, you have to use the product principle first: 8 ·3+6 ·6 = 60.

10. I have a lot of stuff in my stuff-holder: six ball-point pens, a silver star wand,
three teal signature pens, a bronze-yellow colored pencil, five liquid ink pens, three
mechanical pencils, a highlighter, six permanent markers, seven gel pens, a Hello
Kitty lollipop, two markers, three wooden pencils, a 3-inch-long pen, a calligraphy
marker, a pen shaped like a cat, and a pair of left-handed office scissors.
How many writing utensils do I have in the stuff-holder?
Good grief, that seems like a lot. But I just need to add up the numbers of writing
utensils: 6+3+1+5+3+1+6+7+2+3+1+1+1 = 40. Seriously?

Chapter 2, Section 2.11 page 59

1. On an October 2014 visit to the CVS Minute Clinic, the check-in kiosk asked the
question, “If you have a copay for today’s visit, will you be paying for it with a
credit or debit card?”

(a) Identify the formal logic quantifiers and structure in this question.
If ∃ (copay for today’s procedure), then is the statement I will pay with a
credit or debit card true? So, we have an ∃ and a⇒.

(b) The visit in question was for a flu vaccine, which does not require a copay.
The kiosk gave options of Yes andNo. How should the visitor have answered?
Because we have an implication of the form P ⇒ Q with P false, we know
from the truth table that P ⇒ Q is true. But this doesn’t say anything about
whether we should answer Yes or No, because the question is about payment
methods, not the truth of the statement. It shouldn’t matter which answer is
selected.
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(c) Can you find a simpler way to word the question clearly? (In other words,
what should the kiosk question ask?)
A better question might be, “If there are charges for today’s visit, will you be
paying for them with a credit or debit card?” That way it’s not dependent on
what is already known (there is no copay), but what might happen (additional
services rendered, for example).

2. There was a recent campaign slogan heard on the radio: Not just Blue Cross Blue
Shield of Massachusetts, but Blue Cross Blue Shield … of you. Why is this mathe-
matically nonsensical for residents of Massachusetts?
You are in Massachusetts, so {you} ⊂ Massachusetts and therefore you were al-
ready included in the described set. The slogan implies that Massachusetts (
{you}∪Massachusetts.

3. Consider the Venn diagram in Figure 2.14.

(a) Express the shaded area as a set using unions, intersections, and/or comple-
ments of the sets Q, R, and S.
(Q\ (R∪S))∪ (S\ (Q∪R)) is one way of expressing that area.

(b) Let Q = {k ∈Z | |k| ≤ 10}, R = even numbers, and S = {n ∈N | n is a perfect
square}. List the elements of the shaded area.
The elements are {−9,−7,−5,−3,−1,3,5,7,25,49,81, . . .}

4. Let A = multiples of 4, and B = multiples of 6. Write A∩B as a set in the form
{ sets | conditions }. {k ∈ Z | k is a multiple of 12}.

5. Negate the statement ∀ n ∈ Z,∃ y ∈ 2N such that n = y ·k for some k ∈ Z. Is either
the statement or its negation true?
¬(∀ n ∈ Z,∃ y ∈ 2N such that n = y · k for some k ∈ Z).
∃ n ∈ Z,¬(∃ y ∈ 2N such that n = y · k for some k ∈ Z).
∃ n ∈ Z, such that ∀ y ∈ 2N,¬(n = y · k for some k ∈ Z).
∃ n ∈ Z, such that ∀ y ∈ 2N, there is no k ∈ Z such that n = y · k.
The statement is false; a counterexample is 1. The negation is true; consider any
odd number.

6. Prove that k ∈ Z is positive if and only if k3 is positive.
This is a biconditional, so it has two parts:
(⇒) Suppose k ∈ Z is positive. Then k3 is positive because the product of positive
numbers is positive.
(⇐) The simplest way of doing this is a proof by contrapositive, i.e., to prove that
if k3 is positive, then k is positive we’ll show that if k is not positive, then k3 is
not positive. (It’s difficult to be convincing about cube roots in a discrete context.)
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Suppose k ∈ Z is negative. Then k3 is negative because the product of an odd
number of negative numbers is negative. This neglects the non-positive case of
k = 0, but of course 03 = 0 is not positive, so we are done.

7. Make a truth table for ¬(P∧Q)∧ ((P∨Q)∧R). Can you express this statement
(henceforth referred to as aaaaaa!) more simply?

P Q P∨Q R (P∨Q)∧R P∧Q ¬(P∧Q) aaaaaa!
T T T T T T F F
T F T T T F T T
F T T T T F T T
F F F T F F T F
T T T F F T F F
T F T F F F T F
F T T F F F T F
F F F F F F T F

Notice that when R is false, so is the aaaaaa! statement. When R is true, we have
the pattern of P xor Q (and also the pattern of ¬(P ⇔ Q)), so aaaaaa! is equivalent
to (P xor Q)∧R (and also equivalent to ¬(P ⇔ Q)∧R).

8. Let A = {0,1,2} and B = {1,3,5,7}.

(a) List the elements of (A×B)∩ (B×A).
Any element that is in both A×B and B×A must have each component in A
and in B. Because A∩B = {1}, the only element that qualifies is (1,1).

(b) List the elements of (A\B)× (B\A).
A\B = {0,2};B\A = {3,5,7}.
Thus (A\B)× (B\A) = {(0,3),(0,5),(0,7),(2,3),(2,5),(2,7)}.

9. Show that (A×B)∪ (C×B) = (A∪C)×B.
We proceed by double-inclusion.
If x ∈ (A×B)∪ (C×B), then there are two cases: x ∈ A×B or x ∈C×B. In each
case, x ∈ (A∪C)×B. One direction is done.
If x ∈ (A∪C)×B, then x = (x1,x2) and x1 ∈ A or x1 ∈C. If x1 ∈ A, then x ∈ A×B;
if x1 ∈C, then x ∈C×B. Thus, x ∈ (A×B)∪ (C×B). Both directions are done.

10. Show that {2k | k ∈ N}∪{4k+1 | k ∈W}∪{4k+3 | k ∈W}= N.
We proceed by double-inclusion.
First, we show that {2k | k ∈ N}∪{4k+1 | k ∈W}∪{4k+3 | k ∈W} ⊂ N.
Consider x ∈ {2k | k ∈ N}; because k ∈ N, then 2k ∈ N so x ∈ N. Now, let
y ∈ {4k + 1 | k ∈ W}; for any k ̸= 0, k ∈ N so 4k + 1 ∈ N, and if k = 0, then
4k+1 = 1 ∈N. Thus y ∈N. Similarly, we see that for z ∈ {4k+3 | k ∈W}, z ∈N.
Second, we show that {2k | k ∈ N}∪{4k+1 | k ∈W}∪{4k + 3 | k ∈W} ⊃ N.
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Consider n ∈ N. If n is even, then n ∈ {2k | k ∈ N}. Otherwise, divide n by 4; the
remainder must be 1 or 3 (as if it were 0 or 2, n would be even). If the remainder is
1, then n ∈ {4k+1 | k ∈W} and if the remainder is 3, then ℓ ∈ {4k+3 | k ∈W}.
Therefore, n ∈ {2k | k ∈ N}∪{4k+1 | k ∈W}∪{4k+3 | k ∈W}.
We conclude that {2k | k ∈ N}∪{4k+1 | k ∈W}∪{4k+3 | k ∈W}= N.

Chapter 3, Section 3.14 page 95

1. Let S = {s1,s2, . . . ,sn}. How many functions are there with domain Z3 and target
S? Of those functions, how many are one-to-one? How many are onto?
There are n3 functions from Z3 to S. Of those, n · (n− 1) · (n− 2) are one-to-one.
Only if |S| ≤ 3 are any of the functions onto. If |S| = 3, then there are six onto
functions (for the six different ways of assigning the three elements of Z3 to the
three elements of S); if |S| = 2, then there are still six onto functions (two choices
of which element of S is hit by only one element of Z3, and for each of those three
choices of which element ofZ3 goes there); if |S|= 1, then there is exactly one onto
function (send all the elements of Z3 to the only element of S).

2. Draw all connected 3-regular graphs with four vertices.
Find them by careful casework, for example, by doing cases on the number of loops
and the number of multiple edges in the graph. See Figure B.1 for the five graphs.

3. Are the two graphs in Figure 3.27 isomorphic? Justify your response.
Yes, these are isomorphic. Use the map φ(1) = a,φ(2) = b,φ(3) = f ,φ(4) = c,
φ(5) = d,φ(6) = e.Many other isomorphisms are also possible.

4. Is the function f : Z→ Z defined by f (n) = ⌊sin(n)⌋ a one-to-one function? Prove
or disprove.
The range of sin(x) is [−1,1]. Thus, ⌊sin(x)⌋ can only take on the values {−1,0,1}.
To show f (n) is not one-to-one, we just have to find two values of n that both have
0 < sin(n) < 1. Trial and error gives sin(1) ≈ 0.841471,sin(2) ≈ 0.909297, so
f (1) = f (2); yet, 1 ̸= 2 and thus f (n) is not one-to-one.

5. Is it possible to draw a graph with six vertices of degrees 2, 2, 3, 3, 4, and 4? If so,
draw one. If not, explain why not.
See Figure B.2.

Figure B.1. All 3-regular graphs with four vertices.



B. Solutions to Bonus Check-Yourself Problems 599

Figure B.2. I’m a sixy, sixy graph.

6. A finger-finger graph is denoted by Fm,n and has m fingers, from each of which
grows n fingers; see Figure 3.28. Conjecture and prove formulas for the number of
vertices and the number of edges of a finger-finger graph.
A finger-finger graph Fm,n has m edges for primary fingers, and from each primary
finger n edges for secondary fingers. Thus by the sum and product principles, it has
m+mn edges. A finger-finger graph Fm,n has one palm vertex, and one vertex from
each of the m primary fingers, and then a vertex on the end of each secondary
finger; there are n secondary fingers per primary finger, so by the sum and product
principles, it has 1+m+mn vertices.

7. What can you say about the number of vertices of a 3-regular graph?
The number of vertices of a 3-regular graph must be even by the handshake lemma,
as the total degree must be even and 3 is odd.

8. The following statement is true: any cycle Cn with n ≥ k has complement Cn con-
taining a triangle. Determine k and prove the statement.
By trial and error, we find that C3 has no edges, neither C4 nor C5 has triangles,
but C6 contains plenty of triangles. We suspect that k = 6. Now suppose n ≥ 6,
and number the vertices 1,2, . . . ,n. Vertices 1,3,5 are not adjacent in Cn but form
a triangle inCn.

9. Consider the map g : (N×N)→ N defined by g((a,b)) = ab. Is this one-to-one?
Onto? Give proofs.
g is onto because given any n∈N, the element (1,n)∈N×N is such that g((1,n))=
1 ·n = n. However, g is not injective because we have g((1,n)) = n = g((n,1)) but
(1,n) ̸= (n,1).

10. Shown in Figure 3.29 are four infinite graphs in pairs A,B and C,D. One of these
pairs is isomorphic and the other nonisomorphic. Which is which? Justify your
response.
Graphs A and B are nonisomorphic, because A has vertices of degree 2 but B does
not. Graphs C and D are isomorphic. Intuitively, we see that doing a vertical flip
on one of each pair of diamonds will do the trick. We need to give a labeling to
each graph and use this to define an isomorphism between the graphs. Figure B.3
shows such a labeling.
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Figure B.3. Oh, that’s who you are.

Our isomorphism is defined by φ( j) = j, and this is clearly a bijection. To show
formally that it preserves operations, we have to check that the adjacencies match.
In both C and D, we can see the following:

If j = 8k+1 or 8k+5 (k ∈ Z), j is adjacent to j−1, j+1, j+3.
If j = 8k+2 (k ∈ Z), j is adjacent to j−1, j+1, j+4.
If j = 8k+3 or 8k+7 (k ∈ Z), j is adjacent to j−1, j+1, j+2.
If j = 8k+4 (k ∈ Z), j is adjacent to j−3, j−1, j+4.
If j = 8k+6 (k ∈ Z), j is adjacent to j−4, j−1, j+1.
If j = 8k (k ∈ Z), j is adjacent to j−4, j−3, j−1.

Chapter 4, Section 4.11 page 120

1. Prove that ∑n
j=1 3+5 j = 1

2 (11n+5n2).

When n = 1, we have 3+5 = 8 and 1
2 (11+5) = 16

2 = 8. Check.

∑k+1
j=1 3+5 j =∑k

j=1 3+5 j+3+5(k+1). Using the inductive hypothesis,= 1
2 (11k+

5k2)+ 3+ 5(k+ 1) = 1
2 (11k+ 5k2)+ 1

2 (6+ 10(k+ 1)) = 1
2 (11k+ 5k2 + 5+ 1+

10k+10) = 1
2 (11(k+1)+5k2 +10k+5) = 1

2 (11(k+1)+5(k+1)2) as desired.

2. Prove that n4 < 3 ·8n.
(Base case) When n = 1, we have 14 = 1 < 24 = 3 ·81.
(Inductive hypothesis) For n ≤ k, k4 < 3 ·8k.
(Inductive step) (k+ 1)4 = k4 + 4k3 + 6k2 + 4k+ 1. The inductive hypothesis ap-
plies to k4, so we have (k+1)4 < 3 ·8k +4k3 +6k2 +4k+1.
Now, we want to show that 3 · 8k + 4k3 + 6k2 + 4k+ 1 < 3 · 8k+1 = 24 · 8k. If we
can show that 4k3 +6k2 +4k+1 < 21 ·8k, that will do the trick.
We do know that 1≤ k2 and 4k≤ 4k2, so 4k3+6k2+4k+1≤ 4k3+6k2+4k2+k2 =
4k3 +11k2 and 11k2 ≤ 11k3, so 4k3 +11k2 < 4k3 +11k3, and by the first example
in this chapter we know that 15k3 < 15 · (2k)3 = 15 ·23k = 15 ·8k < 21 ·8k.



B. Solutions to Bonus Check-Yourself Problems 601

Therefore 4k3 +6k2 +4k+1 < 21 ·8k, which means (from above) that (k+1)4 <
3 ·8k +4k3 +6k2 +4k+1 < 3 ·8k +21 ·8k = 3 ·8k+1. And we’re done.

3. Show that every convex polygon can be decomposed into triangles.
(Base cases) A triangle is already a triangle. Adding an edge joining opposite cor-
ners of a quadrilateral shows that the quadrilateral is composed of two triangles.
(Inductive hypothesis) Suppose any convex polygon with n ≤ k sides can be de-
composed into triangles.
(Inductive step) Consider a convex polygon with k + 1 sides. Pick a vertex and
travel along the edges of the polygon; skip the next vertex, but pick the one after
that. Join these two vertices with an edge. On one side of the edge is a triangle
made by the edge and the skipped vertex. On the other side of the edge is a convex
polygon with k−1 sides. Therefore, by the inductive hypothesis it can be decom-
posed into triangles. Together with the triangle made by the edge and the skipped
vertex, we have a decomposition of our (k+1)-sided polygon into triangles.

4. Show by induction that Km,n has mn edges.
(Base cases) Let’s do three for good measure: K1,1 has 1 = 1 · 1 edge, K1,2 has
2 = 1 ·2 edges, and K2,2 has 4 = 2 ·2 edges.
(Inductive hypothesis) For m ≤ n and n ≤ k, Km,n has mn edges.
(Inductive step) Consider Km,k+1, wherem ≤ k+1. (We can do this because Km,n =
Kn,m.) If we remove one of the k+1 vertices, we are left with Km,k. If m ≤ k, then
the inductive hypothesis applies and we know Km,k has mk edges. Replacing the
removed vertex, we also restore m edges for a total of mk+m = m(k+ 1) edges
as desired. If m = k+ 1, then Km,k = Kk,k+1 and we may remove one of the k+1
vertices; this leaves us with Kk,k which, by previous argument, has k2 edges. Re-
placing the most recently removed vertex shows that Kk,k+1 has k2 + k= k(k+ 1)
edges and replacing the first-removed vertex shows that Kk+1,k+1 has k(k+ 1) +
(k+1) = (k+1)2 edges, as desired.

5. Prove that ∑n
j=0( j+1)( j−2) = 1

3 (n−3)(n+1)(n+2).

When n = 0, we have 1(−2) =−2 and 1
3 (−3)(1)(2) =−2. Check.

∑k+1
j=0( j + 1)( j − 2) = ∑k

j=0( j + 1)( j − 2)+ (k+ 1+ 1)(k+ 1− 2). Using the in-
ductive hypothesis, = 1

3 (k − 3)(k + 1)(k + 2) + (k + 2)(k − 1) = … algebra …
= 1

3 (k+3)(k+2)(k−2) = 1
3 (k+1−3)(k+1+1)(k+1+2) as desired.

6. Prove (2(n!))2 < 2(n!)2 for sufficiently large values of n.

What are these suf-
ficiently large val-
ues? Let’s do some
experiments:

n (2(n)!)2 2(n!)2

1 4 2
2 16 16
3 144 68,719,476,736

Looks like the
statement holds for
n ≥ 3, and n = 3 is
a base case.
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Suppose that for 3 ≤ n ≤ k, (2(k!))2 < 2(k!)2 . Consider ((2(k+1)!))2 and rewrite it
as (k+1)2(2(k!))2. By the inductive hypothesis, (k+1)2(2(k!))2 < (k+1)22(k!)2 .

Now, 2((k+1)!)2
= 2(k+1)2(k!)2

= 2(k+1)2
2(k!)2 , so it remains to show that (k+1)2 is

less than 2(k+1)2
= 2k2+2k+1 = 2k2

22k2.
Because 2 < k, we know k+ 1 < k+ k = 2k, so (k+ 1)2 < (2k)2 = 4k2. By the
first example in this chapter, we know that k < 2k, so 4k2 < 4 · 2k2k = 4 · 22k and
certainly 2 < 2k2 , so we can conclude that (k+1)2 < 2k2

22k2. And we’re done!

7. Use induction to prove the sum principle for n finite sets.
(Base case) If A1 has a1 elements, then it has… a1 elements. Okay, that doesn’t feel
like we’re saying anything. If |A1| = a1, |A2| = a2, and A1 ∩A2 = /0, then A1 ∪A2
has a1 +a2 elements.
(Inductive hypothesis) Let the finite set Ai have ai elements, and let sets Ai and A j
be disjoint. Then for n ≤ k,

∪n
i=1 Ai has ∑n

i=1 ai elements.
(Inductive step) Consider

∪k+1
i=1 Ai. We may rewrite this as

(∪k
i=1 Ai

)
∪Ak+1. The

inductive hypothesis applies to
∪k

i=1 Ai so we know it has ∑k
i=1 ai elements. And,(∪k

i=1 Ai

)
∪Ak+1 is the union of two sets so the base case applies and we know it

has
(
∑k

i=1 ai
)
+ak+1 elements. That last expression is simply ∑k+1

i=1 ai as desired.

8. Take a piece of paper and fold it—not necessarily in half, but definitely with a single
straight crease somewhere in the paper. Fold the (still folded) paper again. In fact,
fold it n times, wherever you like. Now unfold it completely. Prove by induction
that you can always color the paper with two colors (teal and purple) so that no fold
line has the same color on both sides.
(Base case) The base case is n = 1 fold. There are two regions in the paper, and one
can be colored teal and the other purple.
(Inductive hypothesis) Suppose that for any n ≤ k, a piece of paper folded n times
and unfolded can be colored teal and purple so that no piece of a fold line has the
same color on both sides.
(Inductive step) Consider a piece of paper that has been folded k+1 times. Unfold
it once, and mark the fold line (it’s the (k+1)st) so that when you unfold it all the
way you know which folds belong to that fold line. Unfold the paper completely.
Now, ignore the (k+ 1)st line’s presence—what you have is a piece of paper that
has been folded k times and unfolded. This can be colored teal and purple so that
no piece of a fold line has the same color on both sides.
Examine the (k+1)st fold line. It bisects some regions. Leave the portions of those
regions to one side (the first side) of the fold line alone, and switch the colors of
the portions of regions and whole regions on the other side (the second side) of the
fold line.
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We need to show that there is no piece of a fold line that has the same color on both
sides. There are three kinds of fold line pieces: those on the first side of the (k+1)st
fold line, those on the second side of the (k+1)st fold line, and those that are part
of the (k+1)st fold line. Those on the first side already had different colors; those
on the second side had different colors, both of which switched, so they still have
different colors; and those part of the (k+1)st fold line had the same color but one
has been switched so there are now different colors on the two sides. Thus, we’ve
correctly colored the paper teal and purple.

9. For what values of n is 5n+2 < 6n? Prove it.
By trial and error we note that for n = 17, we have 519 = 19,073,486,328,125 >
16,926,659,444,736 = 617, but for n = 18 we have 520 = 95,367,431,640,625 <
101,559,956,668,416 = 618. (We generally expect that larger bases will produce
larger functions in the long run.)
So we will use a base case of n = 18 and suppose that for 18 ≤ n ≤ k, 5k+2 < 6k.
Consider 5k+3 = 5 · 5k+2. By the inductive hypothesis, we have 5 · 5k+2 < 5 · 6k.
But, we also know 5 < 6 so 5 · 6k < 6 · 6k, and the result is that 5k+3 < 6k+1 as
desired.

10. Prove that any natural number n≥ 2 can be written as the product of prime numbers.
The base case is clear; 2 is the product of 2 (itself), which is prime. Suppose that
any n≤ k can be written as the product of prime numbers, and consider k+1. Either
k+1 is prime, or it is not. If k+1 is prime, then it is the product of one prime (itself).
If k+1 is not prime, then it is the product of (at least) two smaller numbers, each
of which can be written as a product of primes (by the inductive hypothesis). Thus,
the product of those products of prime numbers is also a product of prime numbers,
and we are done.

Chapter 5, Section 5.10 page 157

1. Find the smallest nonnegative integer x that satisfies the equation 3(x+7)≡ 4(9−
x)+1 (mod 5).
That simplifies to 3x+ 21 ≡ 36− 4x+ 1 (mod 5) and then 7x ≡ 1 (mod 5). The
positive multiples of 7 are 7,14,21, . . . and 21 = 7 ·3 ≡ 1 (mod 5), so x = 3.

2. Encrypt this message from a supportive shark using a shift-by-10 cipher: YOU
ARE SUPER GREAT AND FACES ARE HIGH IN PROTEIN
First we convert to numbers: 24,14,20,0,17,4,18,20,15,4,17,6,17,
4,0,19,0,13,3,5,0,2,4,18,0,17,4,7,8,6,7,8,13,15,17,14, 19,4,8,13.
Then we add 10 (mod 26): 8,24,4,10,1,14,2,4,25,14,1,16,1,14,10,3,10,23,
13,15,10,12,14,2,10,1,14,17,18,16,17,18,23, 25,1,24,3,14,18,23.
Then we convert back to letters: iyekbocezobqbokdkxnpkmockborsqrsxzbydosx and
we’re done.
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3. Prove, using only the definition of congruence modulo n, that if a ≡ b (mod n),
then a+ c ≡ b+ c (mod n).
We know from the definition that a − b = kn. Therefore a − b + c − c = kn or
a+ c− (b+ c) = kn so a+ c ≡ b+ c (mod n).

4. While you are distraught over your latest discrete math exam, a passerby shoves a
scrap of paper into your hand that reads xvghdibhvivozz 21. You suspect that this
could be a shift cipher. What does the message say?
First convert to numbers: 23,21,6,7,3,8,1,7,21,8,21,14,25,25.
Then subtract 21 (mod 26) in the hopes that this was the shift:
2,0,11,12,8,13,6,12,0,13,0,19,4,4.
In letters, this is calmingmanatee. How nice to be handed a calming manatee!

5. Here is an algorithm:

1. Get a pot, a cover, a stove, and an egg.
2. Put the egg in a pot.
3. Fill the pot with enough water to cover the egg.
4. Turn a burner to high heat.
5. Set the pot on the burner.
6. Put on a hat.
7. Wait until the water boils.
8. Wait for 3 minutes.
9. Remove the pot from the heat and add a cover.
10. Wait for 10 minutes.
11. Crack the shell of the egg.
12. Drain the water, replace with cold water, and let stand for 3 minutes.
13. Put away the egg.

What are the inputs? What are the outputs? Does the algorithm terminate? What
does the algorithm do? Are there any problems with this algorithm?
Inputs: a pot, a cover, a stove, an egg, and, later, water and a hat.
Outputs: A boiled egg.
Terminate: Yes.
Action: The algorithm boils an egg.
Problems: The hat and water (or a sink) are not listed as inputs. There is an excess
hat. The stove burner doesn’t get turned off.

6. Let a ∼ b exactly when ab2 is even. Is ∼ an equivalence relation?
Let’s check: Is a ∼ a? Yes, a is even if and only if aa2 = a3 is even, and if a3 is
divisible by 2 then so is a.
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If a ∼ b, then is b ∼ a? Yes. If ab2 is even, then so is ab and thus so is ba2.
If a ∼ b and b ∼ c, then is a ∼ c? No. Suppose that b is even but a,c are odd; for
example, let a = 3,b = 4,c = 5. Then 3 ∼ 4 because 3 ·16 = 48 is even, and 4 ∼ 5
because 4 ·25 = 100 is even, but 3 ̸∼ 5 because 3 ·25 = 75 is odd.
Therefore, this ∼ is not an equivalence relation.

7. Write an algorithm that lists the first 10 negative multiples of 9.

1. Set k = 1.
2. Output −9 · k.
3. If k = 10, stop. Otherwise, continue.
4. Replace k with k+1.
5. Go to step 2.

8. Encrypt the foam shark visor is intended only for children using the original Vi-
genère cipher with key word pickles.
The message becomes 19,7,4,5,14,0,12,18,7,0,17,10,21,8,18,14,17,8,18,
8,13,19,4,13,3,4,3,14,13,11,24,5,14,17,2,7,8,11,3,17,4,13. That’s 42 letters.
The key word becomes 15,8,2,10,11,4,18. That’s 7 letters.
How convenient! There are exactly 6 repetitions of the key word in the message.
We add and get 8,15,6,15,25,4,4,7,15,2,1,21,25,0,7,22,19,18,3, 12,5,8,12,
15,13,15,7,6,2,19,0,15,25,21,20,22,16,13, 13,2,8,5, which comes out as
ipg pzee hpcbv zahwt sd mfimpnph gcta pzv uwqnncif when translated to letters.

9. Let ∼ be defined so that a ∼ b exactly when b− a ≥ 2. Is this an equivalence
relation? If so, list the equivalence classes. If not, which of the three properties
(reflexive, symmetric, transitive) does not hold?
a−a = 0 ̸≤ 2, so ∼ is not reflexive.
Suppose a = 2 and b = 16. Then b−a ≥ 2 but a−b ̸≥ 2, so ∼ is not symmetric.
If a ∼ b and b ∼ c then b−a ≥ 2 and c−b ≥ 2 so c ≥ 2+b ≥ 2+2+a and thus
c ≥ a+4 > a+2, so c−a ≥ 2 and ∼ is transitive.

10. Decrypt xx ut e kcyrp nvavximtsfl ixoegwwpbggn using a Vigenère cipher and the
key word pemberley. Is this an original or a standard Vigenère cipher?
In numbers, xx ut e kcyrp nvavximtsfl ixoegwwpbggn is 23,23,20,19,4,10,2,24,
17,15,13,21,0,21,23,8,12,19, 18,5,11,8,23,14,4,6,22,22,15,1,6,6,13, and
pemberley is 15,4,12,1,4,17,11,4,24. That’s 9 characters long, so we subtract
this from the first 9 numbers of the message, and obtain 8,19,8,18,0,19,17,20,19.
In letters, this is it is a trut. (Hm. I wonder what a “trut” is?) In order to determine
whether this is an original or a standard Vigenère cipher, we test both options: we
look at the next 9 numbers of the message, namely 15,13,21,0,21,23,8,12,19,
subtract 15,4,12,1,4,17,11,4,24 to get 0,9,9,25,17,6,23,8,21, which translates
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to ajjzrgxiv, and subtract 8,19,8,18,0,19,17,20,19 to get 7,20,13,8,21,4,17,
18,0, which translates to huniversa. The second makes a lot more sense than the
first, so we will suppose this is an original Vigenère cipher and proceed: Take the
next 9 numbers, 18,5,11,8,23,14,4,6,22 and subtract 7,20,13,8,21,4,17,18,0 to
get 11,11,24,0,2,10,13,14,22, which translates to llyacknow. Only 6 numbers re-
main, 22,15,1,6,6,13, so we subtract 11,11,24,0, 2,10 to get 11,4,3,6,4,3, which
translates to ledged. Our final text is it is a truth universally acknowledged…, the
opening line of a famous novel.

Chapter 6, Section 6.14 page 202

1. Find a combinatorial proof for the identity ∑n
k=0 k

(n
k

)
= n2n−1.

Let’s say we need to make a store display for a bin of n Pretty Rocks. One has to
be “featured,” meaning that it will be put on top of the Pretty Rocks sign.
The left-hand side of the equation says that we pick k of the n Pretty Rocks, for

(n
k

)
ways, and then pick one of those to be featured, for

(k
1

)
= k ways. But we didn’t

determine in advance how many Pretty Rocks we were going to put in the display,
so we need to sum over k because we could have picked any number.
The right-hand side of the equation says we pick a Pretty Rock to be featured (n
choices for this) and then for each other Pretty Rock, we decide whether or not it’s
going to be in the display (2 choices for each of the n−1 remaining Pretty Rocks).
This completes the proof.

2. Show that if n is even and k is odd, then
(n

k

)
is even.

A direct proof might seem like a good idea here, but induction turns out to bewaaay
simpler. Informally, compute a few base cases, and assume that the statement holds
for “numerators” less than n. (If we were being formal, we’d need to add a new
variable because k already means something here.)
Note that

(n
k

)
=
(n−1

k

)
+
(n−1

k−1

)
. This doesn’t help (yet) because n−1 is odd and so

the inductive hypothesis doesn’t apply. So, we need to break it down further. That
expression = (

(n−2
k

)
+
(n−2

k−1

)
) + (

(n−2
k−1

)
+
(n−2

k−2

)
) =

(n−2
k

)
+ 2
(n−2

k−1

)
+
(n−2

k−2

)
. That

does it. The first and third terms are even because n− 2 is even and both k and
k− 2 are odd, so the inductive hypothesis holds; the second term is clearly even
because it’s a multiple of 2. Done!

3. Evaluate
2m

∑
r=0

3r22m−r
(

2m
r

)
. This is the binomial theorem for (3+2)2m = 52m.

4. The four students Ariel, Bingwen, Clarissa, and Dwayne have albums they need to
listen to for a music appreciation class: Duck Rock (by Malcolm McLaren), Duck
Stab (by The Residents), Quack (by Duck Sauce), and This Time (by Galapagos
Duck).

(a) How many ways are there to match the students with the albums? 4!.
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(b) The library has two listening rooms, each of which has two listening stations.
How many ways are there to pair the students in the rooms?
There are

(4
2

)
ways to put two students in one room, and then this determines

who is in the other room.
(c) Suppose the students have to sign up in advance, so they have to specify

which listening station each student is using. Now how many ways are there
for the students to be distributed into the rooms?
There are six ways to assign students to rooms, and for each room there are
two possible matchings of students to listening stations. So 6 ·2 ·2 = 24. Or,
notice that this is just matching each student to one of four listening stations,
so 4! = 24.

5. Give a combinatorial proof that
(n

4

)
= n!

4!(n−4)! =
n(n−1)(n−2)(n−3)

24 .

The left-hand side is the number of ways to choose 4 items from n items. The right-
hand side counts the number of ways to choose one item from n, then one item from
the remaining n−1 items, then one item from the remaining n−2 items, and finally
one item from the remaining n−3 items. If we don’t care about the order in which
these were picked, we need to divide by 4! = 24. But this is the same as the number
of ways of just picking 4 things from n, so we’re done.

6. At the art museum, you are decorating a round spinny top with stickers. However,
this is an anti-creative art museum, so there are only four equally spaced spots on
the spinny top that are designated for receiving stickers, and there are only two
colors of sticker available—gray and grey. How many ways are there to “decorate”
the spinny top? (There are quotation marks because it is hard to envision the spinny
top as actually being decorated….)
Let’s see. For each sticker-spot, we could use grey (e) or gray (a), so there are
24 = 16 possibilities. But the spinny top is round, so some of these are actually
the same (e.g., eaea is the same as aeae). We suspect we can just account for our
overcounting, but it’s not straightforward. We have three cases, (i) all one color:
aaaa, eeee; (ii) one color different: aeee = eaee = eeae = eeea, and another four
patterns all equivalent to eaaa; (iii) two colors each: eaea = aeae, and aaee =
aeea = eeaa = eaae. That’s all 16 accounted for, but only 6 are different, so there
are 6 ways to “decorate” the spinny top.

7. There are 18 students gathering to work on making a campus duck pond. They
need to work in groups of three on various tasks. How many ways are there for the
students to form groups?
We may place the first three students in a group in

(18
3

)
ways. Then we can choose

the next group in
(15

3

)
ways, and so on for a total of

(18
3

)(15
3

)(12
3

)(9
3

)(6
3

)(3
3

)
ways.

However, the order in which we form the groups doesn’t matter, so we need to
divide by 6!. By the way, that final answer is 190,590,400.
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8. Conjecture and prove a binomial identity for ∑n
i=0
( i

5

)
.

We start by generating a few values—oops, this only makes sense for n ≥ 5:

n 5 6 7 8 9
sum 1 7 28 84 210 .

Let’s see. These are all numbers from Pascal’s triangle, so what might they be?
There are lots of 1s, but only a couple of 7s in Pascal’s triangle—they’re

(7
1

)
,
(7

6

)
.

Looking nearby, we see 28 =
(8

2

)
=
(8

6

)
, 84 =

(9
3

)
=
(9

6

)
, and 210 =

(10
4

)
=
(10

6

)
.

We conjecture that ∑n
i=0
( i

5

)
=
(n+1

6

)
.

Proof by induction: Base cases have already been checked, and we assume the
statement holds for n≤ k. Here is the inductive step: ∑k+1

i=0

( i
5

)
=∑k

i=0
( i

5

)
+
(k+1

5

)
=(k+1

6

)
+
(k+1

5

)
=
(k+2

6

)
as desired.

9. Find the coefficient of x4y6 in (5x2 −3y3)4.
First, let a = 5x2 and let b = −3y3. From Pascal’s triangle, we know the coeffi-
cients of (a+b)4 are (1,4,6,4,1). The binomial theorem tells us we have (5x2)4+
4(5x2)3(−3y3)+6(5x2)2(−3y3)2+4(5x2)(−3y3)3+(−3y3)4. Themonomial with
variables x4y6 is 6(5x2)2(−3y3)2, and it has coefficient 6 ·52 · (−3)2 = 1,350.

10. Prove that
(2n

2

)
= 2
(n

2

)
+n2.

We will do a combinatorial proof.
(2n

2

)
is the number of ways of choosing two

books from a shelf with 2n books. On the other hand, we could split the shelf into
two halves of n books each. We could choose two by picking one from each half
(
(n

1

)2
= n2) or by picking both from the same half (

(n
2

)
for each half).

Chapter 7, Section 7.10 page 237

1. Around Halloween, one can find bags of minipacks of SweeTarts. There are three
SweeTarts in each pack, and the available color-flavors are orange, pink, purple,
and blue.

(a) How many different kinds of three-SweeTart minipacks are there?
The three SweeTarts are unlabeled balls, and the four color-flavors are boxes;
a box can get any number of balls (including 0). Thus we have Question D,
which has solution

(4+3−1
3

)
=
(6

3

)
= 20. So 20 different kinds of minipacks.

(b) Actually, if you open a pack reasonably (instead of ripping it completely
apart), you get only one SweeTart out to eat at a time. How many differ-
ent experiences of three-SweeTart minipacks are there? 43.
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2. In a 300-home neighborhood of Batamji, there are four different kinds of trees
(magnolias, cypress, willow, and river birch). Forty homes have just cypress trees;
32 homes have just willow trees; 9 homes have just river birch. Seventy homes have
magnolia and willow; 47 homes havemagnolia and cypress; 40 homes have cypress
and river birch; 61 homes have magnolia and river birch; 44 homes have cypress
and willow; 56 homes have willow and river birch. Twelve homes have magnolias,
cypress, willow, and river birch; 38 homes have magnolias, cypress, and willow;
19 homes have magnolias, willow, and river birch; 28 homes have magnolias, cy-
press, and river birch; 29 homes have cypress, willow, and river birch. How many
homes have just magnolia trees?
This is a little bit tricky because we’re given some numbers of the form | A\ (B∪
C∪D)| (“just cypress”) and others that are |E ∩F | (“willow and river birch”) …
that means we only have to deal with overlaps starting with the paired intersections.
We have 300 = M+40+32+9+[(70+47+40+61+44+56)−(38+19+28+
29)+12] = M+297, so there are 3 homes with only magnolia trees.

3. A hungry ninja is making tacos with the following ingredients: beans, guacamole,
cheese, tomatoes, scallions, salsa, and lettuce. How many ways can the ninja as-
semble tacos for different meals (breakfast, snack, lunch, tea, dinner), the first of
which has three fillings, the next two of which have four fillings, and the final two
of which have five fillings?
This initially looks like Question E because we have labeled ingredients (balls) and
labeled tacos (boxes). However, we need repetition of the 7 ingredients to get 21
fillings! So we proceed by counting the number of ways there are to construct
each taco. For the first taco, we have

(7
3

)
toppings, for the second two we have

(7
4

)
toppings, and for the last two we have

(7
5

)
toppings, for a total of

(7
3

)
·
(7

4

)
·
(7

4

)
·
(7

5

)
·(7

5

)
= 18,907,875 meal possibilities for the ninja’s day.

4. The Edgy Ruck company uses length-10 serial numbers that mix letters (except Y)
and numbers. How many serial numbers are there that have a 7 in the fourth slot
and a consonant in the eighth slot, or have a letter in the fifth slot and a vowel in
the ninth slot?
First, there are 25 letters, 5 of which are vowels and 20 of which are consonants,
and 10 numbers. We will use slots and PIE for this problem.
Serial numbers with a 7 in the fourth slot and a consonant in the eighth slot:35 ·35 ·
35 ·1 ·35 ·35 ·35 ·20 ·35 ·35=45,037,507,812,500.
Serial numbers with a letter in the fifth slot and a vowel in the ninth slot: 35 · 35 ·
35 ·35 ·25 ·35 ·35 ·35 ·5 ·35 = 281,484,423,828,125.
Serial numbers with a 7 in the fourth slot, a letter in the fifth slot, a consonant in
the eighth slot, and a vowel in the ninth slot: 35 ·35 ·35 ·1 ·25 ·35 ·35 ·20 ·5 ·35 =
4,595,664,062,500.
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PIE sayswe have 45,037,507,812,500+281,484,423,828,125−4,595,664,062,500
= 321,926,267,578,125 serial numbers with 7 in the fourth slot and a consonant
in the eighth slot, or have a letter in the fifth slot and a vowel in the ninth slot.

5. All that is left of your Hello Kitty Jelly Belly sampler is the 12 Very Cherry flavored
Jelly Bellies (because you hate that flavor) and you have four friends who volunteer
to eat them for you. How many ways are there to hand out the Jelly Bellies?
Question D, 12 unlabeled balls, 5 labeled boxes, and

(12+4−1
4

)
=
(16

4

)
= 1,820ways.

6. You’ve made a pile of eight cute notes for your best friend to find. Ze has 12
folders, one for each of hir classes and activities. How many ways are there to tuck
the notes into folders? (Of course, you will not put more than one note in a folder.
That would be excessive.)
The notes are all different and so are the folders, sowe have labeled balls and labeled
boxes. There are 12 choices for the folder for the first note, then 11 for the second,
and so forth—12 ·11 ·10 ·9 ·8 ·7 ·6 ·5 = 19,958,400 is the count.

7. The computer print-out says it all: Your first student needs three Learning Modules
inserted, your second student needs five Learning Modules inserted, and your third
student needs 54 Learning Modules inserted from the bank of 62 new government-
approved-topic Learning Modules. But wait… The computer print-out doesn’t say
which Learning Modules should go to which student. How many ways can you
assign Learning Module topics to students?
This is classic Question E:

(62
3

)
·
(62

5

)
·
(62

54

)
= 827,467,389,801,458,843,800. Hm.

Guess the computer must not care much about which way you assign the topics.

8. Your spiky little plant has once again outgrown its pot, and when you split off all the
small bits into different pots, you discover you have 23 spiky plant-spawn. You’ve
promised eight people they can have baby spiky plants, but really you want to get
rid of all of the spiky plant-spawn so they don’t take over your house. How many
ways are there to distribute the 23 baby spiky plants to the eight people?
Each person gets at least one plant, so Question D′ gives us

(23−1
8−1

)
= 170,544.

9. How many anagrams are there of the word ENUMERATE?
ENUMERATE has 9 letters, of which 3 are Es, and so 9!/3! = 60,480 anagrams.

10. How many ways are there to list the 50 U.S. states so that no two states beginning
with “A” are next to each other?
Oh, good grief. What are the states that start with “A”? Alaska, Arkansas, Arizona,
and Alabama. So we have 46 states that can be ordered any-which-way (for 46!
ways), and for each of those orderings we then need to stick the 4 “A” states into the
47 places between and around those 46 states (for

(47
4

)
ways). Then for each of those

placements, there are 4!wayswe could have ordered the “A” states. In total we have
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46! ·
(47

4

)
·4!, which is a number with 65 digits, so I will not write it out. Okay, fine.

It’s 23,555,404,836,837,197,892,961,193,467,390,979,135,594,520,358,001,049,
600,000,000,000. (This problem can also be solved using PIE, but that solution is
much more complicated.)

Chapter 8, Section 8.13 page 272

1. Dandelions reproduce very quickly, as anyone who maintains a lawn knows. In
fact, did you know that on any given day, if you went to your lawn and counted
the dandelions, then the next day twice as many new dandelions will have emerged
from the ground? Luckily, dandelions die after two days, so that helps keep the
numbers down. Still, if on day 0 you had 1 dandelion, then on day 1 you would
have 3 dandelions, on day 2 you’d have 8 dandelions, and then on day 3 you’d have
22 dandelions.

(a) Write a recurrence equation for dn = the number of dandelions on day n.
Let’s see what happens day by day.
Day 0: 1.
Day 1: 1+2 = 3 (one old, two new).
Day 2: 3+6−1 = 8 (the two-day-old one dies).
Day 3: 8+16−2 = 22 (the two two-day-old dandelions die).
Day 4: 22+44−6 = 60. It looks like we have dn = 3dn−1 −2dn−3.

(b) Find a closed-form formula for dn.
The characteristic polynomial is xn = 3xn−1 − 2xn−3, which becomes x3 =
3x2 −2 and then x3 −3x2 +2 = 0, which has roots x = 1,x = 1±

√
3. Now

we have dn = q1(1)n +q2(1+
√

3)n +q3(1−
√

3)n. For low values of n, this
gives us
d0 = 1 = q1 +q2 +q3,
d1 = 3 = q1 +q2(1+

√
3)+q3(1−

√
3),

d2 = 8= q1+q2(1+
√

3)2+q3(1−
√

3)2 = q1+q2(4+2
√

3)+q3(4−2
√

3).
Look at −2d1 + d2 to get 2 = −q1 + 2q2 + 2q3. Add −2d0 to both sides to
get 0 = −3q1 or q1 = 0. The equations for d0,d1 now become 1 = q2 +
q3 and 3 = q2(1 +

√
3) + q3(1 −

√
3). Substitute q2 = 1 − q3 to get 3 =

(1− q3)(1+
√

3)+ q3(1−
√

3) = 1+
√

3− 2
√

3q3, so that q3 =
√

3−2
2
√

3
and

q2 = 1−
√

3−2
2
√

3
= 1

2 +
1√
3
.

Our final formula is dn = ( 1
2 +

1√
3
)(1+

√
3)n + 2−

√
3

2
√

3
(1−

√
3)n. Yuck!

2. Generate the first 30 terms of the sequence an = an−1 +an−2 −an−3, a0 = 0,a1 =
1,a2 = 1.
This is so much fun we’ll generate 40 terms: 1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,
9,10,10,11,11,12,12,13,13,14,14,15,15,16,16,17,17,18,18,19,19,20,20. Ha!
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3. Suppose that an = (−4)n, an = 1, and an = 2n are all closed forms for the same
recurrence. Find a recurrence that fits this criterion and verify that it really does
work for all three closed forms.
This criterion suggests we have a geometric sequence whose characteristic poly-
nomial has roots r1 = −4,r2 = 1,r3 = 2. That characteristic polynomial would
be (x+ 4)(x− 1)(x− 2) = x3 + x2 − 10x+ 8 = 0, or x3 = −x2 + 10x− 8, which
corresponds to a recurrence an =−an−1 +10an−2 −8an−3.
Can we find initial conditions that correspond to these three sequences? Check it
out: If an = (−4)n, then a0 = 1,a1 = −4,a2 = 16,a3 = −64, and −64 = −16+
10(−4)−8. If an = 1, then a0 = 1,a1 = 1,a2 = 1,a3 = 1, and 1 =−1+10(1)−8.
If an = 2n, then a0 = 1,a1 = 2,a2 = 4,a3 = 8, and 8 =−4+10(2)−8. Yes!

4. Consider the sequence 1,3,4,7,11,18,29, . . . .

(a) Find a recurrence that Ln satisfies. Ln = Ln−1 +Ln−2.
(b) Prove that Ln = Fn−1 +Fn+1.

We’ll do this by induction. Do wewant L0 = 1 or L1 = 1? Note that 3= 1+2,
so we have L2 = F1+F3. We’ll check another couple of base cases to be sure:
L3 = 4 = 1+3 = F2 +F4 and L4 = 7 = 2+5 = F3 +F5.
Now assume that our statement holds for values of n ≤ k. Lk+1 = Lk +Lk−1
and the inductive hypothesis gives us Lk+1 = Fk−1 + Fk+1 + Fk−2 + Fk =
(Fk−1 +Fk−2)+(Fk+1 +Fk) = Fk +Fk+2 as desired.

5. Find a closed-form formula for the sequence a0 =−1,an = an−1 +3n+1.
This is an arithmetic sequence, so we use the technique of finite differences.
Sequence: −1,3,10,20,33,49,68,90,115,143,174, . . . .
First differences: 4,7,10,13,16,19,22,25,28,31, . . . .
Second differences: 3,3,3,3,3,3,3,3,3, . . . .
The closed form is generically an = c+ dn+ f n2. When n = 0, we have −1 = c.
When n = 1, we have 3 = c+ d + f or 4 = d + f or f = 4− d. When n = 2, we
have 10 = c+2d +4 f or 11 = 2d +4(4−d) = 16−2d.
Then d = 5

2 and f = 3
2 , so an =−1+ 5

2 n+ 3
2 n2.

6. Consider the recurrence relation an = 3an−1 −an−2 with a0 = 0,a1 = 1. Generate
some terms, make a conjecture as to what sequence this is, try to find the closed
form, and try to explain what is going on here.
Terms: 0,1,3,8,21,55, . . . . This looks like every second Fibonacci number. I won-
der what kind of formula that will give us? Let’s start with Fn = Fn−1 +Fn−2. We
want only the even ones, so F2k. Those have the form F2k = F2k−1 +F2k−2. But
2k − 1 is odd, so let’s break that down further. (Uh-oh. This might never end.)
F2k = (F2k−2 + F2k−3) + F2k−2. But wait, F2k−2 = F2k−3 + F2k−4 can be written
as F2k−3 = F2k−2 −F2k−4, which means we get F2k = (F2k−2 +F2k−2 −F2k−4) +
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F2k−2 = 3F2k−2−F2k−4. And that can be rewritten as F2(k) = 3F2(k−1)−F2(k−2), or,
ditching the 2s, as an = 3an−1 − an−2. So that’s what’s going on—this recurrence
is the same as for every second Fibonacci number.
Now we have to find a closed form. Okay. Characteristic equation: xn = 3xn−1 −
xn−2 becomes x2 = 3x − 1 or x2 − 3x + 1 = 0. The roots of this equation are
3−

√
5

2 , 3+
√

5
2 . Therefore we have an = q1(

3−
√

5
2 )n + q2(

3+
√

5
2 )n. For low values

of n, we have a0 = 0 = q1 +q2 and a1 = 1 = q1(
3−

√
5

2 )+q2(
3+

√
5

2 ).

Now q2 =−q1, so 1 = q1(
3−

√
5

2 )−q1(
3+

√
5

2 ) = q(−4
√

5); so q1 =
−1

4
√

5
and q2 =

1
4
√

5
for a final closed-form formula of an = ( −1

4
√

5
)( 3−

√
5

2 )n +( 1
4
√

5
)( 3+

√
5

2 )n.

7. Consider the sequence 5,−3,5,−3,5,−3,5,−3,5,−3,5, . . . . Find a recurrence for
this sequence, and find two more (different) sequences that satisfy that recurrence.
One recurrence for this sequence is an =−an−1 +2.
Starting with a0 = 1, we get 1,1,1,1,1,1,1,1,1,1,1, . . . .
Starting with a0 = 0, we get 0,2,0,2,0,2,0,2,0,2,0, . . . .

8. Find a closed form for the sequence defined by the recurrence an = −an−1an−2 +
2,a0 = 1,a1 = 1. How do things change if a0 = 0, a1 = 0?
The sequence is 1,1,1,1,1,1,1,1,1,1,1, . . . , so the closed form is an = 1.
If we change the initial conditions, we get the sequence 0,0,2,2,−2,6,14,−82,
1150,94302,−108447298, . . . , which is (as of August 2018) not even in the OEIS.

9. Here is a characteristic equation: x5 + 4x3 − 3x2 − 1 = 0. What is the associated
recurrence?
First rewrite as x5 = −4x3 + 3x2 + 1, then multiply through by xn−5 to get xn =
−4xn−2 +3xn−3 + xn−5. Finally, translate to an =−4an−2 +3an−3 +an−5.

10. Find a closed-form formula for the sequence a0 = 1,an = an−1 +n2 −2n.
This is an arithmetic sequence, so we use the technique of finite differences.
Sequence: 1,0,0,3,11,26,50,85,133,196,276, . . . .
First differences: −1,0,3,8,15,24,35,48,63,80, . . . .
Second differences: 1,3,5,7,9,11,13,15,17, . . . .
Third differences: 2,2,2,2,2,2,2,2, . . . .
Closed form is generically an = c+dn+ f n2 +gn3.
When n = 0, we have 1 = c.
When n = 1, we have 0 = c+d + f +g or g =−1−d − f .
When n = 2, we have 0 = c+2d +4 f +8g or
0 = 1+2d +4 f +8(−1−d − f ) =−7−6d −4 f or f = −7−6d

4 .
When n = 3, we have 3 = c+3d +9 f +27g or
3 = 1+3d +9(−7−6d

4 )+27(−1−d − −7−6d
4 ) = 3d + 11

2 .
Then d = −5

6 , f = −1
2 , and g = 1

3 , so an = 1+ −5
6 n+ −1

2 n2 + 1
3 n3.
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Chapter 9, Section 9.9 page 293

1. Let fn be the maximum number of regions of four-dimensional space that are cut
up by n three-dimensional cuts. What are f0, f1, f2, f3, f4? And why?
f0 = 1, f1 = 2, f2 = 4, f3 = 8, f4 = 16 because there are four perpendicular direc-
tions and each of these four cuts can be perpendicular to the previous cuts.

2. If you cut a configuration with f4 pieces with an additional cut, how many new
pieces can you get?
There can be as many as 15 new pieces, which means that the additional cut passes
through all but one of the existing regions—see the answer for the next question!

3. Determine and explain a recurrence relation for fn.
fn = fn−1 + yn−1. Each of the n cuts is really a yam with a maximum number of
planes passing through it. There are n−1 planes formed by intersecting the three-
dimensional cuts/yams with the nth cut (yam). Each of those yn−1 regions of the
yam represents a cutting-in-two of the region it passes through in four-dimensional
space. So we add yn−1 to the fn−1 regions we already had.

4. Determine and explain a closed form for fn.
fn =

(n
4

)
+
(n

3

)
+
(n

2

)
+
(n

1

)
+
(n

0

)
. If we have a maximum number of regions, then

the cuts are in general position. That means that any four cuts intersect in exactly
one point. Consider an extra cut; if we sweep it across the four-dimensional space,
the number of point-intersections it crosses will be

(n
4

)
. Every time it passes an

intersection, it crosses into a new region. And after it has passed through all of
the intersections, it has

(n
2

)
+
(n

1

)
+
(n

0

)
regions passing through it because that’s the

number of regions on it of lower dimension.

5. Use induction to prove that your closed form from Problem 4 is the correct closed
form for your recurrence from Problem 3.
Here are some base cases:
n = 1:

(1
4

)
+
(1

3

)
+
(1

2

)
+
(1

1

)
+
(1

0

)
= 0+0+0+1+1 = 2.

n = 2:
(2

4

)
+
(2

3

)
+
(2

2

)
+
(2

1

)
+
(2

0

)
= 0+0+1+2+1 = 4.

n = 3:
(3

4

)
+
(3

3

)
+
(3

2

)
+
(3

1

)
+
(3

0

)
= 0+1+3+3+1 = 8.

n = 4:
(4

4

)
+
(4

3

)
+
(4

2

)
+
(4

1

)
+
(4

0

)
= 1+4+6+4+1 = 16.

Suppose that for n≤ k, we have that fn =
(n

4

)
+
(n

3

)
+
(n

2

)
+
(n

1

)
+
(n

0

)
. Consider fk+1.

The recurrence says fk+1 = fk+yk. Using the inductive hypothesis, we have fk+1 =
(
(k

4

)
+
(k

3

)
+
(k

2

)
+
(k

1

)
+
(k

0

)
)+yk, and from the closed formwe calculated for yk, we

have that fk+1 =(
(k

4

)
+
(k

3

)
+
(k

2

)
+
(k

1

)
+
(k

0

)
)+(

(k
3

)
+
(k

2

)
+
(k

1

)
+
(k

0

)
). Rearranging

terms, we have fk+1 = (
(k

4

)
+
(k

3

)
)+ (

(k
3

)
+
(k

2

)
)+ (

(k
2

)
+
(k

1

)
)+ (

(k
1

)
+
(k

0

)
)+
(k

0

)
,

and using our basic choice identity four times while noting that
(k

0

)
= 1 =

(k+1
0

)
,

we get fk+1 =
(k+1

4

)
+
(k+1

3

)
+
(k+1

2

)
+
(k+1

1

)
+
(k+1

0

)
as desired.
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Figure B.4. A graph underlying two of its spanning trees.
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Figure B.5. An edge-weighted graph with all of its minimum-weight spanning trees.

Chapter 10, Section 10.12 page 339

1. Find two different spanning trees of the graph shown at left in Figure 10.22.
Figure B.4 shows two different spanning trees of the relevant graph in Figure 10.22.

2. Find two different minimum-weight spanning trees of the graph shown at right in
Figure 10.22. Are there more?
Figure B.5 shows all three different minimum-weight spanning trees. You can show
that these are the only three by eliminating the weight-3 edge e and then succes-
sively eliminating the highest-weight edges incident to e’s vertices, etc.

3. Find, if possible, a perfect matching in each of the graphs shown in Figure 10.22.
The left-hand graph has an odd number of vertices, so none is possible. The right-
hand graph has several; the lowest-weight perfect matching has total weight 9.

4. Prove that for n ≥ 3, every n-vertex tree has at most n−1 leaves.
We proceed by contradiction. Suppose an n-vertex tree has more than n−1 leaves.
It must have at least n leaves, so every vertex is a leaf. However, by the handshake
lemma, the total degree (n) must equal twice the number of edges. Twice the num-
ber of edges is 2(n−1) because any n-vertex tree has n−1 edges. The statement
n = 2(n− 1) implies n = 2, which violates the constraints of the theorem. (As a
side note, the star graph is an n-vertex tree with exactly n−1 leaves.)

5. Create a binary search tree for the mini-dictionary {block, black, brack, bract,
brace, trace, race, ace, mace, maze, maize, baize}.
Figure B.6 shows such a binary search tree. It was created by placing block at the
root and then adding the remaining words to the tree in the order they were listed.
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block

brackblack

ace brace
bract

trace
race

mace
mazemaize

baize

Figure B.6. A binary search tree for a mini-dictionary.
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Figure B.7. Two edge-weighted graphs with minimum spanning trees highlighted.

6. Find a minimum-weight spanning tree of the graph shown at left in Figure 10.23
using Kruskal’s algorithm.
Kruskal’s algorithm performed on the relevant graph is shown at left in Figure B.7.
Edges added later are shown in lighter grey tones. There is some choice as to which
edges of a given weight are added, so your solution may differ and still be correct.

7. Create an efficient binary decision tree for identifying members of the set {coat,
mittens, hat, scarf, duck, boots}.
We want to avoid questions for which all items answer yes (or no), and questions
for which just one item answers yes (or no) because then we’ll need more questions,
so “Is it warm?” is terrible. Figure B.8 gives one possible efficient tree.

8. Prove that in any tree with at least two vertices, any two vertices are connected by
a unique minimum-length path.
We proceed by contradiction. Suppose there exist two vertices v,w in a tree that
are connected by at least two distinct minimum-length paths P and Q. Starting at v
and heading towards w, there is some first vertex after which P,Q differ. Call this z
(possibly with z = v). Continuing along P,Q, there is some first vertex after z that
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Does it come in a pair?

noyes
Can you wrap it around you?Does it go on feet?

noyes

mittensboots

yes

Does it go on your arms?

no

Will it stay on your head?

yes no

hat duckcoat scarf

yes no

Figure B.8. This binary decision tree helps us identify warm winter wear.

P,Q have in common. Call this y. Now there are two completely distinct paths from
z to y, and together these form a cycle. This contradicts tree-ness.

9. Use backtracking to find all the ways to add numbers from {1,2,3,4,5} to get 8.

1 isn’t enough. 1+2 isn’t enough. 1+2+3 isn’t enough. 1+2+3+4 is too much.
Go back.
1+2+4 isn’t enough. 1+2+4+5 is too much. Go back.
1+2+5 is exactly right! Keep that and go back.
1+3 isn’t enough. 1+3+4 is exactly right! Keep that and go back.
1+4 isn’t enough. 1+4+5 is too much. Go back.
1+5 isn’t enough. Go back.
2 isn’t enough. 2+3 isn’t enough. 2+3+4 is too much. Go back.
2+4 isn’t enough. 2+4+5 is too much. Go back.
2+5 isn’t enough. Go back.
3 isn’t enough. 3+4 isn’t enough. 3+4+5 is too much. Go back.
3+5 is exactly right! Keep that and go back.
4 isn’t enough. 4+5 is too much. Go back.
5 isn’t enough.
Report: 8 = 1+2+5 = 1+3+4 = 3+5.

10. Find a minimum-weight spanning tree of the graph shown at right in Figure 10.23
using Prim’s algorithm.

Prim’s algorithm performed on the relevant graph is shown at right in Figure B.7.
Edges added later are shown in lighter grey tones. There is some choice as to which
edges of a given weight are added, so your solution may differ and still be correct.
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Figure B.9. Ordinary K6; two planar graphs that make K6 when glued at the vertices; K6
drawn to highlight the two planar graphs that comprise it.

Chapter 11, Section 11.12 page 364

1. Compute the thickness of K6.
First, let’s see what Theorem 11.6.7 says: t(K6)≥

⌈ 15
3·6−6

⌉
= 2. This isn’t particu-

larly enlightening—we already knew that K6 is nonplanar. If we can exhibit K6 as
having thickness 2 we’ll be done. See Figure B.9 for such an exhibit.

2. Check out Figure 11.14 to see an image of an annulus (or washer).

(a) Draw a few graphs on annuli (that’s the plural of annulus). The rule here is
that you have to cover the annulus edges with graph edges (and vertices) so
that you don’t have partial faces.
See Figure B.10.

(b) Try out Euler’s formula on these graphs. Does it still hold? If not, does some
other formula hold?
For the two graphs drawn in Figure B.10, we have 7−11+4 = 0 and 14−
27+ 13 = 0. Euler’s formula does not hold, but instead |V (G)| − |E(G)|+
|F(G)|= 0.

(c) Prove your conjecture.
Notice that if we fill in the middle of an annulus with a face, and fill in the out-
side as well, we have a planar graph! The difference is that we have two extra
faces. So, we have a one-to-one correspondence between annular graphs and

Figure B.10. Two sample annular graphs.
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Figure B.11. Three-spoke and four-spoke stars shown together with their complements.

certain planar graphs. If we have an annular graph G and associated planar
graph G′, then we know |V (G)| = |V (G′)|, |E(G)| = |E(G′)|, and |F(G)| =
|F(G′)|−2. From Euler’s formula we have |V (G′)|− |E(G′)|+ |F(G′)|= 2.
Substituting, we get |V (G)|− |E(G)|+ |F(G)|+2 = 2 or |V (G)|− |E(G)|+
|F(G)|= 0 as desired.

3. Is the complement of any star graph planar? Are all complements of star graphs
planar? Justify your responses.
The smallest star graphs and their complements are shown in Figure B.11. We
have drawn the star graphs so that the central vertex is to the side, so that they look
more like fans than stars. If we draw Kn and use this as a base for drawing Kn+1,
what we’re adding is a star graph—one vertex with n spokes! In other words, the
complement of a star graph with n spokes is Kn. Therefore, the only star graphs
with planar complements are those shown in the figure.

4. Can there exist a planar graph with degree sequence(1,2,2,2,3,5,5,6)?
The proposed graph has 8 vertices and total degree 1+2+2+2+3+5+5+6= 26,
so it has 13 edges. Let’s check Theorem 11.6.1: 13 ≤ 3 · 8− 6 = 18. So it seems
possible; see Figure B.12 for such a graph with multiple edges.

5. Could the graph at left in Figure 11.15 be planar?
Nope. It has 12 vertices and 38 edges, and 38 ̸≤ 3 · 12− 6 = 30, so we have a
contradiction by Theorem 11.6.1.

6. The graph at right in Figure 11.15 is definitely planar. How many faces does a
planar drawing of this graph have?
It has 14 vertices and 24 edges, so 14−24+ f = 2 implies it has 12 faces.

Figure B.12. A planar graph with degree sequence (1,2,2,2,3,5,5,6).
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Figure B.13. See how not very thick I am? Figure B.14. I am a general n-prism graph
sporting a fine Hamilton circuit.

7. Prove that a connected planar graph has exactly one face if and only if it is a tree.
First, we know that a tree has exactly one face by inspection. So we need to prove
that if a planar graph has exactly one face, then it must be a tree.
Consider a planar graph with exactly one face. Then we have v− e+ 1 = 2 or
e = v−1, and Theorem 10.2.1 implies that the graph must be a tree.

8. How many vertices must a 4-regular planar graph with 12 faces have?
A 4-regular planar graph with v vertices has total degree 4v and so has 2v edges.
Euler’s formula gives us that v−2v+12 = 2, or v = 10.

9. Can a planar graph with nine vertices and all faces of size 4 be k-regular for any k?
All faces are of size 4, so 2e = 4 f , which gives us v− e+ e

2 = 2 or e = 2(v− 2).
Having 9 vertices means there are 14 edges. The total degree is 28, which is not
divisible by 9, so the graph cannot be regular.

10. Compute the thickness of the nonplanar Grötzsch graph, shown in Figure 11.16.
Start with Theorem 11.6.7: t(GG)≥

⌈ 20
3·11−6

⌉
= 2. If we can exhibit the Grötzsch

graph as having thickness 2, we’ll be done. See Figure B.13, and notice that every
crossing involves one of the five grey edges. Together, the grey edges are planar,
as is the remaining black-edged graph.

Chapter 12, Section 12.12 page 394

1. An n-prism graph is constructed by putting one (slightly smaller) n-cycleCn inside
another, and adding edges to join the vertices of oneCn to the other radially. (We do
need n ≥ 3.) See Figure 12.17 for an example. Do any n-prism graphs have Euler
circuits? What about Hamilton circuits?
No Euler circuits (or even trails), by Theorem 12.3.1—all vertices have degree 3.
However, as shown in Figure B.14, every n-prism graph has a Hamilton circuit.



B. Solutions to Bonus Check-Yourself Problems 621

2. List all possible orderings of ABC (how many are there?). Associate each of these
orderings to a vertex of a graph. Add an edge when two orderings differ only by an
adjacent transposition.

(a) What is the degree sequence of this graph?
We have 6 orderings: ABC, ACB, CAB, CBA, BCA, and BAC. (These are
written so that each differs by the next by one adjacent transposition.) Each
ordering has two possible adjacent transpositions, so the degree sequence is
(2,2,2,2,2,2).

(b) Does it have an Euler circuit or trail? Yes.

(c) Does it have a Hamilton circuit or trail? Yes.

(d) Is it planar?
Yes. The graph is a 6-cycle, so it is planar and is an Euler circuit and a Hamil-
ton circuit.

(e) What are the answers to the previous questions if we also consider the first
and last letters to be adjacent?
If we consider the first and last letters to be adjacent, there are three pos-
sible adjacent transpositions for each ordering; we have degree sequence
(3,3,3,3,3,3); and we add the edges ABC–CBA, ACB–BCA, and CAB–
BAC to our 6-cycle. The resulting graph has a Hamilton circuit (the same
as the cycle had) but no Euler circuit (all vertices are of odd degree); it is
isomorphic to K3,3, which is not planar.

3. Look at the graphs in Figure 10.23 on page 340. Does either have a Hamilton
circuit? … Hamilton traversal? … Euler circuit? … Euler traversal?
Each graph has at least one Hamilton circuit, as shown in Figure B.15.
The left-hand graph has four vertices of degree 3 and so has no Euler traversal by
Theorem 12.3.1. The right-hand graph has two vertices of degree 3 and the rest are
of degree 4, so it has an Euler trail but no Euler circuit.

Figure B.15. We are very Hammy.
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Figure B.16. We are very Dijkstry.

4. Again examine Figure 10.23 on page 340. For each graph, compute the shortest
distance from the lower-right vertex to all other vertices. (Tip: Dijkstra is a good
choice here.)
The results of applying Dijkstra’s algorithm are shown in Figure B.16.

5. Do any of the graphs in Figure 12.18 have Hamilton circuits? What about Hamilton
traversals?
All of them have Hamilton circuits, as shown in Figure B.17.

6. Do any of the graphs in Figure 12.18 have Euler circuits? What about Euler traver-
sals?
The left-hand graph has more than three vertices of degree 3, so by Theorem 12.3.1
there’s no chance it can have an Euler traversal. The middle graph has all vertices of
even degree, so has an Euler circuit. The right-hand graph has exactly two vertices
of degree 3, so has an Euler trail but not an Euler circuit.

7. For which values of m,n does Km,n have a Hamilton circuit?
Km,n has a Hamilton circuit exactly when m = n.
First, note that whenm= nwe can construct a Hamilton circuit by zig-zagging as in
Figure B.18. Next, recall that in a bipartite graph, any path must alternate between

Figure B.17. Three graphs with Hamilton circuits shown. Yup. Figure B.18. A Hamil-
ton circuit in Kn,n.
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Figure B.19. A map of Altana toll plazas.

the parts. Suppose m > n. Our longest path (with no vertices repeated) will only
reach n+1 vertices of the m vertices. Even if m = n+1, we only have a Hamilton
path and not a Hamilton circuit.

8. The towns Gesund and Reichtum are near each other in a tourism district. In each
town, all but two of the intersections are four-way stops. In Gesund, there is a five-
way stop and a “T” intersection (a three-way stop), and in Reichtum there are two
five-way stops. Currently, there is no direct road between Gesund and Reichtum.
The tourism bureau wants to build a road so that they can create and advertise a Tour
of the Towns, which will take tourists down every road of Gesund and of Reichtum
without repetition. What advice can you give the tourism bureau?

Build two roads, each connecting one of Reichtum’s five-way stops with one of
Gesund’s odd-way stops. Then every intersection will have even degree, and by
Theorem 12.3.1 an Euler circuit will exist.

9. In the metropolis of Altana, the Traffic Council has decreed that cars in the flying
lanes must pay twice the tolls of ground-based cars (because of the additional fuel
needed for flying police). What is the cheapest way to get from point a to point
b? A map showing skyways in grey and ground-roads in black is shown in Fig-
ure 12.19—those dots are toll stations where you pay for the segment you’ve just
traveled.

Figure B.19 shows the result of running Dijkstra’s algorithm on the Altana map;
the cheapest toll route costs $5 and goes through n, s, and p.

10. Can you take one walk and cover every road in the map of Snakeland given in
Figure 12.20 exactly once?

By Theorem 12.3.1, no, because there are two vertices of degree 3.
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Figure B.20. A proper vertex coloring and a proper edge coloring of the graph in question.

Chapter 13, Section 13.9 page 429

1. Find the chromatic number and chromatic index of the graph shown in Figure 10.3
on page 316.
Let the pictured graph be G. χ(G) = 3; G contains K3, so χ(G)≥ 3, and we exhibit
a 3-vertex coloring of G in Figure B.20. χ ′(G) = 4; G has a vertex of degree 4, so
χ ′(G)≥ 4, and we exhibit a 4-edge coloring of G in Figure B.20.

2. Prove that if χ(G)≥ 3, then G must contain an odd cycle.
We proceed by contradiction. Suppose that G has no odd cycles; then by Theo-
rem 13.5.3, G is bipartite and then by Theorem 13.5.2, G is 2-vertex-colorable.
Contradiction! We know χ(G)≥ 3; therefore, G must contain an odd cycle.

3. Find the chromatic number and chromatic index of each graph shown in Figure 10.22
on page 339.
Let the left-hand graph be G and the right-hand graph be H. χ(G) = 3 and χ ′(G) =
6; G contains K3, so χ(G) ≥ 3, and G has a vertex of degree 6, so χ ′(G) ≥ 6.
We exhibit a 3-vertex coloring of G and a 6-edge coloring of G in Figure B.21.
χ(H) = 3 and χ ′(H) = 4; H contains K3, so χ(H) ≥ 3, and H has a vertex of
degree 4, so χ ′(H)≥ 4. We exhibit a 3-vertex coloring of H and a 4-edge coloring
of H in Figure B.21.

4. Find the chromatic number and chromatic index of the graph shown in Figure 11.16
on page 365.
Let the pictured graph be GG. χ(GG) = 4. We know that the outer 5-cycle requires
three colors, so let us suppose that there exists a 3-coloring ofGG. Because GG has
5-fold rotational symmetry, we can 3-color that cycle as we please. This coloring

Figure B.21. Proper vertex coloring and proper edge coloring of each graph in question.
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Figure B.22. A proper vertex coloring and a proper edge coloring of the Grötzsch graph.

forces the colors on the spokes of the inner star, and all three colors are present
there. The middle vertex is adjacent to all of them, so it requires a fourth color.
χ ′(GG) = 5; GG has a vertex of degree 5, so χ ′(GG)≥ 5. We exhibit a 4-coloring
and a 5-edge coloring of GG in Figure B.22.

5. Let G be a planar graph with smallest cycle length (girth) 6. Let vG = |V (G)|,
eG = |E(G)|, and fG = |F(G)|.

(a) Develop an inequality that relates fG to eG.
First note that because the graph is planar, we can use Euler’s formula and its
consequences. The smallest cycle length is 6, so every face has size at least
6. The sum of the sizes of the faces is equal to 2eG. If all the faces were size
6, we would have 6 fG = 2eG, but some faces may be larger, and so we have
6 fG ≤ 2eG.

(b) Use this to show that 2eG ≤ 3vG −6.
Euler’s formula says that fG = 2− vG + eG. Plugging this into 6 fG ≤ 2eG
gives us 6(2− vG + eG) = 12− 6vG + 6eG ≤ 2eG or 6− 3vG + 3eG ≤ eG or
2eG ≤ 3vG −6.

(c) Show that G must have a vertex of degree less than 3.
We proceed by contradiction. Suppose that G has only vertices of degree 3 or
more. Then the total degree of G is at least 3vG. By the handshaking lemma,
the total degree of G is 2eG. Therefore 2eG ≥ 3vG. However, 2eG ≤ 3vG −6,
so we have 3vG ≤ 2eG ≤ 3vG − 6 or 3vG ≤ 3vG − 6 or 0 ≤ −6, which is a
contradiction. Therefore G must have a vertex of degree less than 3.

(d) Prove that χ(G)≤ 3. (Hint: use induction.)
Now we proceed by induction on the number of vertices of G. As a base case
we take vG = 6 so G has at least one cycle. We know this can be colored with
only two colors, so χ(G) ≤ 3. Assume (for the inductive hypothesis) that
if G has 6 ≤ n ≤ k vertices, then χ(G) ≤ 3. Consider G with k+ 1 vertices
and girth at least 6. We know that G must have a vertex y of degree less
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Snakeland
vertex-y edge-y

Snakeland

Figure B.23. A proper vertex coloring and a proper edge coloring of the Snakeland map
graph.

than 3. Remove this vertex to form H. The inductive hypothesis applies to
H because either H still has girth at least 6 or H has no cycles (in which case
it is 2-vertex-colorable). So, color H with at most three colors. The vertex y
has at most two neighbors, so it can be given a third color—we restore y to
the graph, colored with this third color, and have G properly vertex colored
using at most three colors. Finis.

6. Without doing any actual coloring, give quick lower and upper bounds for the chro-
matic number and chromatic index of the graph shown in Figure 13.25.
The graph contains a K5 and has highest degree 8, so 5 ≤ χ(G)≤ 9. The graph has
highest degree 8, so 8 ≤ χ ′(G)≤ 15.

7. Find the chromatic number and chromatic index of the Snakeland map graph shown
in Figure 12.20 on page 395.
Let the Snakeland map graph be ssss. χ(ssss) = 3 and χ ′(ssss) = 4; ssss contains
K3, so χ(ssss)≥ 3, and ssss has a vertex of degree 4, so χ ′(ssss)≥ 4. We exhibit a
3-vertex coloring of ssss and a 4-edge coloring of ssss in Figure B.23.

8. During the Week of Chaos at MathILy 2016, there were five timeslots for classes
and four classes offered in each timeslot. Six instructors taught three classes each,
and the director taught two classes. Create a potential class schedule.
We make a graph in which each class is a vertex, and each edge represents two
classes that cannot be taught at the same time (because an instructor cannot be in
two places at once). See Figure B.24. This gives us six disjoint triangles and a lone
edge (the director). We’ll then properly color the vertices using five colors such that
each color is used exactly four times. See Figure B.25. This gives a schedule of
(1, teal): C, D, E, F;
(2, charcoal): A, B, D, G;
(3, pale teal): B, E, F, G;
(4, white): A, C, F, G;
(5, grey): A, B, C, E.
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A B C

E F G

D

Figure B.24. No instructor can teach two
or more classes at the same time.

A B C

E F G

D

Figure B.25. A proper coloring that uses
each of five colors four times.

9. Find the chromatic number of each graph shown in Figure 12.18 on page 394.
Let the left-hand graph be G, the middle graph be Q, and the right-hand graph be
H. χ(G) = 3, χ(Q) = 4, and χ(H) = 3. G contains K3, so χ(G) ≥ 3; Q contains
K4, so χ(Q)≥ 4; and H contains K3, so χ(H)≥ 3. We exhibit a 3-vertex coloring
of G and of H and a 4-vertex coloring of Q in Figure B.26.

10. Find the chromatic index of each graph shown in Figure 12.18 on page 394.
Let the left-hand graph beG, the middle graph beQ, and the right-hand graph beH.
χ ′(G) = 4, χ ′(Q) = 6, and χ ′(H) = 4. G has a vertex of degree 4, so χ ′(G)≥ 4; Q
has a vertex of degree 6, so χ ′(Q)≥ 6; andH has a vertex of degree 4, so χ ′(H)≥ 4.
We exhibit a 4-edge coloring of G, a 6-edge coloring of Q, and a 4-edge coloring
of H in Figure B.27.

Figure B.26. A proper vertex coloring of each graph in question.

Figure B.27. A proper edge coloring of each graph in question.



628 B. Solutions to Bonus Check-Yourself Problems

Chapter 14, Section 14.11 page 473

1. In LucyWorsley’s If Walls Could Talk: An Intimate History of the Home, the author
says, “The medieval death rate was one in every fifty pregnancies. Considering that
it wasn’t unusual for a woman to give birth a dozen times, the odds quickly mounted
up for reproductive wives.”
So… what are these odds? Compute the probability of dying while pregnant for
each of 1, 4, 6, and 12 pregnancies. What is the probability of dying during some
one of 12 theoretical medieval pregnancies?
One pregnancy: 1

50 = .02.
Four pregnancies: If you make it to the fourth pregnancy, that means you didn’t die
in the first three pregnancies, so

( 49
50

)3 ( 1
50

)
= .0188.

Six pregnancies:
( 49

50

)5 ( 1
50

)
= .018.

A dozen pregnancies:
( 49

50

)11 ( 1
50

)
= .016.

But dying during the first pregnancy is exclusive of dying during the second (…
or twelfth) pregnancy, so in order to compute the probability of dying during some
pregnancy of twelve, we need to compute ∑12

j=1
( 49

50

) j−1 ( 1
50

)
= .2153.

2. Suppose you have a box of colored pens (fuchsia, cinnamon, tangerine, gold, lime,
forest, teal, cobalt, plum) and three pencils (mechanical, yellow No. 2, printed with
cupcakes).

(a) Describe the state space of grabbing a pen and a pencil. What is the proba-
bility of each individual state?
The state space is {fuchsia/mechanical, fuchsia/yellow No. 2, fuchsia/cup-
cakes, cinnamon/mechanical, cinnamon/yellow No. 2, cinnamon/cupcakes,
tangerine/mechanical, tangerine/yellow No. 2, tangerine/cupcakes, gold/
mechanical, gold/yellowNo. 2, gold/cupcakes, lime/mechanical, lime/yellow
No. 2, lime/cupcakes, forest/mechanical, forest/yellowNo. 2, forest/cupcakes,
teal/mechanical, teal/yellow No. 2, teal/cupcakes, cobalt/mechanical, cobalt/
yellow No. 2, cobalt/cupcakes, plum/mechanical, plum/yellow No. 2, plum/
cupcakes}.

(b) What is the probability of grabbing a pen whose color begins with “f” and a
mechanical pencil?
The state space has 9×3 = 27 elements. Of those, two involve a pen whose
color begins with “f” and a mechanical pencil. Thus the probability of grab-
bing a pen whose color begins with “f” and a mechanical pencil is 2

27 .
(c) What is the probability of grabbing a pen whose color is greenish and a non-

mechanical pencil?
There are three greenish pens (lime, forest, teal) and two non-mechanical
pencils (yellow No. 2, printed with cupcakes), so there are six elements in
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the state space that comply with the given constraints. Thus the probability
of grabbing a pen whose color is greenish and a non-mechanical pencil is
6

27 = 2
9 .

(d) What is the probability of (grabbing a pen whose color begins with “f” and
a non-mechanical pencil) or (grabbing a pen whose color is greenish and a
non-mechanical pencil)?
Approach the first: In addition to the six possibilities for (grabbing a pen
whose color is greenish and a non-mechanical pencil), there are two possi-
bilities for (grabbing a pen whose color begins with “f” and a non-mechanical
pencil) AND NOT (grabbing a pen whose color is greenish and a non-
mechanical pencil). Thus the probability is 8

27 .
Approach the second: Let the event of grabbing a pen whose color is green-
ish and a non-mechanical pencil be G, and let the event of grabbing a pen
whose color begins with “f” and a non-mechanical pencil be F . Then we seek
P(G or F) = P(G)+P(F)−P(G and F). There are four possibilities for F .
There are two possibilities for grabbing a pen whose color (is greenish and
begins with “f”) and a non-mechanical pencil, so we have 6

27 +
4

27 −
2
27 = 8

27 .

3. A computer lab has 20 computers in it. On any given day, the probability that
a given computer is not working is p. How many computers do you expect will
be functioning when you enter the lab today? Answer the question for p = .001,
p = .05.
Approach 1: We will compute the number of computers we expect to be broken
and subtract from 20. Let the random variable C count the number of computers
that are broken on a given day. We can writeC = ∑20

j=1 C j, where

C j(day d) =
{

1 computer C j is not working,
0 computer C j is working.

P(C j = 1)= p, soE[C j] = 1P(C j = 1)+0P(C j = 0)= p. Then, by Theorem 14.7.1,
E[C] = ∑20

i=1E[C j] = ∑20
k=1 p = 20p broken computers. Thus we expect 20− 20p

computers to be functioning on any given day.
Approach 2: We will compute directly the number of computers we expect to be
functioning. Let the random variable C count the number of computers that are
working on a given day. We can writeC = ∑20

j=1 C j, where

C j(day d) =
{

1 computer C j is working,
0 computer C j is not working.

P(C j = 1) = 1− p, so E[C j] = 1P(C j = 1)+ 0P(C j = 0) = 1− p. Then, by The-
orem 14.7.1, E[C] = ∑20

i=1E[C j] = ∑20
k=1(1− p) = 20− 20p working computers.

Thus we expect 20−20p computers to be functioning on any given day.
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When p = .001, we expect 20−20(.001)≈ 20 computers to be functioning on any
given day. When p= .05, we expect 20−20(.05)≈ 19 computers to be functioning
on any given day.

4. Chips of the World come in lots of flavors. In the sale bin are
2 bags of bacon ranch pita chips,
1 bag of salt and vinegar potato chips,
3 bags of hot-sauce cheese corn chips,
5 bags of crab potato chips, and
2 bags of peppercorn salsa pita chips.
If you close your eyes and grab three bags of chips (one at a time, so you know you
have three), what is the probability you will get…

… all three bags of potato chips?
There are 6 bags of potato chips out of 13 bags of chips. So the probability
of the first bag grabbed being potato is 6

13 . Twelve bags remain, of which 5
are potato, and then 11 bags remain of which 4 are potato, so the probability
is 6

13 ·
5
12 ·

4
11 , or ≈ .07.

… exactly two bags of spicy chips?
What counts as spicy chips? Probably hot-sauce cheese corn chips and pep-
percorn salsa pita chips, for a total of 5 of the 13 bags of chips. There are
three ways that we could get exactly two spicy-chip bags—the first or the
second or the third bag isn’t of spicy chips. So we have 8

13 ·
5
12 ·

4
11 +

5
13 ·

8
12 ·

4
11 +

5
13 ·

4
12 ·

8
11 . This simplifies to 3 · 8·5·4

13·12·11 , or ≈ .28.

… at least one bag of pita chips?
To get at least one bag of pita chips, we could add the probabilities of getting
exactly one, exactly two, and exactly three bags of pita chips. Or we could
observe that P(grabbing at least one bag of pita chips) = 1−P(grabbing no
bags of pita chips). It’s easy to compute the probability of grabbing no bags
of pita chips—there are 4 bags of pita chips out of the 13 bags, so we get
9
13 ·

8
12 ·

7
11 . Our final probability is 1− 9

13 ·
8
12 ·

7
11 or ≈ .71.

How many bags of corn chips do you expect to find in your three bags?

To compute the number of bags of corn chips we expect to find in our three bags,
we need to compute expected value, which means we need to define a random
variable. Let C count the number of bags of corn chips we find. By definition,
E[C] = 0P(C = 0)+1P(C = 1)+2P(C = 2)+3P(C = 3). So, we need to compute
these probabilities. There are 3 bags of corn chips among our 13.
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P(C = 0) = 10
13 ·

9
12 ·

8
11 . (Okay, that wasn’t necessary. Too late.)

P(C = 1) = 3 · 3·10·9
13·12·11 .

P(C = 2) = 3 · 3·2·10
13·12·11 .

P(C = 3) = 3
13 ·

2
12 ·

1
11 .

Thus E[C] = 3 · 3·10·9
13·12·11 +2 ·3 · 3·2·10

13·12·11 +3 · 3·2·1
13·12·11 = 9

13 bags of corn chips.

5. Shoes ‘R’ Us has a lot of different kinds of shoes in their display case, one of each
kind they sell. A shoe can be brown, black, silver, or green; it can be a low shoe, a
boot, or an athletic shoe; and, it can have laces or be a slip-on.

(a) How many different kinds of shoes does Shoes ‘R’ Us have in its display
case?
Shoes ‘R’ Us shows 4 ·3 ·2 = 24 kinds of shoes in its display case.

(b) What is the probability that a Shoes ‘R’ Us display shoe is brown and slip-on?
Six shoes are brown and of those, three are slip-on, for a probability of 3

24 =
1
8 .

(c) What is the probability that a Shoes ‘R’ Us display shoe is silver or a boot?
There are six silver shoes in the display, and eight boots in the display case,
and (check it out, here comes PIE) two of those are silver boots. Therefore,
there are 6+8−2 = 12 display shoes that are silver or boots, and the proba-
bility is 12

24 = 1
2 .

(d) Given that a Shoes ‘R’ Us display shoe is silver, what is the probability that
it is a boot?
There are six silver shoes, of which two are boots, so the probability of a
silver shoe being a boot is 1

3 . Or, the conditional probability formula gives
1/12
1/4 = 1

3 .

(e) Given that a Shoes ‘R’ Us display shoe is a green athletic shoe, what is the
probability that it has laces?
There are six green shoes, of which two are also athletic. One of the green
athletic shoes has laces, so the probability is 1

2 .

(f) Are the properties silver and boot independent?
To check for independence of silver and boot, we check to see whether
P(boot|silver) = P(boot). We already know that P(boot|silver) = 1

3 . And
P(boot) = 1

3 , so these properties are independent.

6. Consider a deck of cards that is standard, except for having six suits—the two addi-
tional suits are stars and squids. (This deck exists: it is the Blue Sea Deck.) Draw
a card.
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(a) What is the probability that the card is a queen or a squid?
In this deck, there are 6 queens and there are 13 squids. There is a queen-of-
squids card, so the total number of queens or squids is (by PIE) 6+13−1 =
18. The total number of cards is 6 ·13 = 78. Therefore, the probability of a
card being a queen or a squid is 18

78 = 3
13 .

(b) What is the expected value of the number on the card? (Here, Ace= 1, King
= 13.)
We define the random variable X to measure the value of the number on a
card. Let’s use Lemma 14.3.10 to calculate the expected value. There are
78 cards, and so 78 possible states in the space S. Each of these states has a
probability of 1

78 , so E[X ] = ∑s∈S X(s)P(s) = ∑s∈S X(s) · 1
78 = 1

78 ∑s∈S X(s).
The values of X(s) range from 1 to 13, and there are 6 of each, so we now
have 1

78 ·6(1+ · · ·+13) = 1
78 ·6 ·91 = 7.

7. The game Elder Sign has unusual dice. There are six six-sided green dice, each of
which has three sides showing magnifying glasses, one side with a tentacle, one
side with a skull, and one side with a scroll. There is also a six-sided yellow die
with four sides showingmagnifying glasses, one side with a skull, and one side with
a scroll. Finally, there is a six-sided red die with three sides showing magnifying
glasses, one side with a Wild sign, one side with a skull, and one side with a scroll.

(a) If you roll the six green dice, what is the expected number of magnifying
glasses you’ll see?
We define the random variable M to be the number of magnifying glasses
we see when rolling the six green dice. This computation will be a lot easier
if we define Mi to be 1 if we get a magnifying glass on the ith die, and 0 if
we don’t—we can note that M = ∑6

i=1 Mi and use Theorem 14.7.1. E[Mi] =
0+P(Mi = 1) = 3

6 = 1
2 . Therefore, E[M] = ∑6

i=1E[Mi] = 6E[Mi] =
6
2 = 3.

(b) If you roll seven of the dice, what is the probability that you will roll exactly
one skull?
The rolls of the dice are all independent of each other, and each die has exactly
one skull, and there are seven ways to choose the die that shows a skull, so
the probability is 7 · 1

6

( 5
6

)6 ≈ .39.
(c) If you roll seven of the dice, what is the probability that you will roll at least

one scroll?
Observe that (probability of rolling at least one scroll) = 1− (probability of
rolling no scrolls), so we compute 1−

( 5
6

)7 ≈ .72.

8. The game of Qwirkle uses a bag of tiles. Each black tile has a shape on it (circle,
diamond, square, crisscross, starburst, clover) that is colored (red, orange, yellow,
green, blue, purple). There are three copies of each kind of tile.
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(a) How many tiles are in a Qwirkle bag?
There are 6 ·6 ·3 = 108 tiles in a Qwirkle bag.

(b) What is the probability that a tile drawn is red?
Of the tiles, 1

6 are red, so the probability of drawing a red tile is
1
6 .

(c) What is the probability that a tile drawn is a sunburst?
Of the tiles, 1

6 are sunbursts, so the probability of drawing a sunburst tile is
1
6 .

(d) What is the probability that a tile drawn is a red sunburst?
Of the red tiles, 1

6 are sunbursts, so P(drawing a red sunburst tile) = 1
36 .

(e) What is the probability that a tile drawn is red or a sunburst?
There are 18 red tiles and 18 sunburst tiles, and 3 red sunburst tiles, so (PIE!)
there are 18+18−3 = 33 tiles that are red or sunburst. Thus the probability
of drawing a red or sunburst tile is 33

108 = 11
36 .

(f) Is red-ness independent of sunburst-ness?
To check independence, we’ll note that the conditional probability of red-
given-sunburst is equal to that of sunburst-given-red (both are 1/36

1/6 = 1
6 ) and

equal to that of sunburst and of red (each 1
6 ), so these events are independent.

9. Another Qwirkle qwestion: pull two tiles from the bag.

(a) What is the probability that both are blue?
We draw tiles one at a time; the first has a probability of 36

108 of being blue and
the second of 35

107 (because only 107 tiles are left when we draw the second
tile). So the probability of drawing two blue tiles is 36

108 ·
35
107 , or ≈ .11.

(b) What is the probability that the second tile is blue?
If we draw two tiles and the second is blue, we either had first-tile-blue and
second-tile-blue (probability 36

108 ·
35
107 ), or first-tile-not-blue and second-tile-

blue (probability 72
108 ·

36
107 ). These events are exclusive, so we add their prob-

abilities to obtain 36
108 ·

35
107 +

72
108 ·

36
107 = 1

3 .

(c) What is the probability that at least one tile is blue?
We could compute the probability of getting only the first tile blue and add
that to the probability of getting only the second tile blue and add that to the
probability of getting both tiles blue. Or we could compute 1− (probability
of getting no blue tiles). We already know the probability of getting only
the second tile blue ( 72

108 ·
36
107 ) and the probability of getting both tiles blue

( 36
108 ·

35
107 ), so we might as well just add in the probability of getting only the

first tile blue ( 36
108 ·

72
107 ) for a total of 2 · 72·36

108·107 +
36
108 ·

35
107 ≈ .56.
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10. What’s the expected number of fixed points (items that do not move) in a permuta-
tion of n items?
We will let F count the number of fixed points in a permutation. For each of the
n items, we define a random variable Fi that evaluates to 1 if the item is fixed
and 0 if the item moves. There are n possibilities for where the ith item goes
in a permutation, so the probability of an item staying in the same place is 1

n .
Thus, E[Fi] = 1P(Fi = 1) + 0P(Fi = 0) = 1

n . Then, by Theorem 14.7.1, E[F ] =

∑n
i=1E[Fi] = ∑n

k=1
1
n = n 1

n = 1 fixed point. Hey, that seems an awful lot like Exam-
ple 14.7.3 … hmmm….

Chapter 15, Section 15.9 page 508

1. Show that |Z|= |Z|+72.
We will exhibit a bijection between Z and Z∪Z72. For k ≤ 0, let f (k) = k ∈ Z, for
1 ≤ k ≤ 72 let f (k) = k−1 ∈ Z72, and for k > 72, let f (k) = k−72 ∈ Z.
This is injective: Note that if f (k) = f (r), then f (k), f (r)must be both in Z or both
in Z72. If f (k) = f (r), then both are positive or both are nonpositive. If both are
nonpositive, then k = r. If both are positive, then either k−72 = r−72, so k = r,
or k−1 = r−1, so k = r.
It is also surjective: for z ∈ Z, if z ≤ 0, f (z) = z, and if z > 0, f (z+72) = n and for
z ∈ Z72, f (z+1) = z.

2. Show that Z has the same cardinality as 4N.
We will exhibit a bijection betweenZ and 4N. For k < 0, let f (k) =−8k. For k ≥ 0,
let f (k) = 8k+4.
Injective: Suppose f (k) = f (r). Both must be divisible by 8 or not divisible by 8.
If f (k) = f (r) is divisible by 8, then we have −8k =−8r so k = r. If f (k) = f (r)
is not divisible by 8, then we have 8k+4 = 8r+4 so k = r.
Surjective: Every element n of 4N is divisible by 4 and is either divisible by 8 or
≡ 4 (mod 8). If n is divisible by 8, then f (− n

8 ) = n, and if n is not divisible by 8,
then f ( n−4

8 ) = n.

3. Show that Z has the same cardinality as N×N.
We will exhibit a bijection between Z and N×N. We associate 0 ↔ (1,1),1 ↔
(1,2),−1 ↔ (2,1), and continue in the pattern indicated by Figure B.28.

4. Prove that |P(Q)|> |Q|.
Proof by contradiction: Suppose that there is a bijection f between P(Q) and Q.
Consider the set Q ∈ P(Q) defined as Q = {q | q ̸∈ Q′, where Q′ is such that
f (Q′) = q′}. Consider f (Q). Is q ∈ f (Q)? Suppose q ∈ f (Q). By definition,
q ̸∈ f (Q), which is a contradiction.
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(1,1)

(3,1)

(4,1)

(1,2) (1,3) (1,4)

(2,1)

(2,2)

(2,3) (2,4)

(3,2)

(3,3)

(3,4)

(4,2)

(4,3)

(4,4)

Figure B.28. A bijection between Z and N×N.

5. Show thatW has the same cardinality as Z.
We will exhibit a bijection between W and Z. When w ∈ W is odd, let f (w) =
w−1

2 +1, and when w ∈W is even, let f (w) = −w
2 .

This is injective: if f (k)= f (r), then either both values are positive, so that k−1
2 +1

= r−1
2 +1, so k = r, or both values are non-positive, so −k

2 = −k
2 so k = r.

It is also surjective: for n ∈ Z, if n > 0, then f (2(n−1)+1) = 2(n−1)+1−1
2 +1 = n,

and if n ≤ 0, then f (−2n) = −(−2n)
2 = n.

6. What is the cardinality of the set { p
q | p ∈W,q ∈ Z}?

There is a bijection between this set andW×Z, defined by f ( p
q ) = (p,q). We know

that |W|= |Z|= |N|= |N×N|. Therefore, the cardinality is ℵ0.

7. What is (ℵ0)
3? How about (ℵ0)

8? Or (ℵ0)
ℵ0? Explain.

All three of these are equal toℵ0. For example, (ℵ0)
3 =ℵ0 ·ℵ0 ·ℵ0 = |N×N×N|,

and we know from Section 15.5 that there is a bijection between N×N×N and N.
The same holds for (ℵ0)

8, and even (ℵ0)
ℵ0 , because there is a bijection between∪

k∈NNk and N.

8. Consider the set F of all functions from N to N. Is F countable or uncountable?
We will show that F is uncountable by showing that a proper subset of F is un-
countable. Consider a subset A ⊂N. There exists a function fA : N→N defined by

fA(n) =
{

n n ∈ A,
1 n ̸∈ A.

In other words, fA sends elements of A to themselves and sends everything else to
1. (This is neither one-to-one nor onto unless A = N.) And, the functions fA are
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in one-to-one correspondence with elements A ∈ P(A), so |F | ≥ |P(A)|, and we
know P(A) is uncountable because |P(A)|= 2ℵ0 > ℵ0.

9. Is the total number of steps in an algorithm that does not terminate countable or
uncountable?
The steps in an algorithm are numbered, so we can count them as the algorithm
proceeds and therefore the total number is countable.

10. Consider the set H of length- 1
2 intervals that are contained in the interval [0,1].

What is |H|?
The intervals of length 1

2 are in one-to-one correspondence with their left endpoints.
(If you don’t believe this, consider that given a left endpoint we can find the right
endpoint by adding 1

2 .) An interval of length
1
2 inside the unit interval can have a

left endpoint as small as 0 and as large as 1
2 . So |H| = |[0, 1

2 ]|. The elements of
[0, 1

2 ] are in one-to-one correspondence with the elements of [0,1], so |H|= ℵ1.

Chapter 16, Section 16.11 page 529

1. Given any n integers k1,k2, . . . ,kn, show that there exist ki,k j such that ki ≡ k j
(mod n−1).
Compute k1 (mod n−1),k2 (mod n−1), . . . ,kn (mod n−1). These values can-
not all be different; n > n−1 so by the pigeonhole principle two of them must be
the same. Name those two ki,k j and we have that ki ≡ k j (mod n−1).

2. Find a set of 13 natural numbers, each of which has a different value modulo 13
and all of which are multiples of 5.
Well, let’s see. {5,10,15,20,25,30,35,40,45,50,55,60,65}works. Their residues
are {5,10,2,7,12,4,9,1,6,11,3,8,0}.

3. Consider the equation 5x+2y = 3. Why can it not have any solutions with both x
and y whole numbers? For which k does the equation 5x+ 2y = k have solutions
with both x and y whole numbers?
If both x and y are whole, then the smallest possible values for 5x+ 2y are 0 (x =
y = 0), 2 (x = 0,y = 1), 4 (x = 0,y = 2), and 5 (x = 1,y = 0). None of these is
equal to 3. Using x = 0 and all whole y, we obtain all even whole numbers for k;
using x = 1 and all whole y, we obtain all odd numbers ≥ 5 for k. Thus we can
produce all whole numbers except 1 and 3.

4. Compute φ(5k4), for any positive k.
φ(5k4) = 5k−14φ(4) = 5k−18.

5. For which n is φ(n) = 4?
Because 4 = 23−1(2−1) = 5−1 = 22−1(1)(3−1), we have φ(5) = φ(8) = φ(12).
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6. Prove that the number of natural numbers relatively prime to n and≤ mn is mφ(n).
Recall that GCD(k,n)=GCD(k (mod n),n). Now notice that for every k (mod n),
there are m different numbers ≤ mn equivalent to k (mod n).

7. Use the Euclidean algorithm to compute GCD(1234,12345). Now find integers
k, ℓ such that GCD(1234,12345) = k1234+ ℓ12345.
12345 (mod 1234) is 5, so GCD(1234,12345) = GCD(5,1234). Then 1234
(mod 5) = 4, so GCD(1234,12345) = GCD(5,1234) = GCD(4,5) = 1. Let’s see.
1 = 5−4 and 4 = 1234−246 ·5, so 1 = 5−1 ·1234+246 ·5 = 247 ·5−1 ·1234.
Now, 5 = 12345− 10 · 1234, so 1 = 247 · (12345− 10 · 1234)− 1 · 1234 = 247 ·
12345−2471 ·1234.

8. Prove that if GCD(a,b) = 1, then for any integer c, there is always a solution to
ax + by = c, where x and y are integers. Use this fact to find a solution to the
equation 2x+3y = 4.
If GCD(a,b) = 1, then by Theorem 16.3.1 there exist integers k, ℓ such that ka+
ℓb = 1. If we multiply through by c, we get cka+cℓb = c. So, set x = ck and y = cℓ.
For the example, we know that 2(−1)+ 3(1) = 1, so 4(−1)2+ 4(1)3 = 4. Here
x =−4 and y = 4.

9. Find all x that satisfy 2x ≡ 2 (mod 7).
4 · 2 = 8 ≡ 1 (mod 7); the equivalence becomes x ≡ 4 · 2 ≡ 1 (mod 7), so the
desired set is all x ≡ 1 (mod 7).

10. Which x satisfy both x ≡ 1 (mod 3) and x ≡ 3 (mod 4)?
x = 3 j + 1 so 3 j ≡ 2 (mod 4). Then 3 · 3 ≡ 1 (mod 4) so j ≡ 6 ≡ 2 (mod 4).
Because j = 4q+2, we have that x = 3(4q+2)+1, so x ≡ 7 (mod 12).

Chapter 17, Section 17.9 page 552

1. Write a runtime function for the marble-sorting algorithm given in Example 5.2.8.
The input size is the number ofmarblesm in a bag. Notice that step 2 uses a different
number of operations depending on the color of the marble: two operations for a red
marble, three operations for a green marble, and four for a marble that is neither red
nor green—we have a comparison operation for each “if.” In the worst-case input,
there are no red marbles and no green marbles. There are six operations per non-
red–non-green marble, so the function is 6m.

2. Consider the following algorithm that has input list with length n. What does the
algorithm do? What is a worst-case input? What is its runtime function? What
function type or complexity class is that function?

1. Let i = 1.
2. If listi ≥ listi+1, say “nope” and exit; otherwise, continue.
3. If i = n−1, say “yup!”; otherwise, replace i with i+1 and go to step 2.
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The algorithm tells us whether the entries of the list are sorted in increasing order.
A worst-case input is a sorted list.
Runtime function: 1+3(n−1) = 3n−2. This is linear with r(n) ∈ O(n).

3. Prove that r(n) = n2 −16 is in O(n3).
We know that n2−16≤ n2 ≤ n3, so we can choose c= k = 1 to satisfy the definition
and see that n2 −16 ∈ O(n3).

4. Estimate the complexity of the following pointless algorithm that takes as input a
natural number n.

1. Let i = 1.
2. If it’s Tuesday, then continue; otherwise, go to step 5.
3. Let j = 2n+1 and let m = i(2− j).
4. If i = n, output “Ha ha ha!”; otherwise, replace i with i+ 1 and go to

step 2.
5. Let j = 2i.
6. If i = n, output “Ha ha ha!”; otherwise, replace i with i+ 1 and go to

step 2.

If it’s Tuesday, then the algorithm has to do n multiplications to compute j and two
operations to computem. This happens for each value of i, and there are n iterations
of i, so we have (n+ 2)n ≈ n2 operations. If it’s not Tuesday, then the algorithm
does one multiplication to compute j. This happens for each value of i, for a total
of n operations. Thus, the worst-case scenario is Tuesday, and the complexity is
quadratic (roughly n multiplications n times).

5. Consider the following algorithm with input list of length n with integer elements.
What does it do? What is its complexity?

1. Let i = 1 and let newlist = {}.
2. Append 2 · listi to newlist.
3. If i < n, replace i with i+1 and go to the previous step; otherwise, output

newlist.

This produces a new list each of whose elements is twice the value of the old list’s
corresponding element. The complexity is linear because the runtime is 4n+2.

6. Determine the complexity class of the bubble sort algorithm, whose runtime func-
tion is approximated in Section 6.12.
Because

(n
2

)
= 1

2 (n
2 −n), bubble sort is in O(n2).

7. True or false: 1
2 n2 +n log(n) ∈ O(n log(n)). Explain, and if the statement is false,

make a corrected statement.
False: for natural n, n>log(n). Thus n2>n log(n) and so 1

2 n2+n log(n)∈Ω(n log(n)).



B. Solutions to Bonus Check-Yourself Problems 639

8. Write an algorithm that inputs a number n and outputs whether the number is even,
odd, or neither (not an integer). What is its complexity?
Answers will vary, but here is one possibility:

1. Let halfish= ⌊ n
2⌋.

2. If 2 ·halfish= n, output “even!”; otherwise, continue.
3. If 2 ·halfish +1 = n, output “odd!”; otherwise, continue.
4. Output “this is not an integer.”

There are a whopping nine operations at most, so this algorithm is of constant com-
plexity.

9. Consider the following algorithm. What does it do? Estimate its complexity.

1. Input n.
2. Let i = 0 and let j = n.
3. If ⌊ j

2⌋= 0, output i; otherwise, continue.
4. Replace j with ⌊ j

2⌋, replace i with i+1, and go to the previous step.

The algorithm gives the highest power of 2 that is less than or equal to n. The
complexity is O(log2(n)), because the number of iterations is an integer and the
logarithm bounds that from above.

10. True or false:
√

n+ n ∈ Ω(n). Explain, and if the statement is false, make a cor-
rected statement.
True, because

√
n > 0 and so

√
n+n > n = 1 ·n.
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Appendix C

The Greek Alphabet and
Some Uses for Some Letters

Lower- Upper- Name Lowercase uses / uppercase uses
case case
α A alpha the first letter you use / unused
β B beta the second letter you use / unused
γ Γ gamma curve, photon (physics) / Gamma function, Christoffel sym-

bol (physics)
δ ∆ delta small amount, Dirac delta function (physics and math) /

change, highest degree of a vertex in a graph
(ε) E epsilon small positive number, young mathematician / unused

ζ Z zeta Riemann zeta function / unused
η H eta used when you have used too many common letters already

/ unused
θ Θ theta angle / measure of algorithmic efficiency (computer science)
ι I iota identity map / unused
κ K kappa curvature, connectivity of a graph / unused
λ Λ lambda wavelength (physics), eigenvalue / exterior product
µ M mu measure, prefix for 10−6 / unused
ν N nu neutrino (physics), frequency (physics) / unused
ξ Ξ xi used as an additional variable / used occasionally in physics
o O omicron unused / unused
π Π pi constant 3.14159…, projection map / product
ρ P rho radius (spherical coordinates), density (physics) / unused
σ Σ sigma permutation / sum
τ T tau torque (physics), 1−

√
5

2 / unused
υ ϒ upsilon unused / shape of hat (not kidding!)
ϕ (φ) Φ phi map, golden ratio, Euler phi function, angle (spherical coor-

dinates) / a map
χ X chi chromatic number, Euler characteristic / unused
ψ Ψ psi another map, wave function (physics) / unused
ω Ω omega first infinite ordinal, angular velocity / resistance, measure of

algorithmic efficiency (computer science)
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Appendix D

List of Symbols

A usually a set
a usually an element of a set

{a1,a2, . . . ,an} finite set, and the items separated by commas are the elements of
the set

(a1,a2, . . . ,an) ordered n-tuple
a1a2 . . .an a string of digits, usually forming a number

a1,a2,a3, . . . ,an, . . . a generic integer sequence
A1,A2, . . . the first set, the second set, etc.

|A| number of elements in (cardinality of) set A
A×B Cartesian product of sets A and B, with elements (a,b)

/0 = {} empty set, or null set
N the natural numbers {1,2, . . .}
Z2 the binary digits {0,1}
Z the integers {. . . ,−2,−1,0,1,2, . . .}
Zn the integers modulo n, which as a set is {0,1, . . . ,n−1}
W the whole numbers {0,1,2, . . .}
Q the rational numbers
R the real numbers
| “such that” or “divides” or “bar,” depending on context

a star (yes, really)
∈ set element, or “is an element of”; for example, a ∈ A
̸∈ “not an element of”
⊂ subset, or “contained in”; for example, A ⊂ B
⊆ subset that may or may not be proper
( subset that is not equal to its superset
⊃ contains, superset, or subset the other way around

643
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̸⊂ not a subset
P(A) the power set of A

A the complement of a set A

B\A, B−A the complement of A relative to B

∪ union
∩ intersection∪n

i=1 Ai union of finitely many sets, A1 ∪A2 ∪·· ·∪An∩n
i=1 Ai intersection of finitely many sets, A1 ∩A2 ∩·· ·∩An∪∞

i=1 Ai,
∪

i∈N Ai union of a countably infinite number of sets∩∞
i=1 Ai,

∩
i∈N Ai intersection of a countably infinite number of sets∪

α∈I Aα the union of uncountably many sets (where I is an uncountable
index set such as [0,1])

∧ and
∨ or
¬ not
⇒ implies
→ function direction, as in A → B

7→ an element goes somewhere, as in a 7→ f (a)

⇔ if and only if
⇐⇒ if and only if
(⇒) signals that what follows will prove this direction of implication

in an if-and-only-if proof
(⇐) signals that what follows will prove this direction of implication

in an if-and-only-if proof
|| common computer code for or

&& common computer code for and
== common computer code for =
∀ for all
∃ there exists

f : A → B usually a function, but sometimes a gipo
f |C a map defined on a subsetC of its domain
⌊x⌋ the floor function of x, the greatest integer less than or equal to x

⌈x⌉ the ceiling function of x, the least integer greater than or equal to x

1–1 one-to-one
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V (G) the vertex set of a graph G

E(G) the edge set of a graph G

v1v2 or {v1,v2} an edge of a graph
Pn a path graph
Cn a cycle graph
Wn a wheel graph
Kn the complete graph with n vertices

Km,n the complete bipartite graph with m vertices in one part and n ver-
tices in the other part

φ a function; often, a proposed isomorphism
⋆A an operation on A, as in a1 ⋆A a2 = a3

A ∼= B A is isomorphic to B

G\ e (or G− e) the graphG but with the edge e removed and e’s vertices left intact
G\ v (or G− v) the graphG but with the vertex v and all its incident edges removed

G\H (or G−H) the graph G but with the subgraph H removed, and all edges inci-
dent to any vertex in H removed

G graph complement of G

R(k,m) the Ramsey number n that indicates the smallest possible Kn that
is forced to contain a monochromatic Kk or Km

n

∑
j=1

f ( j), ∑n
j=1 f ( j) the sum of the first n natural-input values of f ( j)

∑
s∈S

f (s), ∑s∈S f (s) the sum of the values of f (s) for all possible inputs taken from S

deg(v) the degree of a vertex v in a graph G

n|a n divides a, so that a = kn for some k ∈ Z
a ≡ b (mod n) equivalence modulo n

b (mod a) shorthand for “the smallest nonnegative integer r such that r ≡ b
(mod a)”

∼ a relation (comparison) between set elements, often proposed as
an equivalence relation

[a] the equivalence class of a, or all set elements equivalent to a under
some equivalence relation ∼(n

k

)
the number of ways one can choose k things from a pile of n things

n! the factorial function, which returns n ·(n−1) ·(n−2) · · · · ·3 ·2 ·1
Fn the nth Fibonacci number
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we the weight assigned to edge e

w(T ) the total weight of a tree T

χ(G) the chromatic number of a graph G

χ ′(G) the chromatic index of a graph G

∆(G) the maximum degree of any vertex in G

P(E) the probability that event E occurs
X(s) the value of random variable X for state s

P(X = k) the probability that an event defined by the random variable X
having value k occurs

E[X ] the expected value of a random variable X

P(E1|E2) the conditional probability that event E1 happens, given that E2

definitely occurs; P(E1|E2) =
P(E1 and E2)

P(E2)

X1 +X2 the sum of two random variables, defined pointwise as
(X1 +X2)(s) = X1(s)+X2(s)

ℵ0 the cardinality of the set N
ℵ1 the smallest infinite number strictly larger than ℵ0

ZFC the axiom set we usually use formathematics, namely the Zermelo-
Fraenkel axioms plus the axiom of choice

φ(n) the Euler phi function, which counts the natural numbers that are
relatively prime to and less than n

GCD(a,b) the greatest common divisor of a and b

LCM(a,b) the least common multiple of a and b

Θ(type) the set of all runtime functions r(n) such that there are positive
real constants c1 and c2 and a natural number k so that whenever
n ≥ k, c1 · type ≤ r(n)≤ c2 · type

O(type) the set of all runtime functions r(n) such that there is a positive
real constant c and a natural number k so that whenever n ≥ k,
r(n)≤ c · type

Ω(type) the set of all runtime functions r(n) such that there is a positive
real constant c and a natural number k so that whenever n ≥ k,
r(n)≥ c · type
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acyclic, 310, 336
ad hoc networks, 414
adjacency matrices, 85, 93
adjacent transposition, 383, 385
adjacent vertices, 72, 80, 91, 408
ahiru, 190, see also duck
aleph-naught/null, 502, 506
algorithms, 127–137, 151, 533–551

breadth-first search, 153–154
bubble sort, 194–197, 317
complexity, 536–539, 544, 552
conditionals, 130–134, 151
correct, 129, 151
counting operations of, 533–535
depth-first search, 335, 337
Dijkstra’s, 378–384
Euclidean, 514, 524
graphs, searching, 152–154
greedy, 323–324, 336, 416
insertion sort, 534
Kruskal’s, 317–320
loops, 131–134, 151
parsimonious, see greedy
Prim’s, 320–322
runtime functions, 539–541, 552
selection sort, 534–535
terminate, 127, 151

all ducks are grey, 115–116

always-keep-your-right-hand-on-the-wall
approach, 330, 335

anagrams, 222, 232
Anatinus, 421, see also duck
anatra, 441, see also duck
and, 38, 39, 40, 42, 52, 55
ànec, 122, see also duck
ankka, 320, see also duck
antecedent, xxxvii
arithmetic sequences, 256–258, 267

backtracking, 333, 334, 335, 337, 337, 547
problems that use, 339, 340, 343, 345,

441
backtracking trees, 335, 337
bars, see stars-and-bars argument
base cases (induction), 103, 104, 166
biconditionals, 12, 42, 55, 70, 164
big-O notation, 547–550
bijections, 16, 68, 91
bijective proof, 190, 194
binary decision trees, 327, 328, 337
binary numbers, 10, 21
binary search trees, 326, 328, 337
binary strings, 16, 29, 31, 33
binary trees, 324–331, 337

complete, 325, 337
matchings, 330–333

649



650 Index

binary trees (continued)
problems that use, 340, 342–344
rank, 325, 337
root, 324, 337

Binet formula, 263, 551
binomial coefficients, 182–186, 188, 194

Challenge problems, 203–205
and permutations, 186–187

binomial identities, 189, 194, 203–205
binomials, 187–189, 194

Challenge problem, 189
bipartite graphs, 78, 92

coloring, 418–420
complete, 78
problems that use, 79, 97, 416

borify, 32
branch-and-bound technique, 337–339
breadth-first search, 153–154, 555
Brooks’s theorem, 423
bubble sort algorithm, 194–197, 317

problems that use, 540, 553
bubblepath graphs, 124

Caesar cipher, 143, 152
problems that use, 148, 149, 161

canard, 441, see also duck
cardinality, 29, 54, 481, 497–506

Challenge problem, 509
Cartesian products, 7, 32, 33, 55, 446, 519

Challenge problem, 170
problems that use, 97, 100, 172, 476

ceiling function, 71, 91
cellular embeddings, 362
characteristic equation, 261–265, 268
characteristic function, 94
chemical storage, 411–412
choice number/notation, 176, 194
chromatic number/index, 407–409, 423,

424
problems that use, 429, 430, 433, 434,

438, 439

ciphers, see also cryptography
Caesar, 143, 152
Challenge problems, 160
ROT13, 144, 152
shift, 143–144, 152
substitution, 142, 152
Vigenère, 127, 144–147, 152, 525

ciphertext, 142, 152
circuits, 371
clarity of algorithm, 128
closed forms, 249, 250–252, 255,

257–259, 267
proving, 251–252

codons, 385
coins, flipping, 446

problems that use, 468, 475, 478–479
Collatz conjecture, 134, 149
coloring, see graph coloring
combinatorial proof, 177, 182–186,

190–191, 194, 269
combinatorial strategies, 207–225

anagrams, 222, 232
balls and boxes, 230–231
bijective counting, 223–225
inclusion-exclusion (PIE), 214–215,

225–227, 228–231, 232
product and sum principles, 6–9
slots, 215–216
solutions to problem types, 218–223
stars-and-bars argument, 216–217,

232
complement (set), 30, 31, 54
complement (graph), 84, 93
complete binary trees, 325, 337
complete bipartite graphs, 78, 92
complete graphs, 74, 77, 92
complexity class determination, 550–551
complexity of algorithm, 536–539, 543,

544–547, 552
component of graph, 83, 92
compound statements, 38, 42, 52
conditional probability, 455, 456–459, 470
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conditionals, 38, 55, 130–134, 151
congruence equations, 516–520

Challenge problem, 520
congruent modulo n, 137, 151
conjectures, 9, 11, 20
connected graphs, 76, 92, 153
connectives, 38, 55
constant coefficients, 260–262, 268
constant differences, 256
constraints, 234
constructive proof, 18, 151
continuum hypothesis, 505, 506
contradiction, proof by, 47, 48, 49, 118

template, 165
contrapositive, 45, 47–49, 55

template for proving, 164–165
converse, 45, 55
corollaries, 9, 21
correct algorithms, 129, 151
cost function, 234
countable set, 502, 506
counterexample, 14, 21
crossword puzzle, 343
cruciferous, 130, 151
cryptography, see also ciphers

ciphertext, 142, 152
decryption, 142, 152
encryption, 142, 152
plaintext, 142, 152
real-world examples, 147–148
RSA cryptosystem, 525–529
wacktext, 142, 152

cycles, 76, 92

decryption, 142, 147–148, 152, see also
cryptography

definitions, 9, 20
degree of vertex, 73, 91, 392
degree sequences, 78, 92
DeMorgan’s laws, 44–47, 55, 105–106

problems that use, 62, 121
depth-first search, 153, 335, 337

derangements, 231
dice, 446, 455–457, 461

problems that use, 454–455, 468,
478–480

digraphs, see directed graphs
Dijkstra’s algorithm, 378–384

problems that use, 394, 398
Dirac’s proof, 377, 393
direct proof, 12–13

template, 163
directed graphs, 84, 386
disjoint sets, 5, 20, 32, 54
distance between vertices, 76, 92, 172
distinct, 82
divides, 137, 151
divisibility, 154–157
Doctor Who, 63, 139, 150
domain, 66, 91
dot game, 74
double induction, 118
double-inclusion, 31, 164

edge Kempe chains, 425
k-edge-chromatic, see chromatic

number/index
edges, 72, 91

coloring, see graph coloring
eend, 382, see also duck
elements of set, 5, 28, 54
embeddings of graph, 362
empty set, 28, 54
encryption, 142–148, 152, see also

cryptography
equivalence classes, 139–141, 151

Challenge problems, 148
equivalence relations, 139–142, 151
étoile, 8, 382, see also duck
Euclidean algorithm, 514, 524, 528
Euler circuits, 371–377, 383, 385

problems that use, 437, 439, 441
Euler phi function, 511–513, 524
Euler trails, 385, 439
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Euler traversals, 371–372, 385, 386
Euler’s formula, 350–357

applications, 354–357
Challenge problem, 359

even numbers, 10, 21
events, 446, 470
exclusive or, 39, 55
exclusive states, 446, 461–462, 470
existence proofs, 18, 136–137, 151
expected value, 450, 470
explicit formula, 249, 267, see also closed

form
exponential functions, 539, 545–547, 552

faces of planar graphs, 348–350, 361
Euler’s formula, 350–357

factorial notation, 185–186, 194
Farey sequence, 531
Fibonacci numbers/sequence, 245,

246–254, 267
Binet formula, 263, 551
complexity class, 550–551
problems that use, 273, 555

k-figurate numbers, 295
finger-finger graph, 96
finite differences, 256–258
first differences, 256, see also finite

differences
flawed proofs, problems that use, 123–124
floor function, 71, 91
flow in/flow out, 389, see also network

flows
forests, 76, 92
four-color theorem, 424–429
freaky fraction lists (FFLs), 522–523, 531
functions, 66–71, 82, 91

gans, 382, see also duck
generalized pigeonhole principle, 18
general position, 280, 284, 288, 290
GeoGebra, xxi, xxxii, 81, 82, 86, 348, 349

problems that use, 97, 169, 397, 436

geometric sequences, 260–265, 268
gipos, 66, 91
girth of graph, 366, 429
Gödel’s incompleteness theorem, 54
Goldbach conjecture, 11, 14
graph coloring, 122, 403–422, 423
graphs, 72–73, 75–86, 91
greatest common divisor (GCD), 512–515,

522, 524
Challenge problems, 530, 531

greedy algorithms, 323–324, 336, 416,
problems that use, 431, 432–433, 437

Grötzsch graph, 365

Hall’s matching theorem, 336
Hamilton circuits, 377–381, 385

problems that use, 394, 395, 397–401,
432, 437, 440–441

Hamilton cycles, 385
Hamilton paths, 385, 440
Hamilton traversals, 377, 385

problems that use, 394, 397, 398, 400,
401

Hamiltonian theorems, 392–393
handshaking lemma, 76–77, 112, 183, 190,

356
problems that use, 97, 203

homogeneous recurrence relations, 260,
268

hwyaden, 321, see also duck
hyperbeets, 290
hypercuts, 283–284, 287–289, 290

The Icosian Game, 399
if-and-only-if, 42, 55, see also

biconditionals
if-then, see implies
if-then-else, 131, 151
iff, see if-and-only-if
image of function, 66, 91
implications, 45, 45, 55
implies, 12, 38, 40–42, 45, 52, 55
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incident, 72, 91, 407
inclusion-exclusion, principle of (PIE), see

principle of inclusion-exclusion
(PIE)

inclusion map, 100
independence, 455–459, 463–464
independent events, 458, 470
induction, 103–118, 166, 248–253

Challenge problems, 122, 124
double, 118
template, 104

inductive hypothesis, 104, 166
inductive step, 104, 166
injections, 75, 204, 503
injective, see one-to-one
insertion sort, 534
integer partitions, 208, 231
integer programming, 232–233, 234–237,

337–339
integer sequences, 248, 249–253, 267
integers modulo n, 137, 151
intersection of sets, 32, 54
into, see one-to-one
inverse, 45, 55
isomorphic, 82
isomorphic graphs, 80, 92
isomorphism, 82, 92
iteration, 132, 151

k-chromatic, see chromatic number/index
k-colorable/k-vertex-colorable, see

chromatic number/index
k-edge-chromatic, see chromatic

number/index
k-edge-colorable, see chromatic

number/index
k-figurate numbers, 295
k-to-one correspondences, see

many-to-one correspondences
kačica, 332, see also duck
Kempe chains, 425–429
key word for encryption, 144, 152

Kruskal’s algorithm, 317–320, 322,
problems that use, 340–342, 344, 436

kth differences, see finite differences
Kuratowski’s theorem, 363

labeled/unlabeled boxes, 208–213,
218–222

lacha, 441, see also duck
ladder induction analogy, 108–109
leaf, 76, 92, 311
least common multiple (LCM), 512, 524
lemma, 9, 20
lemonade stand, 653
length of path, 76, 92
linear functions, 234, 539, 545–547, 552
linear homogeneous recurrence relation

with constant coefficients, 268
linear programming, 234
linear recurrence relations, 260, 268
logarithmic functions, 539, 552
logic, 27, 37–46
loops (algorithm), 131–134, 151
loops (graph), 73, 91

many-to-one correspondences, 19, 182
maps, see functions
matchings, 331–333, 336, 337, 417,

421–422
mazes, 330, 335
mediant, 522–523, 525
mesh networks, 414
minimal criminal argument, 118–119
minimum-weight spanning trees, 313–314,

316–317, 320
problems that use, 339–342, 344

mixed integer-linear programming, 234
Möbius band, 363
Möbius ladder, 367, 400, 433
modular arithmetic, 137–139

Challenge problems, 142, 159
monochromatic triangle, 88–89
multi-hop networks, 414
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multinomial coefficient, 239
multiple edge, 73, 91
multiplicity of edge, 73, 91

n! (n factorial), see factorial notation
n-prism graph, 394, 408
necessary, see implies
neighbors of vertices, 72, 91
network flows, 388, 389–392
nonconstructive proof, 18
nonplanar graphs, 349, 355, 358, 362–363

problems that use, 365–367, 437–439
not, 38, 39, 40, 42, 55
null set, 28, 54

objective function, 234
odd numbers, 10, 21
önd, 210, see also duck
one-to-one, 68–71, 91
one-to-one correspondences, 17, 68, 91,

190, 502–504
Online Encyclopedia of Integer Sequences

(OEIS), 249, 254, 267, 270
only-if, see implies
onto, 68–71, 91
optimization, 233
or, 38, 39, 40, 42, 52, 55
ördek, 303, see also duck
order doesn’t matter, 232
order matters, 208, 210, 232
ordered, 208, 210, 232
ordered n-tuple, 5
ordered pair, 5, 12, 29, 32–33, 55, 84
ordered triple, 5
original statement, 45
overcounting, 77, 182–186, 221–222,

225–229

papra, 441, see also duck
parsimonious algorithms, see greedy

algorithms
partitions, 140, 152

parts of bipartite graph, 78
Pascal’s triangle, 178–179, 180–181, 194
patitsa, 214, see also duck
paths, 76, 92
perfect matching, 331, 332, 337, 417

problems that use, 339, 436
permutahedron, 385
permutations, 185–187, 194, 198–200,

229, 333
Petersen graph, 78, 92, 359, 363

problems that use, 97, 366, 431, 436,
440

phi function, see Euler phi function
PIE, see principle of inclusion-exclusion

(PIE)
pigeonhole principle, 17–19, 61, 163, 291

Challenge problem, 19
divisibility, 154–157
existence proofs, 136
generalized, 18
many-to-one correspondences, 182

plaintext, 142, 152
planar graphs, 347–350, 354–360, 361

Challenge problem, 367
polyhedra/polytopes, problems that use,

204, 205, 304, 366–367
polynomial functions, 257–258, 539, 552
power set, 30, 54
Pretty Good Privacy (PGP), 528
Prim’s algorithm, 320–322

problems that use, 340–342, 344, 436
prime factorizations, 10–11, 119, 512
prime numbers, 10, 21, 157
principle of inclusion-exclusion (PIE),

228, 232, 459–461
Challenge problem, 240
and probability, 460

n-prism graph, 394, 408
probabilistic method, 466–468, 470–473
probability, 446–468, 469
probability axioms, 447, 470
probability distribution, 449, 470
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product principle, 6–9
projection maps, 97
proof techniques

contradiction, 47, 48, 49, 118, 165
contrapositive, 164–165
combinatorial, 177, 182–186,

190–191, 194, 269
direct, 12–13, 163
double-inclusion, 31, 164
induction, 103–118, 248–253
minimal criminal, 118–119
probabilistic method, 468, 470
smallest counterexample, 118–120
templates, 163–166

proofs (definition), 9, 12, 20
proper edge coloring, 404, 407, 423
proper subsets, 30, 54
proper vertex coloring, 403–404, 407, 412,

415, 423
propositions, 9, 20
pseudocode, 195
public key cryptography, 525–529

quadratic functions, 257, 539, 545–547,
552

quantifiers, 43, 55
order mattering, 52–53
restriction of variables via, 42–43

Qwirkle game, 474, 475

račja, 391, see also duck
Ramsey number, 88, 89, 90, 93, 470–473
random variable, 448–451, 464–465, 470
range, 66, 91
rank of binary tree, 325, 337
recurrence relations, see recurrences
recurrences, 245, 248, 249, 250–253, 267,

268–272
recursing, 255, 267
recursion, 249–253, 267
reflexive property, 139, 151
regular graphs, 78, 92

relatively prime, 511, 518–520, 524
repetition allowed, 211, 232
Restricted Trench puzzle, 271
rhombicosidodecahedron, small, 204
ribonucleic acid (RNA) chains, 385–387
rock-paper-scissors game, 478
root of binary tree, 324, 337
rosë, 441, see also duck
ROT13 cipher, 144, 152

problems that use, 148, 158
Royle graph, 368, 433
RSA cryptosystem, 150, 525–529
runtime functions, 536–538, 539–541, 552

big-O notation, 547–550
comparison of, 543–547
computation of, 542–543

Russian-style multiplication, 134
Challenge problems, 160, 554

same size (sets), see cardinality
sample space, 446, 469
Schröder–Bernstein theorem, 506–508
second differences, see finite differences
selection sort, 534–535
sensitivity of test, 457, 470
sensor networks, 414
sequences, 245, 246–254, 256–258,

260–265, 531
SET card game, 291–293, 463–464
sets, 27, 28–37, 54
shift ciphers, 127, 143–144, 152
shortest path between vertices, 378–379
simple graphs, 77, 92
simplex algorithm, 537
sink vertices, 389
size (planar graph faces), 348, 361
size (sets), see cardinality
slack variables, 236
slots strategy, 215–216
small rhombicosidodecahedron, 204
smallest counterexample, 118–120
song, Abcdefghi… 162
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sorting by size, see bubble sort algorithm
source vertices, 389
spanning trees, 312–324, 336

algorithms, 314–324
Kruskal’s algorithm, 317–320
minimum-weight, 313, 316, 317
minimum-weight algorithms, 317,

322
Prim’s algorithm, 320–322
problems that use, 341, 439

specificity of test, 457, 470
spherical graphs, 361
squarefree number, 529
star graph, 112, 410

problems that use, 98, 439
stars-and-bars argument, 216–217, 232
start big algorithm, 314
start small algorithm, 315
state spaces, 446–447, 453, 469
statements, 37, 37–42, 55

combining, 38–42
compound, 38

states vs. events, 446
Stern-Brocot tree, 524
Stirling numbers, 208, 231
subgraphs, 83, 92
subsets, 14–16, 20, 30, 54
substitution ciphers, 142–148, 152
Sudoku puzzles, 184–185, 343
sufficient, see implies
sugar-numbers, 176, 177
sum principle, 6–8, 32, 71, 214, 268
summation notation, 109–111
surjections, 75, 204, 503
surjective, see onto
symmetric property, 139, 141, 151

target/target space, 66, 91
terminate, 127, 151
theorems, 9, 20
thickness of graph, 356, 361

Time Division Multiple Access (TDMA),
414

topological graph theory, 361–363
torus, 359–363
Tower of Hanoi, 269–270
traffic-light cycle, 412–413

problems that use, 430–432, 436
trails, 371
transitive property, 139, 151
Traveling Salesperson Problem, 371, 377,

378–380, 384, 385
traversals, see Euler traversals, Hamilton

traversals
trees, 76, 92, 309–336, 336
Trench puzzle, 270–271
triangulation, 295
trinary tree, 342
truth tables, 38–42, 45, 52, 55, 56–59
truth-teller puzzles, 56–59
TSP, see Traveling Salesperson Problem
Twelvefold Way, 231

uncountable sets, 502, 506
union (graphs), 83, 92
union (sets), 5, 20, 32, 54, 225
universe, 30
unordered, 209, 211, 212, 232
until (conditional), 131, 151
utka, 441, see also duck

variables
iterating, 132–134
random, 448–451, 464–465
slack, 236

Venn diagrams, 34, 35, 36, 51, 55, 106, 226
Challenge problem, 37
problems that use, 60–62, 172, 304

vertices, 72, 91
coloring, see graph coloring
degree of, 73, 392
distance between, 76, 92
shortest path between, 378–379
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Vigenère cipher, 127, 144–147, 152, 525
problems that use, 157, 159–161, 171,

172
Vizing’s theorem, 423

wacktext, 142, 152, 527
wacky negations, 44, 53
Wagner graph, 367
walks, 75, 92
weighted graphs, 84, 93, 313, 314, 336
weighted spanning trees, 316
well-defined functions, 66, 91
wheel graphs, 86, 92
while (conditional), 131, 151

while (statement), 540
wireless networks, 414–415
with repetition, 211
without repetition, 208, 209, 232
Wolfram|Alpha, 276, 528
words, 222, 232
worst-case scenario, 195, 196, 392, 411,

535, 537, 538, 547

xor (exclusive or), 39, 55

Zermelo-Fraenkel axioms, 505, 506
zero map, 99
ZFC, 505
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